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Gruppi

Un ‘gruppo1’ è un insieme non vuoto G , dotato di operazioni

m : G × G → G i : G → G e : G

che soddisfano i seguenti assiomi:

(notazione: m(x , y) = x .y è la moltiplicazione e i(x) = x̄ l’inverso)

▶ m è associativa: x .(y .z) = (x .y).z per ogni x , y , z ∈ G ;

▶ m è unitale: x .e = x = e.x per ogni x ∈ G ;

▶ ogni elemento x ∈ G ha un inverso rispetto a m:
x .x̄ = e = x̄ .x .

Un gruppo1 è commutativo se x .y = y .x per ogni x , y ∈ G .



Gruppi

Vi sono diverse ragioni per studiare la teoria dei gruppi: mediante essi si
può

▶ definire e classificare le simmetrie nei sistemi fisici ( particelle
elementari ) e chimici ( gruppi cristallografici );

▶ capire quali equazioni sono risolvibili in radicali (perché solo fino al
grado 4?) ( thm di Abel-Ruffini + teoria di Galois );

▶ parlare di vari protocolli crittografici ( Diffie–Hellman, RSA, etc. );

▶ studiare l’elaborazione di immagini e la teoria dei codici;

▶ . . .



Gruppi

Un ‘gruppo2’ è un insieme non vuoto G , con una operazione
binaria −/− detta ‘taglio’, (x , y) 7→ x/y soddisfacente l’assioma

∀x , y , z : x
/(((

(x/x)/y
)
/z

)/((
(x/x)/x

)
/z

))
= y .

Un ‘gruppo2’ è commutativo se

∀x , y , z : x
/(

(y/z)/(y/x)
)
= z



Teorema
Le nozioni di gruppo1 e di gruppo2 sono equivalenti.

▶ Dato un gruppo1, si ottiene un gruppo2 definendo

x/y := m(x , i(y)) = x .ȳ

▶ Dato un gruppo2, si ottiene un gruppo1 definendo

i(x) := ??? m(x , y) := ??? e := ???



Per mostrare la prima implicazione, va visto che con la definizione
data di taglio, vale l’equazione

x .(ȳ .(z̄ .(x̄ .z̄))) = y

per ogni x , y , z ∈ G .

Per vederlo: (si ricordi che ā.b̄ = b.a, e ¯̄x = x)

x .(ȳ .(z̄ .(x̄ .z̄))) = x .(ȳ .(z̄ .(z .x)))

= x .(ȳ .((z̄ .z).x))

= x .(ȳ .(e.x))

= x .(ȳ .x)

= x .(x̄ .y)

= (x .x̄).y

= e.y = y



Definire le operazioni di gruppo1 in termini del solo taglio è più
complesso:

Lemma
Sia G un gruppo2. Per ogni a, b ∈ G , a/a = b/b.

Anzitutto, si dimostra che

((y/z)/(((x/x)/x)/z)) = ((y/w)/(((x/x)/x)/w))

per ogni z ,w ∈ G , cosicché l’operazione Kx,y (z) definita da
((y/z)/(((x/x)/x)/z)) è costante in z . Poi si osserva che l’assioma di
taglio implica che ogni elemento a ∈ G si scrive nella forma ((x/x)/x)/z
per qualche z ; allora, dati a, b ∈ G si ha

∃z : a = ((x/x)/x)/z ∃z ′ : b = ((x/x)/x)/z ′

e usando ripetutamente l’assioma di taglio, si mostra che

a/a=
(
((x/x)/x)/z

)
/
(
((x/x)/x)/z

)
=
(
((x/x)/x)/z′

)
/
(
((x/x)/x)/z′

)
=b/b.



gruppo2 → gruppo1

▶ Il valore comune e = x/x per un qualsiasi x ∈ G in un
gruppo2 è l’identità rispetto all’operazione

x .y := x/(e/y) = x/((x/x)/y) = x/((y/y)/y)

▶ L’inverso rispetto a . è definito da x̄ = e/x = (x/x)/x .

Quindi dato un gruppo2, si ottiene un gruppo1 definendo

i(x) := (x/x)/x m(x , y) := x/((x/x)/y) e := x/x



gruppo2 → gruppo1

Vanno ora mostrati i fatti seguenti:

▶ (assoc)

∀xyz : (x/((x/x)/y))/(((x/((x/x)/y))/(x/((x/x)/y)))/z) =

x/((x/x)/(y/((y/y)/z)))

▶ (unitL)
∀x : (x/x)/(((x/x)/(x/x))/x) = x

▶ (unitR)
∀x : x/((x/x)/(x/x)) = x

▶ (invL)
∀x : ((x/x)/x)/((((x/x)/x)/((x/x)/x))/x) = x/x

▶ (invR)
∀x : x/((x/x)/((x/x)/x)) = x/x



Le dimostrazioni (in
MaCE4/PROVER):













Ciascuno di questi fatti si può dimostrare (con enorme tedio)
usando ripetutamente l’assioma di taglio e vari altri lemmi
preliminari.
Questa maniera di dimostrare le cose però ha molti svantaggi:

▶ E’ molto verbosa (è facile sbagliare, nel fare queste
dimostrazioni. . . );

▶ E’ del tutto ad hoc (che si fa, se una terza nozione di gruppo3
viene introdotta?);

Fa sospettare che sia indispensabile provare fatti di teoria dei
gruppi in termini di una certa sintassi, rigida e difficile da
cambiare. Questo è falso.

C’è differenza tra ciò di cui la matematica parla, e come
implementa ciò di cui parla.

Come chiarire la situazione?



C’è bisogno di un altro approccio,
più intrinseco ed elegante...



Consideriamo un gruppo1 (l’assioma di taglio di un gruppo2 è...
scomodo).
La presentazione di un gruppo1 si può astrarre e presentare come
un oggetto G e

m : G2 → G1 i : G1 → G1 e : G0 → G1

dove G è una stenografia per un ‘simbolo segnaposto’, e Gn è la
ripetizione di n di questi simboli

G, GG = G2, GGG = G3, . . .

(da pensare come astrazione del prodotto G0 = {•} e
G1+n := G× Gn).



In modo ancora più conciso, le operazioni che definiscono un
gruppo1 sono della forma

m : 2 → 1 i : 1 → 1 e : 0 → 1

dove il riferimento a Gn è stato rimosso e si scrive solo ‘n’ in luogo
di Gn.
Meglio ancora:

2 m
// 1

i

��
0e

oo

Gm : 1+2 → 1+1 mG : 2+1 → 1+1 eG ,Ge : 0+1, 1+0 → 1+1 . . .

si interpretano come:

G ×m : G × G × G → G × G , . . . etc



Questa si dice una segnatura per la teoria dei gruppi,
rappresentante una categoria Th(Grp1), contenente almeno questi
oggetti e frecce.

Le condizioni da imporre sulla categoria sono quelle che definiscono
un gruppo1:

3
Gm //

mG
��

2

m
��

1
Ge // 2

m
��

1
eGoo

2 m
// 1 1



Almeno. . .

Quanti (e quali) altri oggetti e frecce ci sono in questa categoria
Th(Grp1)? Solo m, i , e?

Beh, no: ad esempio, esistono anche

5
GmGG // 4

GGm // 3
Gm // 2

m // 1

2
eeGeG // 5

GGmG // 4
GmG // 3

Gm // 2
m // 1

che esprimono rispettivamente le moltiplicazioni iterate

x .((y .z).(w .t)) e.((e.(x .e)).y)



Si noti però che tutte le composizioni

x .(y .((z .w).t)), (x .(y .z)).(w .t), (((x .y).z).w).t . . .

sono uguali a x .(y .(z .(w .t))).

Si noti anche che tutte le composizioni

e.((e.(x .e)).y), e.((e.(x .e)).y), (e.(e.x)).(e.y), . . .

sono uguali a x .y .

e.((e.(x .e)).y) = (e.(x .e)).y

= (x .e).y

= x .y



Definizione
Una teoria algebrica (a una sorte) consiste di una categoria T i cui
oggetti sono potenze iterate Xn di un unico X,

X0, X1, X2, . . . Xn, Xn+1 . . .

e le frecce sono da interpretare come operazioni algebriche.
Data una presentazione Ω = {fω : [nω] → [1]} per una classe di
strutture algebriche, esiste una teoria algebrica ad essa associata,
dove

▶ gli oggetti sono i numeri naturali 0, 1, 2, . . . ;

▶ esiste una freccia fω : [nω] → [1] per ogni operazione nella
presentazione;

▶ dalle operazioni elementari i termini si costruiscono
induttivamente come alberi



m

e

e

i

m

m

x

y

((x .e).e).ȳ



Alcuni alberi sono uguali ad altri. . .

m

e

e

i

m

m

m

i=
((x .e).e).ȳ = x .ȳ

m

m

m

m=
(x .y).z = x .(y .z)



Le frecce in T della forma [m] → [n] sono n-uple di termini
(f1, . . . , fn), dove ciascun fi : [m] → [1] è una operazione m-aria
della teoria.
La composizione di f : [m] → [n] con g : [n] → [k] è la freccia
f ; g : [m] → [k] definita, se f = (f1, . . . , fn) e g = (g1, . . . , gk), da

f ; g =
(
g1[f1, f2, . . . , fn], g2[f1, f2, . . . , fn], . . . , gk [f1, f2, . . . , fn]

)
f1

f2

fn

g

. . .

. . .

...

. . .

. . .



Un modello di una teoria algebrica T consiste di un funtore

M : T // Set

che ‘preserva i prodotti’.

I modelli formano la categoria Mod(T ,Set) i cui morfismi sono le

trasformazioni naturali tra funtori.

In altre parole, M associa

▶ ad ogni oggetto [n] ∈ T , un insieme
M(n) = M ×M × · · · ×M (n volte, se M := M(1)), e

▶ ad ogni freccia f : n → m della teoria algebrica un’applicazione
M(f ) = (f1, . . . , fm) : M

n = M(n) → M(m) = Mm.

M è quindi determinato dalla sua azione su un generatore, M(1), e
sulle operazioni algebriche definienti la teoria algebrica.

Realizza le operazioni prescritte dalla teoria in un modello concreto
(il ‘supporto’ M).



Questa maniera di presentare le teorie algebriche è elegante e
concisa, permette di definire le operazioni in modo induttivo, senza
dover fare riferimento a un insieme concreto (cosa di cui si occupa
la specifica di un modello).

▶ La teoria è un oggetto puramente sintattico, costruito in
maniera indipendente da questa o quella interpretazione
concreta;

▶ La semantica, lungi dall’essere un concetto vago, è a sua volta
un oggetto matematico ben preciso, su cui la sintassi viene
‘disegnata’ nei vari modi ammissibili.

▶ le teorie-categorie di gruppo1 e gruppo2 possono essere molto diverse. . .

▶ . . . e tuttavia avere ‘gli stessi’ modelli, nel senso che esiste un’equivalenza
tra Mod(Th(gruppo1),Set) e Mod(Th(gruppo2),Set).



Questo è un modo molto generale di interpretare la sintassi e la
semantica e stabilisce tra di loro una dualità (‘aggiunzione’):

▶ la sintassi è una classe Syn di categorie (piccole) strutturate;

▶ la semantica è una classe Sem di categorie (grandi) che sono
modelli/funtori.

La semantica funtoriale è la parte della teoria delle categorie che
studia questo tipo di dualità.

2

m

��
1i ::

0

e

OO

G× G

m

��
G idd

∗

e

OO

3 //

��

2

��

1 // 2

��

1oo

2 // 1 1

G3 //

��

G2

��

G1 // G2

��

G1oo

G2 // G1 G1



Syn
Mod //

Sem
♡
oo

♡
oo

Dalla sintassi alla semantica si passa prendendo i modelli di una
teoria.
Dalla semantica alla sintassi si passa prendendo il ‘cuore’ della
categoria dei modelli Mod(T ,Set) = {T → Set}×.

Dentro Mod(T ,Set) esistono i modelli perfetti (definizione: non
importante al momento), con la proprietà che

Teorema
La sotto-categoria Perf (T ) dei modelli perfetti di Mod(T ,Set) è
equivalente alla teoria algebrica T .

Per chi sa. . .
La categoria dei modelli perfetti è un completamento dell’opposto della
categoria dei modelli liberi su un insieme finito di generatori.



Interdefinibilità

‘Estrarre’ la teoria algebrica dalla presentazione gruppo2 costruisce
un modello equivalente per la teoria algebrica di gruppo1, e
viceversa.

(Grazie alla dimostrazione che abbiamo già fatto: costruire
un’equivalenza tra le categorie Th(Grp1) e Th(Grp2) significa
trovare il modo di definire le operazioni di gruppo1 in termini di
quelle di gruppo2 e viceversa, in un modo che preservi la
costruzione e composizione di termini).

Dunque le teorie algebriche di gruppo1 e gruppo2 sono equivalenti.



Abelianità
La teoria algebrica dei gruppi abeliani ammette una presentazione
molto concisa ed elegante:

▶ gli oggetti sono i numeri naturali [0], [1], [2], . . . ;

▶ le frecce n → m sono matrici m × n (n colonne, m righe) i cui
elementi sono numeri interi: la composizione

3
[ 7 8 9
10 11 12 ]−−−−−−→ 2

[
1 2
3 4
5 6

]
−−−−→ 3 = 3

[
27 30 33
61 68 75
95 106 117

]
−−−−−−−−→ 3

è letteralmente il prodotto di matrici.

Teorema / esercizio per i temerari
La teoria algebrica dei gruppi abeliani Ab1 (assiomi di gruppo1 + x .y = y .x) è
interdefinibile con la teoria algebrica Ab2 dei gruppi abeliani specificata dalla
teoria equazionale{

0
t // 1 2

/oo
∣∣∣ ∀xyz : x/((((x/x)/y)/z)/(((x/x)/x)/z))=y

∀xyz : x/((y/z)/(y/x))=z

}



Dualità

Quella tra teorie algebriche e modelli è un importante esempio
delle dualità tra sintassi e semantica, che si possono trovare in
molti altri contesti matematici... giusto alcuni nomi per chi vuole
usare Google:

▶ dualità di Stone

▶ dualità di Gel’fand-Grothendieck

▶ dualità di Galois-Grothendieck

▶ dualità di Isbell

▶ dualità di Pontrjagin

▶ dualità di Lawvere

▶ . . .

Grothendieck è l’unico ad avere non una ma ben due dualità a lui

dedicate...
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