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Gruppi

Un ‘gruppo;’ & un insieme non vuoto G, dotato di operazioni
m:GxG—G i:G—G e: G

che soddisfano i seguenti assiomi:

(notazione: m(x,y) = x.y & la moltiplicazione e i(x) = X |"inverso)

» m & associativa: x.(y.z) = (x.y).z per ogni x,y,z € G;
> m & unitale: x.e = x = e.x per ogni x € G;
» ogni elemento x € G ha un inverso rispetto a m:

XX =e=Xx.

Un gruppo; € commutativo se x.y = y.x per ogni x,y € G.



Gruppi
Vi sono diverse ragioni per studiare la teoria dei gruppi: mediante essi si
puod

» definire e classificare le simmetrie nei sistemi fisici ( particelle
elementari ) e chimici ( gruppi cristallografici );

» capire quali equazioni sono risolvibili in radicali (perché solo fino al
grado 47) ( thm di Abel-Ruffini + teoria di Galois );

» parlare di vari protocolli crittografici ( Diffie-Hellman, RSA, etc. );

» studiare I'elaborazione di immagini e la teoria dei codici;

>

Group Theor)
Applied to !

Chemistry




Gruppi

Un ‘gruppoz’ € un insieme non vuoto G, con una operazione
binaria —/— detta ‘taglio’, (x,y) — x/y soddisfacente |'assioma

VX,y,z : /((( X/x) /y)/z)/(((x/x)/x)/z)) =y.

Un ‘gruppoy’ € commutativo se

vx,y,z 0 x/((v/2)/(y/x)) = z



Teorema
Le nozioni di gruppo; e di gruppoy sono equivalenti.

» Dato un gruppos, si ottiene un gruppo; definendo
x/y ==m(x,i(y)) = x.y
» Dato un gruppoy, si ottiene un gruppo; definendo

i(x):=77? m(x,y) =777 e:=1777



Per mostrare la prima implicazione, va visto che con la definizione
data di taglio, vale I'equazione

% (7.(2(%2)) = y

per ogni x,y,z € G. -
Per vederlo: (si ricordi che 3.b = b.a, e X = x)

N
I
X

x.(7.(2.(%.2))




Definire le operazioni di in termini del solo taglio e piu
complesso:

Lemma
Sia G un gruppoy. Per ogni a,b € G, a/a= b/b.
Anzitutto, si dimostra che

((r/2)/((x/x)/x)/2)) = ((y/w)/(((x/x)/x)/w))

per ogni z,w € G, cosicché |'operazione Kj ,(z) definita da
((y/2)/(((x/x)/x)/z)) & costante in z. Poi si osserva che |'assioma di
taglio implica che ogni elemento a € G si scrive nella forma ((x/x)/x)/z
per qualche z; allora, dati a, b € G si ha

dz:a=((x/x)/x)/z 37" b= ((x/x)/x)/Z’
e usando ripetutamente |'assioma di taglio, si mostra che

a/a=(((x/x)/x)/2) / (/) /x)/2) = (/) /%) /2" ) 1 (((x/x)/x) /2" ) =b/ b.



gruppos —

» |l valore comune e = x/x per un qualsiasi x € G in un
gruppos € l'identita rispetto all'operazione

x.y = x/(ely) =x/((x/x)/y) = x/((y/y)]y)

» L'inverso rispetto a . & definito da X = e/x = (x/x)/x.

Quindi dato un gruppoy, si ottiene un definendo

i(x) = (x/x)/x  mlx,y)=x/((x/x)/y)  e:=x/x



gruppos —

Vanno ora mostrati i fatti seguenti:

> (assoc)

Vxyz 2 (x/((x/x)/y))/(((x/((</x) [y )/ (x/((x/x)[¥)))/2) =
x/((x/x)/(y/((y/y)/2)))

> (unitl)
Vx: (x/x)/(((x/x)/ (x/x)) [ x) = x
> (unitR)
Vx:x/((x/x)/(x/x)) = x
> (invL)
Vx (/X)) ((((</x) /) [ ((x/x) /X)) /) = x/x
> (invR)

Vx 2 x/((x/x)/((x/x)/x)) = x/x



Le dimostrazioni (in

MaCE4/PROVER):



PROOF

>roof 1 at 0.00 (+ 0.00) seconds.
_ength of proof 1is 15.

L evel of proof 1is 3.

Maximum clause welght 1s 17.000.
Given clauses 12.

0O~NOUEWN R
o R R R =X

x £ (CCCx / x) [ yv) [ z2) [ (K(x / x) / x) [/ 2)) y # label(non_clause) # label(goal). [goal].
(x @ y) Dz =xa (ya z). [assumption].
X . lassumption].
[assumption].
[assumption].
[assumptlnn]
. lassumption].
el / el) / €2) / e3) / el / g1) / g1) / €3)) =& €2, [denvCl)l:
@ (c3' a (c1' @ c3")'))" % c2. [copy(8),rewrite([7(4),5(5),7(4),4(5),7(5),7(9),5(10),7(9),4(10),7(10),7(12),2(13),7(14)]1)].
dVy) =vy. [para(5(a,1),2(a,1,1)),rewrite([4(2)]),flip(a)].
a (x a y)') = e. [para(5(a,1),2(a,1)),flip(a)].
@y)=y. [para(6(a,1),2(a,1,1)),rewrite([4(2)]),flip(a)].
[para(5(a,1),10(a,1,2)),rewrite([3(2)]),flip(a)].
@ x)' =vy'. [para(11(a,1),13(a,1,2)),rewrite([3(3)]),flip(a)l].
back rewrite(9),rewrite([19(12),15(6),19(7),15(3)]1),xx(a)].
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end of proof
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PROOF

>roof 2 at 0.01 (+ 0.00) seconds.
_ength of proof is 17.

L evel of proof 1is 8.

Maximum clause welght 1s 51.000.
Given clauses 11.

CO~dNO O B~ WN =

(x / x) @ x = x # label(non_clause) # label(goal). [goal].
x / ((((x/ x)/vy)/z)/ (((x/ x)/ x)/ z))=y. [assumption].
xay=x/((x/x)/vy). [assumption].
(c2 / €2) @ c2 = 2. ldeny(2)].
9 (c2 / c2) / (((c2 / c2) / (c2 / c2)) / c2) %+ c2. [copy(8),rewrite([4(5)])].

18 (CCCx / x) 7 (k4 %)) / ¥) /1 2) [ (KCCx /£ %) / (x 7 %)) 7 (k@ %)) /£ 2) =% p ((y 2 u) 7 (CCx /£ x) /7 %) / u))s Ipara(3Ca;1),3(a,1,2,1,1)),Flipla)l:

11 x / (y/ (((x/ x)/ x)/ ((((((x/x)/z)/ (x/x)/z))/y)/uw [/ (((((x/x)/z)/ (x/x)/z))/ x/x)/z))/u))))=2z. [para(3(a,1),3(a,1,2,1))].
17 ((x / %) [/ (x / x)) / CCCC(Cx / x) / (x / x)) / (Ax / x) [/ (x [/ x))) [ y) [/ ((((x / x) / Cx/ x)) /[ (x/x)) /[ ((x/ %)/ (x/x)))) /[ (x/ x)) =y. [para(ie(a,1),3(a,1,2,2)),reurite([3(30)])].
18 (x / x) [/ (x / ((y / z) / ( / x) / x)/ z))) =vy. [para(le(a,1),3(a,1,2))].
22 (((Cx / x) / (x / (Cx / x) /y)) [ z) [/ (((Cx / x) / (x / x)) [/ (x /[ x)) /[ z)=y. [para(1e(a,2),3(a,1))].
38 (x / x) / (x / (y / /x) f C0Cz /£ z) / y) fu) / ((Cz / z) /z) / u))))) =z I[para(3(a;1),18(a,1,2,2:1))]1:
78 (x [/ x) [/ (x [ (¥ / %) [ xs [para(3(a;1),38(a,1,2,2;2))]1:
112 ((x / x) / (x / x (X)/ xg / (X /)g%) / (x/ x))/y)/ ((((x/ x)/ (x/x))/ (x/x))/ ((x/x)/ (x/x))))/(x/ x))=y. [back_rewrite(17),rewrite([78(10)])].
JedlCasl.2,2) )],
[back vewrite(112),rewritel [11403) 11404), 116C4) 114(6),114(6) 11467, 114(6),114(5); 114(5) 1) 1.
[back rewrite(22),rewrite([114(3),152(4),114(4),114(4)])].

end of proof
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PROOF

>roof 1 at 0.01 (+ 0.00) seconds.
_ength of proof 1is 18.

L evel of proof 1is 8.

Maximum clause welght 1s 51.000.
Given clauses 11.

CO~dNO O B~ WN =

X x / x # label(non_clause) # label(goal). [goal].
X x / x)/vy)/z)/ (((x/ x)/ x)/ z))=y. [assumption].
X x / ((x / x) /vy). [assumption].
X' / x) / x. [assumption].
C #= c2' @ c2. [deny(2)].
( c2) / e2) / (((Ce2 / e2) / €2) / ((e2 [/ e2) [/ €2)) [/ €2) 5= €2 [/ 2. |copy(8),rewrite([5(5),4C(10)]),fLip(a)l.:
[ x) [ Kx /[ x)) [ y) [ z) [ C((x /x) [/ (x/x)) [ x/x))[z)=%x7] Ky /fu) /f ((x/x)/x)/u)). |[para(3(a,1),3(a,1,2,1,1)),flip(a)].
y / (CCx 7/ x) / %) / (CCCQCx 7 %) [/ z) / ((x 7/ %x) [ z)) [ ¥) /fu) £ CQCCCx 7 x) /z) [/ (Kx / x) / z)) / (KX 7 x) /z)) fu))) =z, |para(3(a,1),3(a,1,2,1))].
) / (x / x)) / ((C(((x / x)/ (x/ x))/ (Ix/x)/ (x/x)))/y)/ ((((x/x)/ (x/x))/ (x/x))/ (x/x)/(x/x))))/ (x/x))=y. [para(lo(a,1),3(a,1,2,2)),rewrite([3(30)])].
(((x / x)/ x)/ z))) =vy. [para(lo(a,1),3(a,1,2))].
x / x) 1 y)) [/ z) f (C(Cx/ %) / (x/ %))/ (x/ x)) / z2) =y [para(iea,2),3(a,1))].
x) [ %) / (((Cz / z) /y) fu) [ (((z/z)/ z)/u)))) = z. Ipara(3(a;1),18(a,;1,2,2;1))]1.
78 % 7 %) / %o [para(3(a;l1),3Bla,1.2.2.2)) .
112 ((x / x ((((x/ x)/ (x/ x))/ x/x))/y)/ ((((x/x)/ (x/x))/ x/x))/ x/x)/ (x/x))))/ (x/ x))=y. [back_rewrite(17),rewrite([78(10)])].
114 x / (y 3Cavl )1 lal 2.9 ) .
151 (x / x) / - y. [back rewrite(112),rewrite([114(3),114(4),114(4),114(6),114(6),114(7),114(6),114(5),114(5)1)].
200 (x /vy) / ((z / z) /y) =x. [back rewrite(22),rewrite([114(3),151(4),114(4),114(4)])].
201 $F. [resolve(200,a,9,a)].

end of proof

PROOF

>roof 2 at 0.02 (+ 0.00) seconds.
_ength of proof 1s 16.

Llevel of proof 1is 7.

Maximum clause weight 1s 51.000.
Given clauses 11.

x / x # label(non_clause) # label(goal). [goall].
x) /y)/ z)/ (((x/ x)/ x)/ z)) =y. [assumption].
((x / x) / y). [assumption].
/ X. [assumption].
@ cl'. [deny(1)].
1) / ((c1 / c1) / c1)) %= c1 / c1. [copy(6),rewrite([5(6),4(10)]),flip(a)].
(x / %)) [ y) [ z) [ ((Q(x / x) [ (x/ %))/ (x/x))/z)=x/[ Uy /tu) [ (x/Lx) /[ x%x)/u)). [para(3(a,1),3(a,1,2,1,1)),flip(a)].
[/ x) [ x) / CCCCKx / x) /z) / (Kx /%) [ z)) [/ y) /fu) [/ (CQUCx /x) /z)/ (Ax /[ x) [/ z)) [/ (Cx/x)/z))/u))))=z. [para(3(a,1),3(a,1,2,1))]1.
[ x)) [/ CCCC(Cx / x) / (x [/ x)) [/ (Ax / x) / (x/ %x))) /y) / C(CCx / x) / (x/ x)) /[ (x/x)) /[ (x/x)/(x/x))))/(x/ x)) =y. [para(ile(a,1),3(a,1,2,2)),rewrite([3(30)])].
y / z)/ (((x/ x)/ x)/ z))) =y. [para(lo(a,1),3(a,1,2))].
[/ (((x /1 x) [ x) 7 ((Kz 7/ z)/y)/lu) [ Lz 7/ z)/[z)/u))))) =z, |para(3(a,1),18(a,1,2,2,1))].
/W)y = (x [/ x) / xs [para(3(a,1),38(a,1,2,2,2))]1.
X))
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((C((x / x)/ (x/ x))/ (x/ x))/y)/ ((((x/ x)/ (x/x))/ (x/x))/ ((x/x)/ (x/x))))/ (x/ x))=y. [back_rewrite(17),rewrite([78(10)])].
ra(3(a;1),11(a;1,252)) 1.

x) /y) =y. [back rewrite(112),rewrite([114(3),114(%),114(4),114(6),114(6),114(7),114(6),114(5),114(5)]1)].

write(7),rewrite([151(10)]),xx(a)].
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end of proof
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PROOF

>roof 1 at 0.03 (+ 0.00) seconds.
_ength of proof 1is 40.
_,evel of proof 1s 17.

Maximum clause welght 1s 63.000.
Given clauses 39.
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(

(x @ y) @ z # label(non_clause) # label(goal).
) /z) / (((x / x) / x)/ z)) =
X / x) 7 ¥).

[assumption].

[assumption].

[goal].
[assumption].

)
7
/
X
Q) cl@ (c2 @ c3). [deny(1)].

/7 €2)) /4 (el / ((el / el) / €2)) / (el / ((el [/ el) /7 €2))) / e3) + €1 / ((el /el) /7 (e2 / ((e2 7/ €2) / €3))). leopy(5),rewrite([3(3),3(9),3(29),3(34)])1.

X)) / v) 1 z) S CCLE 7 x) 7/ (x 7 %)) f Kx/ x)) 7/ 2)=x [ Cly £ u) / (LCx 7/ x) 7/ x) / u)). Ipara(2(a;l),2(a;1,2,1.1)).ftip(a)l:
E(((x I %) 1 z)y f (Ax/ %) /£ z2)) 7/ y) /A u) £ (KCCCx 74 x) / z) 7/ (Kx 7 %)/ z)) / (Cx/ %)/ z)) / u)))) =z, |para(2Qa;1);2(a,;1,2,1))]1:
(
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1 %) /1 (x /1 %)) 7 ((x 7/ %) /(x 1 x))) [ y) 7 CKAKx 7/ %)/ (k[ x)) /7 Kx/ %))/ ((x7 x) /(X7 X)))) 7 (x / X)) = [para(7(a,1),2(a,1,2,2)),rewrite([2(30)])].
/I ®) / x) [/ z))) = yo |para(#(a,;1),2Ca;1,2))].
) L z) 1 (((x [/ x) / (x /ix)) [/ (X7 %)) [
) X) I kx 7 x))) / ((x 1 %)/ (x [ %x))) /
[ z) [ y) fuy f((Cz /£ z) [/ z) [/ u)))
L y) 1 Ky 7 w)) £ (0¥ 7/ z) / CCCCLy /

>

o,

>

X
(x
i

—~
e NS T

P - - P, S S 4

) . [para(7(a,2),2(a,1))]1.
(((x / %) 7 (x / %)) /1 (x [ x))
) ¢ Lpara(2Ca,1),15Ca1.2.2
y) / (/y))/((y/y)/(y/
y / (gg? Fu) /7 u) 7 CCCCx 7o x) /i (x / x)) 1 (x /1 %))
2.2)) 1.

(x /z)/ ((CCy /Zy) / Cy/y))/ (y/y)) / ((y
))) / ((((x / x) / (x/ x))/ (x/ x))/y)) = (x
CCCCx 7/ x) £ Cx / %)) £ (x / %)) [/ ((x / x) 1 (% [/

F o T 4

P

=(x / X) / ((y £ 2) 7 CCCCx / %) /£ Cx /£ ) / CX /%)) /1 2))

<y /vy)/ (y/vy)))/ z)))=y/vy. [para(i5(a,1),7(a,1,1)),rewrite([2(34)])].

7 [para(7(a,1),7(a,1,1)),rewrite([2(9)]1)].
i |

y

7 o IparaCisCay1).15Ca,1.2.2.1) ). Flipnla)].
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/v))) / z)))) =y /y. [back rewrite(38),rewrite([75(16)])].
Joz ) ((((x / x)/ (x/ x))/ (x/ x))/ z)). [back rewrite(28),rewrite([75(8)])].
(x 7 %)) = [back rewrite(14),rewrite([75(10)])].
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[paralela,1),19Ca,1,1,1)) veuriteC[111046),;111(4),111€7);111(8) . 111(7);111(8),111(7);111(8),;111(8) ;111€8) . 11118} 111€11),111(10);111(12) . 11114 ), 111C15),111C14),111016) . 111C17),111€16),111(19),111(28) . 111C19) 1) 1.

. N o=

[back rewr1te(1@9) rewr1te([111(3) 111(4) 111(4) 111(6) 111(6) 111(7) 111(6) 111(5) 111c5) 13 1.
% x) 7 z)) (x / x) [/ ¥y« [back rewrite(106),rewrite([111(4),111C4),111(5),;111(4),111(5),111(5),148(5),111(7),111(7)]1),flip(a)]:

P e W N

o’ XX

s
2 MHHMKHMH

=y / u. [back rewr1te(69) rewr1te([111(3) 148(4) 111(7) 11c2) D). flipCa) l:
= X. [back rewrite(19),rewrite([111(3),148(4),111(4),111(4)])].
) 7 CZ2 7 v)) = [back rewrite(137),rewrite([197(4),197(6),197(8),148(7)]),flip(a)].
[para(152(a,1),4(a,2,1)),rewrite([4(1)]),flip(a)].
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Mo X X X Il /N
>

b4
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X X X

=

o
j

[paraC152(Ca,1),6(a,1,1,2,1)),rewrite([263(22)])].

o

para(152(a,1),148Ca;1,1)) ]

) / €3) == €1 / (el /7 el) 7 (&2 / ((g2 / €2) [ €3))).
) / €3) #*= el / ((z / z) [/ (e2 [/ ((c2 / €2) / €3))).
)/ c3) =c1/ ((z/ z)/ (c2/ (Cu/ u) / c3))).
/U= %, [para(223(a,1),197(a,1,2))]1.
ra(197(a,1),223(a,1,2,2)),rewrite([270(5)]1)].

) / €3) = €1 / (((z / z) / €3) [/ €2). Ipara(293(a,1),287(a,;2,2))]1:

) / (z /u)))) =y / (u/ z). I[para(293(a,1),172(a;1,2,2,2,2))]1:

((z/z)/ c2))) #+=c1/ (((u/u) / c3)/ c2). [para(293(a,2),325(a,1))].

(((z/z) /u)/ (c2/u)))) *c1/ (((w/w)/ c3)/ c2). [para(291(a,1),375(a,1,2,2,2))].

>

[paraCi1520a,1).2660a,1.2.1)) ]
[para(152(a,1),282(a,2.2.1)) 1.
[paraCi152(a,1).,285(4,2,2:,2,2.1)) ]

= A
e e ~
-
T A AT
<

B e M Mz
S~

—~~
|-1|-=x-::m~...r-::~=:-::-—u

i

(
X
X
(
(
X
(
(
(
X
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
$

¥ T Wi S WG e WL e R R B M e Mt M, DR WG, i s S WS

o

P N N Y T AN TN ST TN AN AN N v S | S S e

MM X X X O X X 0O 0O 0O X O X X X X
-
D

—/ X X X

M ~—

end of proof
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PROOF

>roof 1 at 0.01 (+ 0.00) seconds.
_ength of proof is 19.

Level of proof is 9.

Maximum clause welght 1s 63.000.
Given clauses 8.

CO~dNO O B~ WN =

x / x =y /vy # label(non_clause) # label(goal). [goal].
x / ((((x/ x)/7y)/z)/ (((x/ x)/ x)/ z)) =y. [assumption].
c?2 / e2 5= €1 [/ el. ldeny(1)].
(CCCx / x) / (x / x)) [ y) /[l z) /[ (K((x / x) / (x/ x)) [/ (x/ x)) /[ z) = /u) /£ (((x 7/ x) / x) / u)). Ipara(2(a,1),2(a,1,2,1,1)),flip(a)].
x [/ (y / CCCx / %) / x) 7 (CCCCCx / x) £/ z) / (Kx / %) / 2)) / y) /[ u) / X) 7/ z) 1 (Kx 7 x) 7 z)) /L (\x/ x) £ z)) 7 u)))) = zu [paral(2(a,l),;2(a;1,2:1))]1:
(Cx /7 %) 7/ (x 7 %)) ¢ CCCCCCx /%) / (% / %)) 7 ((x /1 %) L (x/ %)) /¥ x) / (x / x)) [/ (x/ x)) [/ ((x/ x) / (x/ x)))) [/ (x/ x)) =y. [para(a(a,1),2(a,1,2,2)),rewrite([2(30)])].
(x / x) / (x / ((y [ 2 (((x g ;) / x) / z))) =vy. [para(4(a,l),2(a,1
)
y

(((
)
(x 7 x) 7 (CCCCx 7 x) { (x )%; ( X) / (x 7 X))) / ((x | xX) /[ (x (x 1 %) 7 (x 7 %)) 1 (% /
X =
y (

(
(
(
/
X

=(x/x)/ ((y/ z)/ ((((x/ x)/ (x/x))/ (x/ x))/ z)). I[para(4(a,1),4(a,1,1)),rewrite([2(9)]1)].
(x / Cy / (( z L z) gy iy p Az z) 7/ zw Ipara(2(a,;1);12(4a,

X / X
(((( 2 :

y / y) ((Cy /7 y)/ (y/y))/ ((x/ z)/ )/ (y /y))/ (y /y)/ (y / (y /y)/ (y/y)))/z)))) =y /y. [para(12(a,1),4(a,1,1)),rewrite([2(34)])].
[ %) [ %« Ipara(2(a,1),98(a,1.9.9,93) 1.
y / )) ((Cy /7 y)/ (y/vy)) / ((x/ z)/ ((((Cy ) / (y /y)) / (y /vy)) / ((y

1 Cx [/ x)) f (A% / xX) / (X /L x))) / CCCCx /1 %) x/ x))/ (x/ x))/y)) = (x
x)) / CCCCCCx /o x) / (x / x)) / (x / x)) /L y) / CCC(x /%) / (x /%)) [/ (x/ %)) [/ ((x /[ %)/ (x [/

[para(2(a,1),5(a,1,2,2))].

x) /y) =y. [back rewrite(100),rewrite([102(3),102(4),102(4),102(6),102(6),102(7),102(6),102(5),102(5)]1)].
z) / ((x/ x)/ z)) =(x/ x)/y. [back rewrite(98),rewrite([102(4),102(4),102(5),102(4),102(5),102(5),137(5),102(7),102(7)1),flip(a)l.
[back rewrite(96),rewrite([102(3),102(3),102(4),102(6),102(6),102(7),102(6),139(7),137(&)1)].

(
X /
)) ) /
/v))) / z)))) =y / y. [back rewrite(31),rewrite([67(16)])].

v / z) / ((((x/ x)/ (x/ x))/ (x/ x))/ z)). [back rewrite(21),rewrite([67(8)])].
(x / x)) =y. [back rewrite(11),rewrite([67(10)])].

end of proof




Ciascuno di questi fatti si pud dimostrare (con enorme tedio)
usando ripetutamente I'assioma di taglio e vari altri lemmi
preliminari.

Questa maniera di dimostrare le cose perd ha molti svantaggi:

» E' molto verbosa (& facile sbagliare, nel fare queste
dimostrazioni. . . );

» E' del tutto ad hoc (che si fa, se una terza nozione di gruppos
viene introdotta?);

Fa sospettare che sia indispensabile provare fatti di teoria dei
gruppi in termini di una certa sintassi, rigida e difficile da
cambiare. Questo & falso.

C'e differenza tra cio di cui la matematica parla, e come
implementa cio di cui parla.

Come chiarire la situazione?



C'e bisogno di un altro approccio,
pill intrinseco ed elegante...



Consideriamo un (I'assioma di taglio di un gruppos ...
scomodo).

La presentazione di un si puo astrarre e presentare come
un oggetto G e

m:G2 — gl i:gl —qt e: G0 — gl

dove G & una stenografia per un ‘simbolo segnaposto’, e G" & la
ripetizione di n di questi simboli

G, GG=G? GGG=G>,...

(da pensare come astrazione del prodotto G° = {e} e
G =G x G").



In modo ancora piu conciso, le operazioni che definiscono un
sono della forma

m:2—1 it1—1 e:0—1

\

dove il riferimento a G” & stato rimosso e si scrive solo ‘n’ in luogo
di G".
Meglio ancora:

i

Gm: 142 — 1+1 mG : 241 — 141 eG,Ge : 0+1,140 — 141
si interpretano come:

Gxm:GxGxG—GxG,...etc



Questa si dice una segnatura per la teoria dei gruppi,
rappresentante una categoria Th( ), contenente almeno questi
oggetti e frecce.

Le condizioni da imporre sulla categoria sono quelle che definiscono
un :

-
"



Almeno. ..

Quanti (e quali) altri oggetti e frecce ci sono in questa categoria
Th( )? Solo m,i,e?

Beh, no: ad esempio, esistono anche

5 GmGG 4 GGm 3 Gm 2 m 1

eeGeG GGmG GmG

2 5 4 3_6m_ o _m 4

che esprimono rispettivamente le moltiplicazioni iterate

x.((y.z).(w.t)) e.((e.(x.€)).y)



Si noti pero che tutte le composizioni

x.(y.((z.w).1)), (x.(y.2)).(w.t), (((x.y).z).w).t ...

sono uguali a x.(y.(z.(w.t))).

Si noti anche che tutte le composizioni

e.((e.(x.€)).y),e.((e-(x.€)).y), (e.(e-x)).(e.y),. ..

sono uguali a x.y.

e.((e.(x.e)).y) = (e.(x.€)).y
= (x.e).y
=Xx.y



Definizione
Una teoria algebrica (a una sorte) consiste di una categoria 7 i cui
oggetti sono potenze iterate X" di un unico X,

X0, xt, x2, ... x", x"tlo

e le frecce sono da interpretare come operazioni algebriche.

Data una presentazione Q = {f,, : [n,] — [1]} per una classe di
strutture algebriche, esiste una teoria algebrica ad essa associata,
dove

P gli oggetti sono i numeri naturali 0,1,2,...;

> esiste una freccia f,, : [n,] — [1] per ogni operazione nella
presentazione;

» dalle operazioni elementari i termini si costruiscono
induttivamente come alberi






Alcuni alberi sono uguali ad altri. ..




Le frecce in T della forma [m] — [n] sono n-uple di termini
(fi,...,fn), dove ciascun f; : [m] — [1] & una operazione m-aria
della teoria.

La composizione di f : [m] — [n] con g : [n] — [k] & la freccia
fig : [m] — [K] definita, se f = (f1,...,f,) e g = (&1,---,8k), da

fig= (gl[fl,fz,...,f,,],gz[fl,f2,...,f,,],...,gk[ﬂ,fz,...,f,,])

fi

f2

AN
sy




Un modello di una teoria algebrica T consiste di un funtore
M :T —— Set

che ‘preserva i prodotti’.

| modelli formano la categoria Mod(7, Set) i cui morfismi sono le
trasformazioni naturali tra funtori.
In altre parole, M associa
» ad ogni oggetto [n] € T, un insieme
M(n) =M x M x --- x M (n volte, se M := M(1)), e
» ad ogni freccia f : n — m della teoria algebrica un'applicazione
M(f)=(f,...,fm): M" = M(n) = M(m) = M™.

M & quindi determinato dalla sua azione su un generatore, M(1), e

sulle operazioni algebriche definienti la teoria algebrica.

Realizza le operazioni prescritte dalla teoria in un modello concreto
(il ‘supporto’ M).



Questa maniera di presentare le teorie algebriche & elegante e
concisa, permette di definire le operazioni in modo induttivo, senza
dover fare riferimento a un insieme concreto (cosa di cui si occupa
la specifica di un modello).

P> La teoria € un oggetto puramente sintattico, costruito in
maniera indipendente da questa o quella interpretazione
concreta;

P> La semantica, lungi dall'essere un concetto vago, € a sua volta
un oggetto matematico ben preciso, su cui la sintassi viene
‘disegnata’ nei vari modi ammissibili.

P e teorie-categorie di e gruppoz possono essere molto diverse. . .

P .. .e tuttavia avere ‘gli stessi' modelli, nel senso che esiste un’equivalenza
tra Mod( Th( ), Set) e Mod( Th(gruppoz), Set).



Questo & un modo molto generale di interpretare la sintassi e la
semantica e stabilisce tra di loro una dualita (‘aggiunzione'):

> la sintassi € una classe Syn di categorie (piccole) strutturate;
» la semantica & una classe Sem di categorie (grandi) che sono
modelli /funtori.
La semantica funtoriale & la parte della teoria delle categorie che
studia questo tipo di dualita.
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Syn —_—= Sem
Q
Dalla sintassi alla semantica si passa prendendo i modelli di una
teoria.
Dalla semantica alla sintassi si passa prendendo il ‘cuore’ della
categoria dei modelli Mod(T,Set) = {7 — Set}.

Dentro Mod(T, Set) esistono i modelli perfetti (definizione: non
importante al momento), con la proprieta che

Teorema
La sotto-categoria Perf(7T) dei modelli perfetti di Mod(T, Set) &
equivalente alla teoria algebrica 7.

Per chi sa. ..
La categoria dei modelli perfetti & un completamento dell'opposto della
categoria dei modelli liberi su un insieme finito di generatori.



Interdefinibilita

‘Estrarre’ la teoria algebrica dalla presentazione gruppos costruisce
un modello equivalente per la teoria algebrica di , e
viceversa.

(Grazie alla dimostrazione che abbiamo gia fatto: costruire
un'equivalenza tra le categorie Th( ) e Th(Grpy) significa
trovare il modo di definire le operazioni di in termini di
quelle di gruppoy e viceversa, in un modo che preservi la
costruzione e composizione di termini).

Dunque le teorie algebriche di e gruppoz sono equivalenti.



Abelianita

La teoria algebrica dei gruppi abeliani ammette una presentazione
molto concisa ed elegante:

> gli oggetti sono i numeri naturali [0], [1],[2],...;

» le frecce n — m sono matrici m x n (n colonne, m righe) i cui
elementi sono numeri interi: la composizione

61 68 75

{27 30 33}
95 106 117
—

e
3 10 11 12 56 3 = 3

3
e letteralmente il prodotto di matrici.

Teorema / esercizio per i temerari

La teoria algebrica dei gruppi abeliani Ab; (assiomi di +xy=yx)e
interdefinibile con la teoria algebrica Ab, dei gruppi abeliani specificata dalla
teoria equazionale

: /- Wz /(<)) /)2 /((x/x) /%) 2)=y
{ 0——1<—2 Vayz - x/((v/2)/(y /x))=z



Dualita

Quella tra teorie algebriche e modelli & un importante esempio
delle dualita tra sintassi e semantica, che si possono trovare in
molti altri contesti matematici... giusto alcuni nomi per chi vuole
usare Google:

» dualita di Stone
» dualita di Gel'fand-Grothendieck
» dualita di Galois-Grothendieck
» dualita di Isbell

» dualita di Pontrjagin

>
>

dualita di Lawvere

Grothendieck & I'unico ad avere non una ma ben due dualita a lui
dedicate...
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