COMMUTATIVE DIAGRAMS

Definition 1. A diagram in a category \mathcal{C} comprises a graph \mathcal{J} (the shape) and a graph homomorphism $D: \mathcal{J} \rightarrow \mathcal{C}$ from \mathcal{J} to the underlying graph of \mathcal{C}.

Definition 2. A diagram (\mathcal{J}, D) in \mathcal{C} is commutative if, for every pair of paths in \mathcal{J} (i.e. sequence of edges)

$$
x_{0} \xrightarrow{f_{1}} x_{1} \xrightarrow{f_{2}} x_{2} \xrightarrow{f_{3}} \cdots \xrightarrow{f_{k-1}} x_{k-1} \xrightarrow{f_{k}} x_{k}
$$

and

$$
y_{0} \xrightarrow{g_{1}} y_{1} \xrightarrow{g_{2}} y_{2} \xrightarrow{g_{3}} \cdots \xrightarrow{g_{\ell-1}} y_{\ell-1} \xrightarrow{g_{\ell}} y_{\ell}
$$

where $x_{0}=y_{0}$ and $x_{k}=y_{\ell}$ (i.e. the paths start at the same node, and end at the same node), we have

$$
D\left(f_{k}\right) \circ D\left(f_{k-1}\right) \circ \cdots \circ D\left(f_{3}\right) \circ D\left(f_{2}\right) \circ D\left(f_{1}\right)=D\left(g_{\ell}\right) \circ D\left(g_{\ell-1}\right) \circ \cdots \circ D\left(g_{3}\right) \circ D\left(g_{2}\right) \circ D\left(g_{1}\right)
$$

in \mathcal{C}. (Above, the two paths must have length at least 1 (i.e. $1 \leq k$ and $1 \leq \ell$), but the two paths do not have to have the same length, e.g. k may not be equal to ℓ.)
Example 3. Let \mathcal{J} be the following graph.

A diagram with shape \mathcal{J} in a category \mathcal{C} picks out three (not necessarily different) objects $D(A), D(B), D(C) \in \mathcal{C}_{0}$, and morphisms $D(f): D(A) \rightarrow D(B), D(g): D(B) \rightarrow D(C)$, $D(h): D(A) \rightarrow D(C)$.

$$
\begin{aligned}
D(A) \xrightarrow{D(f)} & D(B) \\
& \underset{D(h)}{\square} \underset{ }{\downarrow}{ }^{\downarrow}(g) \\
& D(C)
\end{aligned}
$$

Such a diagram commutes if and only if the we have

$$
D(g) \circ D(f)=D(h)
$$

in \mathcal{C}. For instance, the following diagram commutes in the category of sets and total functions (where $D(A)=\mathbb{N}, D(B)=\mathbb{N}, D(C)=\mathbb{N}$ and $f=(-)+1, g=(-)+1, h=(-)+2)$.

