Category Theory (ITI9200) - Exercise Sheet 2

Outline. Complete as many of the exercises below as you are able. Each exercise has a number of tasks. Each task has an assigned number of points in square brackets, e.g. [1]. Points may be awarded for answers that demonstrate effort, even if the answer is not entirely correct. There are $\mathbf{2 5}$ total points (3 are points for overachievers, the exercise is marked as [3]*). The exercise sheet is expected to take around $2-4$ hours.

Submission. Email your work to Fosco Loregian at

```
fosco.loregian@taltech.ee
```

or hand in your work to one of the lecturers or teaching assistants at the start of end of a lecture. Deadline:
23:59 on April 18, 2024.

Exercise 1

Let Set denote the category of sets and total functions. Define the morphism part, and verify that the following correspondences given at the level of objects define functors Set $\rightarrow \boldsymbol{\operatorname { S e t }}$ (show that the functor laws are satisfied):

- fix a set A; send a set X to $A+(X \times A)$
- send a set X to $P X \times\{0,1\}$ where $P X$ is the set of subsets of X, and $\{0,1\}$ is a set of Boolean values. [1]

Define the morphism part, and verify that the following correspondences define functors (show that the functor laws are satisfied):

- Let \mathcal{C} be the category where objects are pairs $(X, R): X$ is a set, $R \subseteq X \times X$ a relation on X. Morphisms in $\mathcal{C}((X, R),(Y, S))$ are the functions $f: X \rightarrow Y$ such that if $\left(x, x^{\prime}\right) \in R$ then $\left(f x, f x^{\prime}\right) \in S$. Define a functor $\Gamma: \mathcal{C} \rightarrow$ Graph sending an object (X, R) of \mathcal{C} to the graph having X as set of vertices, and an edge $x \rightsquigarrow x^{\prime}$ if and only if $\left(x, x^{\prime}\right) \in R$.
- Let Graph be the category of graphs and graph homomorphisms. If \mathcal{G} is a graph, define the set $\operatorname{Sub}(\mathcal{G})$ as the set of subgraphs of $\mathcal{G}=\left(\mathcal{G}_{1} \underset{t}{\rightrightarrows} \mathcal{G}_{0}\right)$, i.e. the graphs \mathcal{H} such that
- \mathcal{H}_{0} (the vertices of \mathcal{H}) is a subset of \mathcal{G}_{0}, and \mathcal{H}_{1} (the edges of \mathcal{H}) is a subset of \mathcal{G}_{1};
- for every $e \in \mathcal{H}_{1}, s(e), t(e) \in \mathcal{H}_{0}$.

Sending \mathcal{G} to the set of all its subgraphs $\mathcal{H} \subseteq \mathcal{G}$ is a functor $S u b:$ Graph $^{\text {op }} \rightarrow$ Set.
(Trying to engage with this last question is totally optional, but if you try and get it wrong, there will be no negative repercussion. Do your best!)

Find a graph \mathcal{W} such that $S u b(\mathcal{G})$ is parametrically isomorphic to the set $\operatorname{Graph}(\mathcal{G}, \mathcal{W})$.

Exercise 2

Let A, B, C be sets.
Define functions in opposite directions:

$$
A \times(B+C) \xrightarrow{p} A \times B+A \times C \quad A \times B+A \times C \xrightarrow{q} A \times(B+C)
$$

that are inverse to each other: $q \circ p=1_{A \times(B+C)}$ and $p \circ q=1_{A \times B+A \times C}$ (verify that these identities hold after defining p, q).

In any category \mathcal{C} with products and sums, it is possible to define a morphism

$$
A \times B+A \times C \rightarrow A \times(B+C)
$$

for each triple of objects $A, B, C \in \mathcal{C}_{0} . \mathcal{C}$ is called distributive if this morphism is an isomorphism for all $A, B, C \in \mathcal{C}_{0}$. Verify that in a distributive category \mathcal{C} that admits an initial object \varnothing, the product $A \times \varnothing$ is an initial object (verify that $A \times \varnothing$ has the universal property of an initial object).

Exercise 3

Let Set be the category of sets and total functions, and E a fixed set (a set of 'errors').

- Recalling that $\operatorname{Maybe}(A)=1+A$ denotes the sum of the sets A and $1=\{\star\}$, use distributivity to expand the definition of the correspondence $\epsilon:$ Set \rightarrow Set sending a set X of 'states' to the set Maybe $(X \times$ $\operatorname{Maybe}(E)$).
- Verify in detail that ϵ is a functor.
- An ' ϵ-algebra' is a function

$$
\epsilon(X) \xrightarrow{a} X
$$

Give an intuition for what a ϵ-algebra might represent, i.e. "It's a function sending an input in ϵX to..." [2]
Prove that the set $(1+E)^{*}=\operatorname{List}(\operatorname{Maybe}(E))$ has a structure of an ϵ-algebra $\xi: \epsilon(1+E)^{*} \rightarrow(1+E)^{*}$, and that, for every ϵ-algebra (X, a), there exists a unique function $h:(1+E)^{*} \rightarrow X$ such that

is a commutative square of functions.

Exercise 4

Let Dyn be the category having

- objects the triples $\left(X, x_{0}, f\right)$ where X is a set, $x_{0} \in X$ is an element, and $f: X \rightarrow X$ is a function;
- a morphism $\left(X, x_{0}, f\right) \rightarrow\left(Y, y_{0}, g\right)$ is a function $h: X \rightarrow Y$ such that
$-h\left(x_{0}\right)=y_{0} ;$
$-h \circ f=g \circ h$ (which means, the two composed functions coincide input-wise);
- composition and identities are defined as composition of functions in Set, as expected.

The category Dyn has an initial object (\mathbb{N}, z, s) where N is the set of natural numbers $\{0,1,2, \ldots\}$. What are z and s ? Show that this choice of z and s does define an initial object.

Verify that the category Dyn is the category of algebras for the endofunctor Maybe $(-)$: Set \rightarrow Set (where $\operatorname{Maybe}(X)=1+X)$.

Show that we can use the fact that (\mathbb{N}, z, s) is initial to define functions, for each fixed $p \in \mathbb{N}$,

$$
\begin{array}{r}
\operatorname{plus}_{p}: N \rightarrow N \\
\operatorname{times}_{p}: N \rightarrow N
\end{array}
$$

such that, for all natural numbers $x \in \mathbb{N}$, the following equations hold:

$$
\begin{aligned}
\operatorname{plus}_{p}(x) & =p+x \\
\operatorname{times}_{p}(x) & =p \times x
\end{aligned}
$$

