

The universal property of the coKleisli-Kleisli adjunction

Fosco Loregian Ita \rightleftarrows^{\perp} Ca

December 2025

ItaCa 2025 | Milano

Setting the stage

This work does one thing and tries to do it well.

It's a (almost completed) work in progress with **Nathanael Arkor** (TTU) and **Ülo Reimaa** (UT).

The effect-behaviour adjunction

Arkor principle: ‘we should discourage the practice of naming theorems or definitions after people’.

Let \mathcal{C}, \mathcal{D} be categories, $F : \mathcal{C} \rightleftarrows \mathcal{D} : G$ a pair of adjoint functors. There exists an adjunction

$$\hat{G} : \mathbf{coKl}(FG) \rightleftarrows \mathbf{Kl}(GF) : \hat{F}$$

where the **left** \hat{G} acts on objects like the **right** G , and

$$\hat{G}(FGX \rightarrow Y) = GX \xrightarrow{\eta_{GX}} GFGX \xrightarrow{Gf} GY \xrightarrow{\eta_{GY}} GFGY$$

Similarly, one defines \hat{F} and proves

$$\mathbf{Kl}(FG)(\hat{G}X, Y) \cong \mathbf{coKl}(GF)(X, \hat{F}Y).$$

The effect-behaviour adjunction

One can apply this construction to

- a Galois connection $f : P \rightleftarrows Q : g$; (the adjunction is an equivalence)
- freely adjoining a basepoint $+1 : \mathbf{Set} \rightleftarrows \mathbf{Set}_* : U$;
- the codomain fibration of a Cartesian category
 $\times A : \mathbf{Set} \rightleftarrows \mathbf{Set}/A : c$;
- (insert here your favourite adjunction)

Sometimes the result is an interesting adjunction, sometimes it isn't... what's going on? **Why the reversal?**

Contramaps of adjoints

- [McL]: a category of adjoints; objects are adjunctions, morphisms are squares compatible with both adjoints.

$$\begin{array}{ccc} A & \xrightarrow{H} & B \\ F \downarrow \dashv G & & F' \downarrow \dashv G' \\ C & \xrightarrow{K} & D \end{array} \quad \begin{array}{l} F'H = KF \\ G'K = HG \end{array}$$

- There are also contramaps of adjoints:

$$\begin{array}{ccc} A & \xrightarrow{H} & B \\ F \downarrow \dashv G & & G' \dashv \downarrow F' \\ C & \xrightarrow{K} & D \end{array} \quad \begin{array}{l} F'H = KF \\ G'K = HG \end{array}$$

(notation: $\mathcal{C}^\dagger(X, Y)$ for contramaps in a 2-category with contravariance)

Classifying contravariance via EB

The EB construction is a functor $\mathbf{Adj} \longrightarrow \mathbf{Adj}$
equipped with a ‘canonical’ contramap (an adjunction in fact!)

$$\begin{array}{ccc} \mathcal{C} & \xrightarrow{\text{free}} & \mathbf{Kl}(GF) \\ F \uparrow \dashv G & & \hat{G} \uparrow \dashv \hat{F} \\ \mathcal{D} & \xrightarrow{\text{cofree}} & \mathbf{coKl}(FG) \end{array} \quad \begin{array}{ccc} \mathcal{C} & \xleftarrow{\text{forget}} & \mathbf{Kl}(GF) \\ F \uparrow \dashv G & & \hat{G} \uparrow \dashv \hat{F} \\ \mathcal{D} & \xleftarrow{\text{forget}} & \mathbf{coKl}(FG) \end{array}$$

such that $\mathbf{Adj}^\dagger((F \dashv G), (L \dashv R)) \cong \mathbf{Adj}((\hat{G} \dashv \hat{F}), (L \dashv R))$.

So, the EB construction **classifies contravariance**.

Idempotency via EB

Theorem

The following conditions are equivalent:

- ▷ $F \dashv G$ is an **idempotent** adjunction;
- ▷ $\hat{G} \dashv \hat{F}$ is an **idempotent** adjunction;
- ▷ $\hat{G} \dashv \hat{F}$ is an **equivalence** of categories.

So, the EB adjunction **detects idempotency**.

(That's why a Galois connection $f : P \rightleftarrows Q : g$ induces an equivalence: all Galois connections are idempotent...)

So what is this?

What is the EB construction?

Does it have a universal property explaining the previous facts?

Is it (for example) an adjoint to something?

Whatever is going on is certainly 2-dimensional. For quite some time we attempted to explain this construction bicategorically,

Definition 7.3. The 3-equipment of 2-profunctors: objects: 2-categories, vertical 2-category: pseudo-functors; horizontal: pseudo-profunctors.

Definition A.1. Let \mathcal{V} be a multicategory. A *locally \mathcal{V} -enriched virtual double category* \mathbb{X} comprises the following data.

but things were, if anything, only getting harder.

In terms of double categories, instead, the nature of the effect behaviour adjunction ‘becomes apparent in terms of a universal construction’.

Double categories and loose monads

I will gladly skip this slide and save 2 minutes...

A (pseudo)double category \mathfrak{D} is a (pseudo)category internal to **Cat**; it is made of tight arrows (vertical), loose arrows (horizontal) and cells (squares);

$$\begin{array}{ccc} A & \xrightarrow{p} & B \\ f \downarrow & \alpha & \downarrow g \\ C & \xrightarrow{q} & D \end{array}$$

- ▷ tight arrows compose from the *tight category* $\mathcal{T}\mathfrak{D}$ of \mathfrak{D} ;
- ▷ loose arrows compose ‘up to iso’ so in particular \mathfrak{D} contains the *loose bicategory* $\mathcal{L}\mathfrak{D}$.

Double categories and loose monads

But if you don't know what is a double category:

A (pseudo)double category \mathfrak{D} is a (pseudo)category internal to **Cat**; it is made of tight arrows (vertical), loose arrows (horizontal) and cells (squares);

$$\begin{array}{ccc} A & \xrightarrow{p} & B \\ f \downarrow & \alpha & \downarrow g \\ C & \xrightarrow{q} & D \end{array}$$

- ▷ tight arrows compose from the *tight category* $\mathcal{T}\mathfrak{D}$ of \mathfrak{D} ;
- ▷ loose arrows compose 'up to iso' so in particular \mathfrak{D} contains the *loose bicategory* $\mathcal{L}\mathfrak{D}$.

Double categories and loose monads

The double category \mathfrak{Dist} of **distributors** has cells

$$\begin{array}{ccc} \mathcal{A} & \xrightarrow{p} & \mathcal{B} \\ F \downarrow & \Downarrow \alpha & \downarrow G \\ \mathcal{C} & \xrightarrow{q} & \mathcal{D} \end{array} \quad \begin{array}{l} p : \mathcal{B}^{\text{op}} \times \mathcal{A} \longrightarrow \mathbf{Set} \\ q : \mathcal{D}^{\text{op}} \times \mathcal{C} \longrightarrow \mathbf{Set} \end{array}$$

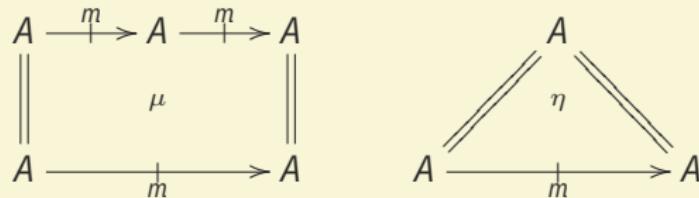
the natural transformations $\alpha : p \Rightarrow q(F, G)$.

To every functor $f : \mathcal{C} \rightarrow \mathcal{D}$ one can associate two distributors

- the representable ('companion' of f) $f_* : \mathcal{C} \rightarrow \mathcal{D}$
 $f_*(d, c) := \mathcal{D}(d, fc)$;
- the corepresentable ('conjoint' of f) $f^* : \mathcal{D} \rightarrow \mathcal{C}$
 $f^*(c, d) := \mathcal{D}(fc, d)$.

Double categories and loose monads

A **loose monad** in a double category, over an object A comprises a loose endoarrow $M : A \rightarrow A$ together with cells for multiplication and unit ‘satisfying monad axioms’.



- associativity for μ : $\frac{\mu|1_m}{\mu} = \frac{1_m|\mu}{\mu}$;
- left unit: $\frac{\eta|1_m}{\mu} = 1_m$;
- right unit: $\frac{m|\eta}{\mu} = 1_m$.

A loose monad in \mathfrak{Dist} is sometimes called a **promonad**. If t is a **monad** on \mathbf{Cat} , t_* is a loose **monad**; if s is a **comonad** on \mathbf{Cat} , s^* is a loose **monad**.

Tight adjunctions

In a double category adjunctions can run in both directions, loose and tight.
A **tight adjunction** comprises

- tight arrows $f : A \rightleftarrows B : u$

- cells of unit and counit,

$$\begin{array}{ccc} A \rightrightarrows A & & B \rightrightarrows B \\ \downarrow f & & \downarrow u \\ \eta & B & A \\ \downarrow u & & \downarrow f \\ A \rightrightarrows A & & B \rightrightarrows B \end{array}$$

- satisfying adjunction equations:

$$\begin{array}{|c|c|} \hline \eta & f \\ \hline f & \epsilon \\ \hline \end{array} = \boxed{f}$$

$$\begin{array}{|c|c|} \hline u & \epsilon \\ \hline \eta & u \\ \hline \end{array} = \boxed{u}$$

The double category of monads/modules

The double category $\mathfrak{Mod}(\mathfrak{Dist})$ of **modules** has

- objects the **loose monads**, pairs (\mathcal{A}, m) as before;
- tight arrows the **intertwiners** $H : A \rightarrow B$, equipped with a cell

$$\begin{array}{ccc} A & \xrightarrow{m} & A \\ K \downarrow & \alpha & \downarrow K \\ B & \xrightarrow{n} & B \end{array}$$

- loose arrows the **bimodules**, distributors $U : \mathcal{A} \rightarrow \mathcal{B}$ equipped with ‘actions’

$$\begin{array}{ccccc} A & \xrightarrow{m} & A & \xrightarrow{U} & B \\ \parallel & & \lambda & & \parallel \\ A & \xrightarrow{U} & B & & \end{array} \quad \begin{array}{ccccc} A & \xrightarrow{U} & B & \xrightarrow{n} & B \\ \parallel & & \rho & & \parallel \\ A & \xrightarrow{U} & B & & \end{array}$$

- (cells... the slide is too small)

To every loose monad in \mathfrak{Dist} one can associate the **reifier**:¹

Definition (Reifier of a loose monad)

The reifier of a loose monad is category $\mathfrak{R}(m)$ having

- objects the same of \mathcal{A} ;
- arrows $\xi : a \rightarrow b$ the elements $\xi \in m(a, b)$.

Lemma

- If t is a monad in \mathbf{Cat} , the reifier of t_* is the Kleisli category of t ; if s is a comonad in \mathbf{Cat} , the reifier of s^* is the coKleisli category of s .
- The reifier assembles into a double functor $\mathfrak{R} : \mathfrak{Mod}(\mathfrak{Dist}) \rightarrow \mathfrak{Dist}$.

¹Called **collapse** by others; we believe it *realizes* heteromorphisms into true arrows, hence the name.

Reifiers

More generally a double category can ‘have reifiers of loose monads’ (it’s a cocompleteness property, which tends to characterize ‘Dist-like’ double categories).

Definition (Having reifiers)

A double category \mathfrak{D} **has reifiers** if the functor

$$\iota : \mathfrak{D} \longrightarrow \mathfrak{Mod}(\mathfrak{D})$$

sending an object to its identity monad has a **left adjoint** \mathfrak{R} .

This is what happens in $\mathfrak{D} = \mathfrak{Dist}$.

Effect-behaviour, in a double dress

- start with an adjunction $\ell \dashv r$;
- there exists a diagram

$$\begin{array}{ccccc} & & \mathcal{C} & & \\ (r\ell)_* & \curvearrowleft & \xrightarrow{\ell} & \xleftarrow{\perp} & \mathcal{D} & \curvearrowright & (\ell r)^* \\ & & r & & & & & \end{array}$$

where the slashed arrows are considered in \mathfrak{Dist} .

- This diagram induces a tight adjunction

$$\begin{array}{ccc} (r\ell)_* & \xleftarrow{\ell} & (\ell r)^* \\ & \xrightarrow{\perp} & \\ & \nearrow r & \end{array}$$

(note the reversal) in the double category of modules

Effect-behaviour, in a double dress

- apply the reifier to $r \dashv \ell : (\ell r)^* \leftrightarrows (r\ell)_*$: the result is an adjunction (double functors preserve adjunctions!) in the double category of distributors,

$$\mathfrak{R}((r\ell)_*) \begin{array}{c} \xleftarrow{\mathfrak{R}r} \\ \perp \\ \xrightarrow{\mathfrak{R}\ell} \end{array} \mathfrak{R}((\ell r)^*)$$

- but now the reifier of the comonad $s^* = (\ell r)^*$ is the coKleisli category **coKl**(s) of the comonad, and the reifier of the monad $t_* = (r\ell)_*$ is the Kleisli category **Kl**(t)!

Q.E.D.: $\hat{G} \equiv \mathfrak{R}r$

In conclusion

A more conceptual perspective:

- a loose monad is a diagram from the ‘walking loose monad’ double category \mathfrak{Mnd} ; not a surprise, cf. Bénabou;
- the reifier is the (a kind of) double colimit of the monad-as-diagram $M : \mathfrak{Mnd} \rightarrow \mathfrak{D}$;
- the **limit** of the monad-as-diagram (the ‘diagonizer’ of M) exists in \mathfrak{Dist} and on (co)representables is the (co)Eilenberg-Moore category of the (co)monad;

Corollary, there is an adjunction between coEilenberg-Moore and Eilenberg-Moore that received more study. In this light, the two constructions are **not different** from each other and **the perfect formal dual of one another**.

In conclusion

What next?

Proving that something has a universal property is all fun and games²
but... what's the big picture here?

That's a good candidate for a question! Just saying... ;-)

²Although I believe in the pedagogical value of showing how double categories make things long, but not contrived. One reason with universal properties, that's all.

In conclusion

A couple of years ago a **distinguished professor from Cambridge** and our friend Daniele Palombi proposed me to work on the following problem:

Syntax and Models of a non-Associative Composition of Programs and Proofs [en](#) [fr](#)

Guillaume Munch-Maccagnoni (1, 2)

[Show details](#)

- a ‘duploid’ is something like a category, but composition is not always associative:

$$h \cdot (g \cdot f) = (h \cdot g) \cdot f$$

if **and only if** f is a ‘thunkable’ arrow, or h is a ‘linear’ arrow (I know... shitty names)

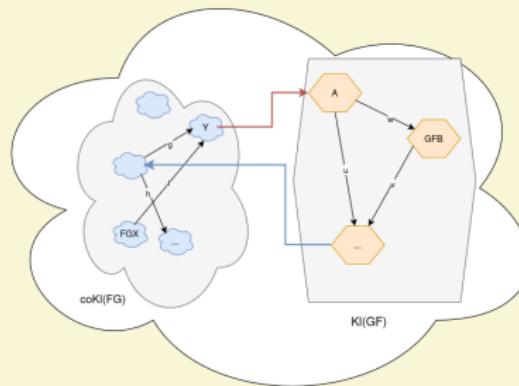
- a **duploid** is a **Very Good KindTM** of virtual double category.

In conclusion

- there is a category of duploids, **reflective** inside the category of adjoints (objects) and adjoint maps (morphisms);
- the effect-behaviour adjunction is essential to build the **reflector**, starting from $F \dashv G$:

In conclusion

- in short, one builds $\hat{G} \dashv \hat{F}$ and then takes a construction like the collage of the profunctor $\mathbf{Kl}(GF)(\hat{G}, 1) \cong \mathbf{coKl}(FG)(1, \hat{F})$, but with heteromorphisms going both ways.



Understanding the universal property of $\hat{G} \dashv \hat{F}$ is an essential step to understand this reflector...

...but that's maybe for next year's ItaCa!

Thank you!

PS: come to Tallinn in July!

9th International Conference on
Applied Category Theory (ACT) 2026
Tallinn, Estonia • 6 July – 10 July

Photo Tallinn Old Town by Ben Bender, CC BY-SA 3.0, <https://commons.wikimedia.org/w/index.php?curid=117939512>

The 9th International Conference on *Applied Category Theory* will take place in Tallinn, Estonia (venue to be announced) from 6 - 10 July, preceded by the Adjoint School Research Week from June 29 - July 3, 2026. This conference follows previous events at *Florida* (2025), *Oxford* (2024), *Maryland* (2023), *Strathclyde* (2022), *Cambridge* (2021), *MIT* (2020), *Oxford* (2019) and *Leiden* (2018).

ACT conference particularly encourages participation from underrepresented groups. The organizers are committed to non-discrimination, equity, and inclusion. The code of conduct for the conference is available [here](#).

Registration

TBA

Important Dates

Abstracts Due

Full Papers Due

Author Notification

**Adjoint School
Conference**

23 March 2026

30 March 2026

11 May 2026

29 June – 3 July 2026

6 July – 10 July 2026