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This work arises from the synergy between three main interests:

• formal category theory

• differential algebra

• automata theory
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For the past two years, I have been convinced that

A fragment of formal category theory is the mathematical

foundation for the theory of ‘state machines’.
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This means two things:

• if you are a category theorist, there is some interesting

mathematics to unravel trying to understand the theory of

state machines.

• if you are not, there is some interesting application for what

has been considered, in the last 47 years (Street-Walters:

1978) the pinnacle of abstract nonsense.

Approach the subject from the direction you prefer, you will gain

something.

Techniques from representation theory, topos theory, homotopy

theory, etc. are all useful and pop up constantly.



Formal category theory



In the broadest possible sense, formal category theory is the study

of what properties make a 2-category ‘behave like Cat’ abstracting

away from its ‘concreteness’.

Not a new idea:

• algebraic theories: find properties making a category E behave

like Mod(T );

• topos theory: find properties making a category E behave like

Set;

• homological algebra: find properties making a category E
behave like Ch(A);

• homotopy theory: find properties making a category E behave

like Ho(Top);

• ...



In stark contrast with topos theory, where a definitive answer to what are

the intrinsic properties of a set-like category exists, FCT is an active field

of study, with (yet) no unanimous consensus on what the right axioms

are.

A variety of different approaches to axiomatize the properties of Cat has

been proposed, each with its own merits and drawbacks.



• enriched category theory / categories are monoids and-or

modules, take I

• internal category theory / categories are models of a theory

• category theory relative to a base topos / categories are

generalized spaces, take I

• calculus of fibrations / categories are generalized spaces, take

II

• double categories / categories are monoids and-or modules,

take I



Squinting your eyes,

A formal theory of categories is

supposed to give you

• 2-dimensional structures

• monads

• Kleisli constructions

• calculus of Kan exts

• calculus of bimodules

• universal properties

• free cocompletions

A theory of automata is about

• morphisms ≡ processes

• rep theory of free monoids

• recognition of languages

• behaviour

• minimization

I thought long and hard and. . .





A category of automata is justTM the (2-)category of models of an

enriched sketch (Borceux-Quinteiro 1998) constructed as follows:

• take a 2-category K with finite strict 2-limits;

• fix objects X ,B ∈ K0 and morphisms

B
b // X fff

We call such a (finite weighted) limit sketch an automata theory.



• construct step by step the following finite limits:

Mly(f , b)
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‘Mealy’ automata ‘Moore’ automata



Unraveling the definition if K = Cat, B = 1 (so B : 1→ X picks

an object of X ): given a diagram of categories and functors

1
B // X XFoo

• Mly(F ,B) is the category
inserter

Alg(F )
pb
×X

comma

(F/B) of spans

X FX //oo B

and suitable morphisms.

• Mre(F ,B) is the category
inserter

Alg(F )
pb
×X

comma

(X/B) of disconnected
spans

X FX ,X //oo B

and suitable morphisms.



In particular when X is monoidal, and F = A⊗−, one studies

categories where objects and morphisms are as follows:

(X , d , s) : X

f
��

A⊗ X
s //doo

A⊗f

��

B

(Y , d ′, s ′) : Y A⊗ Y //oo B

Proposition

The assignment (A,B) 7→MlyX (A⊗−,B) = MlyX (A,B)

defines an indexed category

X op ×X // Cat

which when X is Cartesian forms the hom-category of the

bicategory of Mealy automata.



In Automata and Coalgebras [...] species

�10.4204/EPTCS.380.10 I studied a particular case of this

construction, when

• K is the category of Joyal’s combinatorial species;

• F = ∂ is the derivative of species.

This is a lot of structure:

Categories of automata (in fact, fibers of a monoidal fi-

bration), with objects having a combinatorial meaning,

equipped with a notion of derivative functor, in which to

do categorified differential algebra / study non-reversible

dynamical systems induced by a diff. op.

https://doi.org/10.4204/EPTCS.380.10




Differential 2-rigs



The pair (Spc, ∂) is an instance of a differential 2-rig (L/L-Trimble

2020), i.e. a category equipped with a ‘linear and Leibniz

endofunctor’ ∂

Theorem

The category Spc has a universal property qua 2-rig and qua

differential 2-rig.

• it is the free cocomplete 2-rig on one generator;

• the category of species in a countable set of ‘colours’ is the

free differential 2-rig on one generator.

R[[x ]] : Ring = Spc : D2R



Species

Let S be a set. Let V be a symmetric monoidal closed, complete

and cocomplete category (a ‘cosmos’).

Regard S as a discrete category, let P[S ] be the free symmetric

monoidal category on S .

Definition

The category (S ,V)-Spc of (S ,V)-species is the category of

functors P[S ]→ V and natural transformations.

For today, S = {∗} is a singleton, and V = Set. Other choices are

possible (e.g., V = Vectk is probably the version algebraic

topologists are more familiar with). Then

P := P[1] Spc := (1,Set)-Spc = [P,Set]



Species

• Spc is the category of copresheaves on P, presented as groupoid of

natural numbers: objects finite sets [n], morphisms bijections (in

partic. P([n], [m]) = ∅ if n ̸= m)

• Rich supply of monoidal structure(s) interacting with each other

(esp. when instead of Set-presheaves one takes k-linear presheaves)

• Spc is equipped with ∂ : Spc→ Spc that ‘shifts’ a functor by 1,

F ′[n] := F [n + 1]

• Leibniz rule (F ⊗ G )′ ∼= F ′ ⊗ G + F ⊗ G ′ (Day convolution)

• Chain rule (F ◦ G )′ ∼= (F ′ ◦ G )⊗ G ′ (operadic or ‘plethystic’

composition)

• L ⊣ ∂ ⊣ R (this is important and nontrivial!)

Axiomatizing these properties leads to D2Rs. First, let’s study species

better expanding on the items of this list.



Species

A species F : P→ Set is a family of right Sn-sets Xn:

Cat(P,Set) ∼= Cat
(∑

n≥0 Sn,Set
) ∼= ∏

n≥0 Cat(Sn,Set
)

• The species E of elements; constant at the singleton / Sn action is

always trivial

• The species P of subsets; sends [n] to 2n = {U ⊆ [n]} / Sn action is

by permuting a subset

• The species Sym of permutations; sends [n] to Sn / Sn action is by

multiplication

• The species L of linear orders; sends [n] to the set of linear orders

Ln on [n] / Sn action is by conjugation

• The species Cyc of cyclic orders, def’d similarly.



Species

• [n]⊕ [m] := [n+m] defines a (symmetric) monoidal structure on P;

• Spc inherits a Day convolution (symmetric, closed) monoidal

structure

Spc(F ∗ G ,H) ∼= Spc(F , {G ,H})

• There is a functor ∂ : Spc→ Spc defined by ‘shifting F by 1’

∂F [A] := F [A+ 1] Try to prove the Leibniz rule!

f (X ) =
∑
n≥0

an
n!

X n F [X ] =
∑
n≥0

F [n]

∼Sn

X n

d

dX
f (X ) =

∑
n≥0

an+1

(n + 1)!
X n ∂F [X ] =

∑
n≥0

F [n + 1]

∼Sn+1

X n

• E ′ ∼= E Cyc ′ ∼= L P ′ ∼= E + E (natural isos of functors)

• ∂ has a left adjoint (easy to describe: ∂ = {y [1],−} hence
L = y [1] ∗−), but also a right adjoint (because y [1] is a tiny object)



D2Rs

This motivates the definition of a differential 2-rig (D2R):

A 2-rig (R,⊗) equipped with an endofunctor ∂ : R → R such that

• ∂(A+ B) ∼= ∂A+ ∂B

• ∂(A⊗ B) ∼= ∂A⊗ B + A⊗ ∂B

Equivalently: ∂ is equipped with two tensorial strengths, forming a

coproduct diagram

∂A⊗ B → ∂(A⊗ B)← A⊗ ∂B

This realizes the Leibniz rule as a universal property.



Differential 2-rigs
(and differential automata)



1. sketch the technology one can develop for D2Rs, categorifying

differential algebra;

2. apply some of these ideas to a specific case for a category of

automata.

Clearly, 2. is just a pretext for 1.



Free objects and quotients



Freeness results

Spc is the free (cocomplete) 2-rig F [t] on a single generator {t};
it acquires a differential structure much like k[x ] does.

Spc is also initial among cocomplete 2-rigs.

The free differential 2-rig on a single generator is also a category of

species:

F∂ [Y ,Y ′,Y ′′, . . . ] ∼= SetP[y0,y1,y2,... ]

More generally one can define the free 2-rig on a category...

And extend scalars over R –defining the free R-algebra on S : F [S ]⊗R

R a 2-rig; R[t] = R⊗P F [t] = R⊗P Spc



Geometry of D2Rs

{derivations on R} ∼=

s :
R[t]/t2

ev0
��
R

s
II



Kähler differentials

{derivations on R} ∼= hom2-Rig(R,R[t]/(t2))

R[t]/(t2) ∼= coinverter
(
R[t]

∅ **

−⊗t2
44�� R[t]

)
a certain kind of 2-dimensional colimit



Intermezzo

Definition

Given a 2-category K and a diagram

A

f
&&

g

88�� α B

the coinverter of f , g is a 1-cell c : B → Q such that c ∗ α : cf ⇒ cg is

invertible; (Q, c) is 1-initial and 2-initial among such pairs.

E.g. if C is a category, W ⊆ C2 a class of maps; the coinverter of

(W ⊆ C2)

s

''

t

77�� α C

is the Gabriel-Zisman localization C[W−1].



Geometry of D2Rs

Let R be a cocomplete 2-rig.

Consider the unique 2-cell ∅⇒ (−⊗ t2), where −⊗ t2 ‘multiplies

by t2’; the coinverter

R[t]
∅
((

−⊗t2
66�� R[t] q // // C

coincides with the procedure of killing off polynomials divisible by

t2, hence C is the ‘quotient 2-rig’ by the ideal (t2).

(a+ tb)(c + td) = ac + (ad + bc)t +���t2bd



Geometry of D2Rs

Now we would like to build the ‘space of sections’ of a canonical

‘evaluation at 0’ map

R[t]
∅
((

−⊗t2
66�� R[t] q // //

@0 !!

R[ϵ]

ev0}}
R

@0 : R⊗P Spc→ R : (A,F ) 7→
∑

F [0] A is induced by the

universal property of coproducts.

Theorem

Der [R] ∼= {sections/R of ev0 : R[ϵ]→ R}



Geometry of D2Rs

• similarly: quotient for a principal ideal, say J = (p), is

coinverter of

R[t]
∅
((

−⊗p(t)

66�� R[t] q // // R[t]/(p)

• Ideals are easy to define, but

• Domains? A⊗ B ∼= ∅⇒ A = B = ∅?

• quotient for a non-principal ideal I = (pi | i ∈ I ) is a...?

• What’s a 2-PID?

• quotients like R[X ,Y ]/(Y 2 + 1 ∼= X 2) (categorified

hyperbola) acquire a differential structure, ∂Y = X , ∂X = Y ;

can be done more in general?



Jet spaces



Categorified jet spaces

Given a D2R (R,⊗, ∂) let Alg(∂) be the category of ∂-algebras.

• objects: (X , ξ : ∂X → X );

• morphisms: f : X → Y compatible with the structure map.

Theorem

Alg(∂) is itself a 2-rig and ∂ lifts to a derivation ∂′ on Alg(∂),

compatible with the forgetful functor.

Hence the chain

. . . // Alg(∂′)

∂′′

��

// Alg(∂)

∂′

��

// R

∂

��
. . . // Alg(∂′) // Alg(∂) // R



Categorified jet spaces

Define by mutual induction:

• R(0) := R and R(n+1) := Alg(∂(n),R(n));

• ∂(1) := ∂ and ∂(n+1) := R(n+1) → R(n+1) defined lifting ∂(n).

Definition

From the chain of forgetful functors

· · ·ooAlg(∂′′)ooAlg(∂′)ooAlg(∂)ooR

Jet[R, ∂] := lim

(
R U←− R(1) U(1)

←−− R(2) U(2)

←−− · · ·
)
.



Categorified jet spaces

The typical object in Jet[R, ∂] consists of a countable sequence

X⃗ =
(
X , (X ; ξ : ∂X → X ), ((X ; ξ); ξ′ : ∂′(X ; ξ)→ (X ; ξ)), . . .

)
the nth element of which equips the (n − 1)th with an algebra

structure for ∂(n).

X
ξ←− ∂X

ξ′←− ∂∂X
ξ′′←− ∂∂∂X ← . . .



Categorified jet spaces

Define the k-jet Jk(X⃗ ) of an object X⃗ ∈ Jet[R, ∂] as the image of

X⃗ under the functor Jk obtained from the limit projections

πk : Jet[R, ∂]→ R(k) as

Jk := ⟨π0, . . . , πk⟩ : Jet[R, ∂] //
∏k

i=0 R
(i)

cf. differential geometry, where the k-jet of a real valued function f : R → R is

defined as

(Jk
x0 f )(z) =

k∑
ℓ=0

f (ℓ)(x0)

ℓ!
zℓ = f (x0) + f ′(x0)z + · · ·+ f (k)(x0)

k!
zk



An application to automata



Differential automata

Let R be a D2R; the assignment (A,B) 7→Mly(A⊗−,B) defines
a two-sided fibration via the Grothendieck construction

Psd(Rop ×R,Cat) //∼ Fib/(Rop ×R)oo

Mly :(A,B) 7→Mly(A⊗−,B) (V :MlyR↠Rop×R)

which is a D2R morphism with respect to a canonical differential

structure on the domain MlyR.

V is a fibration of trajectories for discrete dynamical systems of

endpoints A,B; each category of trajectories Mly(A,B) has a limit

(=terminal) object ∏
n≥1[A

⊗n,B]

(Analogy: the limit set of a dynamical system A
f
:=

⋂
n≥1 f

n(A), where f is en

endomap of a metric space A.)



Differential automata

If R is monoidal closed, MlyR is a category of coalgebras for a

certain endofunctor R : Rop ×R×R → Rop ×R×R, fibred over

the projection π12

(A,B,X ) � // (A,B, [A,B × X ])

There is a distributive law δ : (1× ∂)R ⇒ R(1× ∂)

MlyR
∂̄ //MlyR

Rop ×R
��

1×∂
// Rop ×R

��

lifting ∂ to a derivative functor ∂̄ on MlyR; the category of

differential automata is the category of coalgebras for such ∂̄.



Differential automata

Let R be the D2R of species; observe that

• the species L of linear orders is the free monoid on the

monoidal unit (plays the role of an NNO in Spc);

• thus there are four equivalent descriptions for the category of
SpcL of L-algebras, building block for Mly([1],B):

• the category of algebras for the functor [1] ∗ −;
• the category of EM algebras for the monad L⊗−;
• the category of coalgebras for the functor ∂;

• the category of coEM algebras for the comonad {L,−}.



Differential automata

Similar reasoning applies to scopic D2R, where ∂ has both a left

and aright adjoint. There are plenty of variations on the theme of

categories of species which are scopic D2Rs, e.g.:

• The category of S-species, i.e. functors P[S ]→ Set for an

arbitrary set S ; this supports partial derivatives, {∂s | s ∈ S};
• k-vector (S-)species (Aguiar-Mahajan I,II,III,IV), i.e. functors

P[S ]→ Vectk ;



Differential automata

• linear species, i.e. families of functors of the form

Xn : [Sn/Sn]→ Set, where [Sn/Sn] is the action groupoid of

the regular representation of Sn on itself; (widely studied

because differential equations admit unique solution here);

• Möbius species, where functors out of P[S ] are valued in a

category of posets with top and bottom (Möbius inversion

formula has a category-theoretic proof);

• nominal sets, i.e. representations of the filtered colimit

S1 ⊂ S2 ⊂ S3 ⊂ . . . of finite symmetric groups on the set of

finite sets; (this is only a left scopic D2R; widely used in TCS).



Differential automata

There are examples

• of species having no ∂-coalgebra structures, but acquire many

when linearized (i.e. considered as k-vector species instead of

Set-species);

• of species having a finite number of ∂-coalgebra structures

(precisely four);

• of species having uncountably many ∂-coalgebra structures.

(The fact that a coalgebra map must be Sn-equivariant is often a

strong restriction on the structure of the coalgebra!)



Wrapping up

So:

• D2Rs ∩ automata ≈ differential discrete dynamics

• there’s a ring theory to write for 2-rigs

• these objects are highly structured (∂I ̸= 0, self-similarity,. . . )

• it’s ‘difficult’ for a category to be a diff-2-rig (Der(R) knows
about a ‘dimension’ of R)

• yet, differential algebra is quite interesting (differential

equations?)


