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An intuitive representation of the slice category Set/A is the following. Suppose
{1, . . . , r} is a set with r elements; an r-colouring of a set X can be seens as a function
c : X → {1, . . . , r} (so that the elements of Xi := c−1(i) := {x ∈ X | c(x) = i} are the
elements ‘coloured’ by i, if i is understood as a ‘colour’ 1 ≤ i ≤ r); many problems in
elementary enumerative combinatorics concern colourings of finite sets, and thus they
can be stated as problems about the slice category Set/{1, . . . , r}.
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This exercises is meant to let you study coloured graphs. A (undirected, loop-free) graph
G is made of a set of vertices V and a set of edges E, which can be thought as a set of
2-element subsets of V . If {v1, v2} ∈ E, we say that v1, v2 are adjacent in the graph G.

Exercise 1:
Define an r-colouring of an undirected, loop-free graph G = (E, V ) as a function

c : V → {1, . . . , r}, which assigns a colour 1 ≤ j ≤ r to each vertex V of G, in such a way
that two vertices v1, v2 connected by an edge are not of the same colour. Homomorphisms
of coloured graphs preserve the r-colouring of domain and codomain, that is, they map
vertices of one colour to vertices of the same colour.
Let Kr be the graph defined as follows (it’s the complete graph on r vertices):

• the vertices of Kr are the elements of {1, . . . , r};

• two vertices i, j are adjacent if and only if i ̸= j.

▶E Prove that an r-colouring of a graph G corresponds precisely to the data of a
graph homomorphism G → Kr.

▶D Deduce that the category of coloured graphs is identified with the slice cate-
gory Gph/Kr.
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A binary operation of fundamental importance in the theory of categories is the join
of categories.

Exercise 2:
Given two categories C,D, the join of C and D, denoted by C ⋆ D, is the category

defined as follows:

• the objects are the disjoint union of C0 and D0 (that is, the same objects as the
sum C +D);

• the set of morphisms (C ⋆D)(X,Y ) are specified by case splitting:
– if X = C, Y = C ′ are both in C0, then (C ⋆D)(X,Y ) := C(C,C ′);
– if X = D,Y = D′ are both in D0, then (C ⋆D)(X,Y ) := D(D,D′);
– if X = C ∈ C0 and Y = D ∈ D0, there exists a unique arrow uCD : C ⇝ D;

such uCD is called the heteromorphism connecting C and D;
– if X = D ∈ D0 and Y = C ∈ C0, then (C ⋆D)(X,Y ) is empty.

Composition is defined as in C (or as in D) when both morphisms are in C (or in D);
composition with a heteromorphism always results in a heteromorphism:

∀f : C C ′ D C D

∀g : C D D′ C D′

f uC′D = uCD

uCD g = uCD′

▶E Show by induction that if n ≥ 2 the composition of an n-tuple of morphisms
in C ⋆ D, of which at least one is a heteromorphism, is a heteromorphism (between
the appropriate domain and codomain). Then prove that the join C ⋆ D is indeed a
category.

▶E Determine the join of two chains ∆[n] ⋆ ∆[m], if ∆[n] is the category {0 →
1 → · · · → n}.

▶D Determine the join of two cubes P [n] ⋆ P [m], if P [n] is the n-dimensional
cube of subsets of {1, . . . , n}; more generally, how can one represent the join of two
partially ordered sets P,Q in terms of P,Q?

▶D Determine the join of two discrete finite categories Aδ ⋆ Bδ, and of two codis-
crete categories Aχ ⋆ Bχ: is the result still discrete, still codiscrete?

▶C Determine the iterated join B(N,+, 0) ⋆ B(N,+, 0) of the additive monoid
of natural numbers, and the iterated join B(N,max, 0) ⋆ B(N,max, 0) of the monoid
under the maximum operation, n ∨m := max{n,m};a

aIf M is a monoid, to avoid ambiguity, we denote by BM the category with a single object de-
fined by M in the usual way.
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▶D Determine whether there is a relation between (C ⋆D)op and Cop ⋆Dop (equal,
opposite to each other, no relation. . . )?

Recall the construction of the right cone S▷ over a set S: it is the category whose
objects are S ∪ {∞} and whose arrows are the set {λs : s → ∞ | s ∈ S}. Similarly, S◁
is the category whose objects are S ∪ {−∞} and whose arrows are the set {ωs : −∞ →
s | s ∈ S}.
▶D Express S▷ and S◁ as joins of two categories; describe S◁ ⋆ S▷, S◁ ⋆ S◁,
S▷ ⋆ S▷, S▷ ⋆ S◁.

Combine the constructions of product, sum, slice, and coslice with the join construc-
tion:
▶C Can the join (A×B) ⋆ C be described in terms of A ⋆ C, B ⋆ C? How can (C ⋆
D)/X be described as X varies in C0 +D0? How can (A/A) ⋆ (B/B), (A/A) ⋆ (B/B),
(A/A) ⋆ (B/B) be described in terms of simpler components? How can (A ⋆B)+C be
described in terms of simpler components?
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This exercise plays with three different representations of the category Rel of (finite)
sets and relations.

Exercise 3:
Three versions of Rel (link).

Relations as spans. A relation between finite sets A,B consists of a subset R of the
Cartesian product A×B. As such, a relation R ⊆ A×B corresponds to a span

A R Bba

▶E What are a : R → A, b : R → B if R is given as a subset of A × B? Does
a span of function having that shape always correspond to a relation, R → A × B,
defined as the subset (a(r), b(r)) ⊆ A×B?

Relations as cospans, or rather, as graphs. The cospan c(R) associated with the
relation R is defined as the category whose objects are the elements of the disjoint union
of sets A + B, and where there is an arrow s → t if and only if s ∈ A, t ∈ B, and
(s, t) ∈ R. This cospan

A c(R) B

is called the graph of R: to understand why,
▶E Draw the cospan c(R) for simple relations between finite sets; fix a set X
and characterize the properties of c(R) for a relation R ⊆ X × X that is reflexive,
symmetric, and transitive on X.

▶D What is the category c(f) associated with a function, viewed as a total and
single-valued relation?a

aRecall that a ‘function’ f ⊆ A × B is a relation f that satisfies the following property: for each
a ∈ A, there exists a unique b ∈ B such that (a, b) ∈ f .

▶D Given R as subset, what is exactly the relation between the span with tip
R and the cospan with bottom c(R)? Are they interdefinable? Does one contain
strictly more information than the other?

Relations as matrices. A relation R ⊆ X × Y can also be represented as a matrix
whose entries are Boolean values: if X = {x1, . . . , xn} and Y = {y1, . . . , ym}, then R
consists of the matrix (rij) with entries 0 or 1, so that rij = 1 if and only if (xi, yj) ∈ R,
and zero otherwise.
For the sake of concreteness, from now on let’s just consider the special finite sets

[n] := {1, . . . , n} as objects.
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For example, if n = 4,m = 7, the matrix

R =
( 0 1 1 0 1 1 0

1 0 0 0 0 1 0
0 0 0 0 1 0 0
0 0 0 1 1 1 1

)
represents a relation R : {1, . . . , 7} → {1, . . . , 4}: write it as a subset of {1, . . . , 7} ×
{1, . . . , 4} = {(i, j) | 1 ≤ i ≤ 7, 1 ≤ j ≤ 4}; then depict its graph c(R).
▶E Verify that the product (in the usual sense of linear algebra) of Boolean ma-
trices corresponds to composition of relations; in other words, the matrix associ-
ated to the composition S ◦ R : {1, . . . ,m} R→ {1, . . . , n} S→ {1, . . . , p} is precisely the
matrix having entries

(S ◦R)ij =
∨n

k=1 rik ∧ skj .
a

aRecall that ∧ and ∨ are the usual Boolean operations of logical AND and OR:

∧ 0 1
0 0 0
1 0 1

∨ 0 1
0 0 1
1 1 1

Pointwise operations between Boolean matrices are induced by said operations of
logical AND, OR and NOT between Booleans; they are defined as follows:

• matrix OR: given R,S : A → B the matrix R∨S is defined as (R∨S)ij = Rij∨Sij ;

• matrix AND: given R,S : A → B the matrix R∧S is defined as (R∧S)ij = Rij∧Sij ;

• matrix NOT: given R : A → B, the matrix ¬R is defined as (¬R)ij = 0 if and only
if Rij = 1, (¬R)ij = 1 if and only if Rij = 0.

▶E Define all these operations as operations on relations-as-spans and relations-
as-graphs.

▶D Are the following properties true for all Boolean matrices R,S, T (of course,
taking them of the appropriate size when needed)? (Be mindful of what is true in
linear algebra and what is false!)

• (R ∨ S) ∧ T = (R ∧ T ) ∨ (S ∧ T ), and R ∨ (S ∧ T ) = (R ∨ S) ∧ (R ∨ T ).

• (R ∧ S) ◦ T = (R ◦ T ) ∧ (S ◦ T ), and R ◦ (S ∨ T ) = (R ◦ S) ∨ (R ◦ T ).

• ¬(R ∧ S) = (¬R) ∨ (¬S) and ¬(R ∨ S) = (¬R) ∧ (¬S).

• (¬R) ◦ S = R ◦ (¬S).

A form of Kronecker product of Boolean matrices is also defined: given R : A → B
and S : X → Y two Boolean matrices (note that the sizes of domain and codomain of
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R = (rij), S = (spq) are possibly not related in any way) the Boolean matrix R ⊗ S :
A×X → B × Y is defined as follows:

R⊗ S =
(

r11S ··· r1nS
... . . . ...

rm1S ··· rmnS

)
=



r11s11 r11s12 ··· r11s1q ··· ··· r1ns11 r1ns12 ··· r1ns1q
r11s21 r11s22 ··· r11s2q ··· ··· r1ns21 r1ns22 ··· r1ns2q
...

... . . . ...
...

... . . . ...
r11sp1 r11sp2 ··· r11spq ··· ··· r1nsp1 r1nsp2 ··· r1nspq
...

...
... . . . ...

...
...

...
...

... . . . ...
...

...
rm1s11 rm1s12 ··· rm1s1q ··· ··· rmns11 rmns12 ··· rmns1q
rm1s21 rm1s22 ··· rm1s2q ··· ··· rmns21 rmns22 ··· rmns2q

...
... . . . ...

...
... . . . ...

rm1sp1 rm1sp2 ··· rm1spq ··· ··· rmnsp1 rmnsp2 ··· rmnspq


▶D Define Kronecker product in terms of relations-as-spans and relations-as-
graphs.

▶D Are the following identities true for all Boolean matrices R,S, T (once again,
taking them of the appropriate size when needed)?

• (R ∧ S)⊗ T = (R⊗ T ) ∧ (S ⊗ T ), and (R ∨ S)⊗ T = (R⊗ T ) ∨ (S ⊗ T ).

• (R ◦ S)⊗ (U ◦ T ) = (R⊗ U) ◦ (S ⊗ T ), and R ◦ (S ⊗ T ) = (R ◦ S)⊗ (R ◦ T ).

• ¬(R⊗ S) = (¬R)⊗ (¬S).

Consider the following matrices:

A =
( 0 1 1 0 1 1 0

1 0 0 0 0 1 0
0 0 0 0 1 0 0
0 0 0 1 1 1 1

)
B =

( 0 1 1 1 0 1 0
0 1 0 1 0 1 0
1 0 0 0 0 0 0
0 1 0 0 1 1 0

)
P =

( 0 1 1 1 1
0 0 1 1 0
0 0 0 0 1
1 1 0 0 1
1 0 0 0 1

)
Q =

( 1 1 1 1 0
1 0 0 1 0
1 0 0 1 0

)

▶E Compute A ∧B, A ∨B, ¬A; compute the powers P ◦ P, P ◦ P ◦ P, . . . , P ◦n of
P ; compute Q ◦P ; compute B⊗Q and compare it with Q⊗B; draw their associated
relations-as-graphs.

Given all this, how distant is the category of relations-as-Boolean-matrices MRel
from the category Z/2Z-Mat having objects the natural numbers (i.e. the finite sets
[n] := {1, . . . , n}) and morphisms [n] → [m] the m× n matrices with entries in the field
with two elements?
▶C Can one define functors

MRel // Z/2Z-Mat Z/2Z-Mat //MRel

inverse to each other? Is every R ‘linear’? How does one interpret the ‘determinant’
of a Boolean matrix R : n → n? Etc.
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Exercise 4:
On the distant planet Kobaïa, centuries ago, the inhabitants faced a challenge: how

to effectively navigate the inherent ambiguity of Kobaïan language? After an era of pro-
found intellectual curiosity, followed by three disastrous planetary wars, the inhabitants
turned to the only possible source of objectivity and peace —category theory.
After the reform operated by Emperor Horžtavak, Kobaïa contains three artificial

languages: poetic, structural, and imperial.

• Poetic Kobaïan contains nouns, adjectives, adverbs and verbs. It is willingly
kept as morphologically simple as possible: verbs have no conjugations, there is
no marker to distinguish subject and object, there is no distinction of gender, no
plural form. . . In short, poetic Kobaïan is (approximated by what on planet Earth
we call) a closed, isolating language.

• Structural Kobaïan opts for an intermediate solution, as it is used for objective,
everyday communication; there is a difference between an animate and inanimate
object, a prefix (wö-) transforms nouns into adjectives1 and a prefix â- to turn
adjectives into adverbs,2 there is a system of pronouns3

• Imperial Kobaïan is reserved for communication with the Lusztzess (the Emperor)
and the aristocracy of Kobaïa. It is a highly refined and complex language, de-
signed to minimize ambiguity through the maximal use of morphological richness.
There are 74 cases divided in six families; the family of transrelative cases con-
tains, alone, the cases oblique, absolutive, dative, ergative, effectuative, inducive,
affective, instrumental, activative, derivative, and situative. There are 7 tones
(strictly ascending, mid-ascending, ascending, void, descending, mid-descending,
strictly descending); the part of speech which corresponds to nouns and verbs in
Earthling languages is called a formative: the generation of a formative follows the
scheme

(((Cv +) VL +) Cg/Cs +) Vr + (Cx/Cv + Vp/VL +) Cr + Vc (+ Ci +Vi) +

+ Ca (+ VxC ) [+ tone] [+ stress]

where a central root Cr can be declined into a case Vc and other auxiliary or
optional morphological markers can be added to mark

– Vr: pattern (the static designation assigns immutable names, as opposed to
the contextual pattern and the temporary pattern) and function (deter-
mines the function of the noun being specified: the four functions are stative,
dynamic, manifestive, and descriptive).

1Wötâ flöv zï wökoëhl.: my hovercraft (flöv) is full of eels (lit.: the wideboat of-I is eel-y)
2Hurt zanka föhr âföhr : sunrise glows brightly (lit.: first sun shines in a shiny manner).
3Tâ, nê, zî correspond to I,you,he/she/it, and plural was formed by repeating the singular, tâtâ, nênê,
zîzî, although there are attested shortened forms tât, nên, zîz.
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– Ca: specifies one among nine possible configurations of the object defined (a
single contextual unit embodying the stem concept; an aggregation of incoher-
ent objects of diverse kind; a grouping or set of the basic stem units. . . ), four
possible affiliations (consolidative, associative, variative, and coalescent),
four possible perspectives (monadic, unbounded, nomic, and abstract), six
possible extensions (delimitive, proximal, inceptive, terminative, depletive,
and graduative) and two possible essences (normal and representative).

– tone and stress: one of the seven tones and a stress (accent can fall on the
ultimate, penultimate, or antepenultimate vowel).

Provide evidence that each language of Kobaïa behaves like a category PKob,SKob,
and IKob, with terms of the language as objects and grammatical transformations as
morphisms. The usual way to do this (but there might be others, explore them) is to take
a subset L ⊆ A⋆ of ‘grammatically correct’ words in an alphabet A (call it, evocatively,
a language obtained from A) and then consider a relation R ⊆ L× L of ‘production’ of
a word w into a word w′. Qua relation, R gives rise to a category taking its (reflexive
and) transitive closure R⋆ := ∆ + R + R ◦ R + . . . R ◦ · · · ◦ R + . . . . For example, if N
(Noun), D (aDjective) and V (Verb) are the names of three parts of speech, one can
introduce a relation R through the generators

N → ND, N → DN

N1 → N1V N2, N2 → N1V N2

saying that from a token N (flöv, hovercraft) one obtains a token ND (flöv wökoëhl,
eel-y hovercraft), and from nouns N1, N2 one obtains sentences N1V N2 by attaching
N1V - or -V N2 to either the left or right.
Is it possible to build functors of ‘poietization’

P : IKob // PKob

working as dictionary from imperial to poetic Kobaïan? Is it possible to define a functor
that creates morphological features, i.e. an ‘imperialization’ procedure

I : PKob // IKob

to make artists and aristocrat communicate effectively between each other?
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