
OF LIMS AND SETS

FOSCO LOREGIAN

1. Reduction of limits to products and equalizers

Definition 1.1 (Some terminology). A (small) diagram in a category C is a functor

J // C (1.1)

whose domain is a small category. A cone for a diagram D consists of a pair (X, c)
where X is an object of C called tip of the cone, and c is a natural transformation
∆X ⇒ D from the constant functor at X; so c consists of a family of arrows in C,

cj : X // Dj (1.2)

the components of the cone, such that for every morphism f : i → j in J the
triangle

X
cj

  

ci

~~
Di

Df
// Dj

(1.3)

is commutative. The category of cones for D has

• objects the cones (X, c) for D;
• arrows h : (X, c) → (Y, c′) the arrows h : X → Y in C, between the tips of
the cones such that for every j ∈ J the triangle

X

cj   

h // Y

c′j~~
Dj

(1.4)

The limit (limD, pj) of a diagram D consists of a terminal object in its category of
cones. More than often one calls ‘limit of D’ the tip of the terminal cone, leaving
the maps of the cone implicit this is almost always harmless but slightly incorrect:
the limits is composed of both parts.

If a diagram D has a limit (limD, pj) we say that C admits the limit of D; if for
a fixed J , every D : J → C has a limit, we say that C has limits of shape J or
that it has J -limits; if for every element J of a subclass Φ ⊆ Cat of categories, C
has limits of shape J , we say that C has limits of shape Φ or that it has Φ-limits.
If C has Cat-limits, we say that C is (small-)complete.

Definition 1.2. In particular, a category C has all products if it has all limits of
shape Sδ → C when Sδ is the discrete category over a set S, and C has equalizers
if it has limits over J = {0 ⇒ 1}: this is because

1



2 FOSCO LOREGIAN

• a diagram of shape Sδ specifies precisely a family of objects Xs in C, one
for every s ∈ S; being the terminal cone in this case means that there exists
a family of arrows ps :

∏
s Xs → Xs indexed by S with the property that

• a diagram of shape {0 ⇒ 1} specifies precisely a pair of morphisms f, g :
D0 → D1 in C; being the terminal cone in this case means that there exists.

Theorem 1.3. The category Set of sets and functions has all products and all
equalizers.

Proof.

• the product of a family of sets {Xs | s ∈ S} is the usual Cartesian product∏
s∈S Xs, constructed as the set of functions S →

⋃
s Xs with the property

that f(s) ∈ Xs. This allows to represent the elements of the set
∏

s∈S Xs as
S-indexed sequences (xs | s ∈ S, xs ∈ Xs). Evidently,

∏
s∈S Xs is equipped

with projection maps ps :
∏

t∈S Xt → Xs for every s ∈ S, picking the sth
element of the S-sequence (xs | s ∈ S).

The universal property of the product
∏

s∈S Xs is spelled as follows:

For every set Z and family of functions zs : Z → Xs, there
exists a unique z̄ : Z →

∏
s∈S Xs such that ps ◦ z̄ = zs.

Define z̄ to be the function sending ζ ∈ Z to the S-sequence (zsζ | s ∈ S).
Clearly this is the only possible definition so that∏

s∈S Xs

ps

��
Z

zs
//

z̄
;;

Xs

(1.5)

is a commutative triangle for every s ∈ S.
• the equalizer of a pair of maps f, g : X → Y consists of the subset E =
{x ∈ X | fx = gx} ⊆ X; it realizes the universal property

For every u : Z → X such that f ◦ u = g ◦ u, there exists
a unique ū : Z → E such that u equals the composition
Z → E ↪→ X.

Since E is just a subset of X, the universal property of eq(f, g) can be
rephrased as follows: every u : Z → X such that f(u(z)) = g(u(z)) for
every z ∈ Z takes values in the subset E, defined above. This is evident,
as much as it is evident that E is chosen precisely in order to satisfy this
property. □

Lemma 1.4.
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Theorem 1.5. The category Set of sets and functions has all limits.

Proof. Let D be a small category and F : D → Set a functor. For every arrow f in
D, we denote s(f) the source and t(f) the target of f ; so, if f : D → D′, s(f) = D,
t(f) = D′.

We prove that the limit limF of F is precisely the equalizer of the pair of maps

∏
D∈D0

FD
αF
//

βF

//
∏

f∈D1

F (t(f)) (1.6)

where

• αF ((xD | D ∈ D)) = (xt(f) | f ∈ D1);

• βF (((xD | D ∈ D)) = (Ff(xs(f)) | f ∈ D1);

This means two things: if limF exists, then it must be the equalizer of that pair;
otoh, if that pair (α, β) has an equalizer, then such is the limit of F .

We have to prove that

(1) There exists a cone

limF
p̄ //

∏
D∈D0

FD
α //

β
//
∏

f∈D1

F (t(f)) (1.7)

where e equalizes the pair α, β;
(2) such cone is terminal; this will mean two things:

• the universal property of limF entails the universal property of eq(α, β);
• the universal property of eq(α, β) entails the universal property of
limF .

Thus, there is a unique isomorphism eq(α, β) ∼= limF .

Proving 1. is easy; if (limF, pD) exists, all projections pD : limF → FD as-
semble into a unique map p̄ : limF →

∏
D FD (this is the universal property of∏

D FD). Note in passing that by the lemma above if D is a discrete category,∏
f∈D1

F (t(f)) =
∏

D∈D0
FD, α, β are invertible and thus limF ∼=

∏
D∈D0

FD, as
it should be.

Now, p̄ : limF →
∏

D FD equalizes (α, β), because the components pD form a
cone: the triangle of sets and functions

FD

Ff

��

limF

pD
77

pD′ &&
FD′

(1.8)

is commutative, whence the fact that for all x̂ ∈ limF and f : D → D′ in D1 one
has

βF (p̄(x̂)) =
(
Ff(ps(f)(x̂)) | f ∈ D1

)
=

(
pt(f)(x̂) | f ∈ D1

)
= αF (p̄(x̂)). (1.9)

A similar argument for a general cone (z : Z → FD | D ∈ D0) proves that this is a
cone for F if and only if it equalizes (α, β); thus, a cone for F must be a terminal
cone wrt the property of equalizing (α, β); whence the conclusion. □
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More generally, for a category C to have all limits it is necessary and sufficient
that it has all (small) products and equalizers.

Theorem 1.6. The following conditions are equivalent:

• C has all small products and all equalizers;
• C is small-complete.

Proof. □

Exercise 1.7. The triqualizer triq(f, g, h) of functions f, g, h : X → Y is defined
as the limit of the diagram

J =
{
0 g //

f //

h
// 1

}
→ Set. (1.10)

• Spell out the universal property of triq(f, g, h);
• by virtue of Theorem 1.6 above, triq(f, g, h) must be expressible as an
equalizer of two maps between products. How?

Exercise 1.8. An Urizen compass Gn is a limit of a diagram of the following form:

X12

!!}}

X23

}} !!

. . .

""

Xn−1,n

##zz
X1 X2 · · · Xn−1 Xn

write the universal property for G3 and G4; express G3 and G4 as equalizers of maps
between products.

2. Symmetry and associativity, interchange of limits, Yoneda and
limits

The universal property of a limit entails that

2.1. Functoriality of limits.

Theorem 2.1. A natural transformation α : D ⇒ D′ in the category of functors
D : J → Set, induces a morphism limα : limD → limD′ between the limits.
Moreover, lim preserves identities and compositions, hence it is a functor

lim : [J ,Set] // Set (2.1)

The natural transformation α has components Dj → D′j, and the composition

limD
pj−→ Dj

αj−→ D′j is easily seen to be a cone for D′. Then, there is a unique
ᾱ : limD → limD′ such that each diagram

limD
ᾱ //

pj

��

limD′

p′
j

��
Dj

αj

// D′j

(2.2)

commutes. Uniqueness proves that β ◦ α = β̄ ◦ ᾱ and idD = idlimD.

2.2. Yoneda and limits. One can use Yoneda lemma to express the universal
property of limits; given a diagram D : J → C, one can express the property
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For all A ∈ C0, there is a (canonical, natural) isomorphism

C(A, limj:J Dj) ∼= limj:J C(A,Dj) (2.3)

(where on the right hand side we mean the limit of the composite functor

J D // C
C(A,−) // Set

j
� // Dj

� // C(A,Dj),
(2.4)

which we know exists in the category of sets) as the representability of the functor

D̃ = limJ C( , Dj) : Cop // Set

A � // limJ C(A,Dj)
(2.5)

Lemma 2.2. The category of elements Elts(D̃) coincides with the category of cones
for D.

Proof. We check that objects and morphisms of one category identify with objects
and morphisms of the other –it is a simple matter to verify that composition and
identities are the same. First, observe that D̃A fits into an equalizer

D̃A // ∏
j C(A,Dj)

[ ] //
C(A,Df)[ ]

//
∏

f :x→y C(A,Dj) (2.6)

where αf = [uj : A → Dj]f :x→y = uy and βf = C(A,Df)[uj : A → Dj] = Df ◦ ux;
but then, a family (uj : A → Dj) equalizes αf , βf if and only if the triangle

A
uy

  

ux

~~
Dx

Df
// Dy

(2.7)

commutes, and equalizes all αf , βf if and only if (uj : A → Dj) is a cone for D
with tip A; hence,

• the objects of Elts(D̃) are pairs (A, (uj) ∈
∏

j C(A,Dj)) such that Df ◦ux =
uy for every f : x → y, i.e. families that are cones;

• a morphism (A, (uj)) → (B, (wj)) is a morphism in the base h : A → B

such that D̃h : D̃B → D̃A sends (wj) to (uj); but D̃h acts composing each
cone map wjB → Dj with h, hence the condition reduces to wj ◦ h = uj ,
which is exactly the condition that

A

uj   

h // B

wj~~
Dj

(2.8)

This concludes the proof. □

Yoneda says that it is enough to know how limits are computed in Set (and in a
category of functors into Set) to define them uniquely (=up to unique iso) in any
category C, via the notion of representability; the ‘limit’ (limD, pj) of a diagram
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D : J → C consists of a terminal object in the category of elements of lim C( , Dj)
(which is precisely the category of cones for D), while the cone

pj : limD // Dj (2.9)

is the universal element: it corresponds to the identity of limD in the bijection

C(limD, limD) ∼= lim C(limD,Dj) (2.10)

for A = limD.
Reading (2.3) as the isomorphism

y(limD)(A) ∼=
(
lim yD

)
(A) (2.11)

one can also argue that y (the Yoneda embedding) preserves all limits:

Definition 2.3. Let D : J → C be a diagram; let F : C → X be a functor;
let limD denote the limit of D and lim(FD) the limit of the composite functor
F ◦D : J → X ; then, the functoriality of F defines a cone

γF,j : F (limD) // FDj (2.12)

whence a unique morphism, in X , γF : F (limD) → lim(FD). We say that F
preserves limD, or that it commutes with limD if γF is an isomorphism in X .

Proposition 2.4. Limits in the category [Cop,Set] are computed objectwise in Set:
this means that given a diagram

D : J // [Cop,Set] (2.13)

its limit limD is a functor Cop → Set defined as (limj Dj)(C) = limj

(
DjC

)
.

Remark 2.5. The yoneda embedding

y : C // [Cop,Set] (2.14)

preserves all limits.

Evidently, F preserves all limits if and only if it preserves all products and all
equalizers; it’s easy to show that y preserves products and equalizers directly from
the definition.

2.3. Limits commute with limits. The following argument will work for any
category C be a category admitting products and equalizers, but we will spell it out
just for sets; given a S-indexed family of parallel arrows

Xs

fs //
gs
// Ys (2.15)

one can consider the parallel maps induced between the products using Theorem 2.1,

∏
s Xs

(∏
s fs

)
//(∏

s gs

)// ∏s Ys. (2.16)
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The map
(∏

s fs
)
is defined as the unique with the property that for every s′ ∈ S,

the square ∏
s Xs

pX
s′

��

(∏
s fs

)
// ∏

s Ys

pY
s′

��
Xs′

fs′
// Ys′

(2.17)

commutes. Similarly, for
(∏

s gs
)
.

Theorem 2.6. The equalizer of (2.16) above is the product
∏

s hs :
∏

s Es →∏
s Xs of the equalizers (Es

hs−→ Xs ⇒ Ys | s ∈ S). In other words,

lim0⇒1(limSδ D) ∼= limSδ(lim0⇒1 D). (2.18)

A single function v : Z →
∏

s Xs corresponds to a family of functions (vs : Z →
Xs | s ∈ S), and the fact that

(∏
s fs

)
◦ v =

(∏
s gs

)
◦ v is exactly equivalent to

the fact that putting vs = ps ◦ v

∀s ∈ S.(fs ◦ vs = gs ◦ vs) (2.19)

All in all, every part of the following diagram does commute, for every s ∈ S:

∏
s Es∏

s hs

��

pE
s // Es

hs

��∏
s Xs(∏

s gs

)
��

(∏
s fs

)
��

pX
s // Xs

gs

��
fs

��∏
s Ys

pY
s // Ys

(2.20)

Now, let’s prove that in these notations(∏
s fs

)
◦ v =

(∏
s gs

)
◦ v ⇐⇒ ∀s ∈ S.(fs ◦ vs = gs ◦ vs). (2.21)

Indeed,

• if
(∏

s fs
)
◦ v =

(∏
s gs

)
◦ v, then for all s ∈ S

pYs ◦
(∏

s fs
)
◦ v = pYs ◦

(∏
s gs

)
◦ v (2.22)

but the LHS of this equation is fs ◦ pXs ◦ v, and RHS is gs ◦ pXs ◦ v.
• Conversely, if ∀s ∈ S.(fs ◦ vs = gs ◦ vs), then one uses uniqueness: for all
s ∈ S,

pYs ◦
(∏

s fs
)
◦ v = fs ◦ pXs ◦ vs = gs ◦ pXs ◦ vs = pYs ◦

(∏
s gs

)
◦ v (2.23)

but there exists a unique w : Z →
∏

s Ys such that for all s ∈ S one has
that pYs ◦ w equals the common value fs ◦ pXs ◦ vs = gs ◦ pXs ◦ vs, hence
w =

(∏
s fs

)
◦ v =

(∏
s gs

)
◦ v.

Now, given this, each vs equalizes (fs, gs), and thus factors through the equalizer

Z
v̄s−→ Es

hs−→ Xs so that vs = hs ◦ v̄s; by the universal property of
∏

s Es, there is
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a unique map v̄ : Z →
∏

s Es, which must be so that
(∏

s hs

)
◦ v̄ = v:

∏
Es

∏
s hs // ∏

s Xs

(∏
s fs

)
//(∏

s gs

)// ∏s Ys

Z

v

OO

∃! v̄

dd
(2.24)

2.4. Unitality and associativity of products. One can use the universal prop-
erty of products to exhibit natural isomorphisms

A× 1 ∼= A ∼= 1×A (A×B)× C ∼= A× (B × C) A×B ∼= B ×A (2.25)

Indeed, we just have to show that A has the same universal property of A× 1, that
B ×A has the same universal property of A×B, etc.

• A comes equipped with two projections

1 Aoo A (2.26)

which satisfy the universal property 1×A is required to have.
• Consider the universal problem

B ×A
pB

""

pA

|| ��
A A×B

pB

//
pA

oo B

(2.27)

It must have a unique solution σ = ⟨pB , pA⟩. Uniqueness of idA×B solving
the universal problem

A×B
pA

""

pB

|| ��
A A×B

pB

//
pA

oo B

(2.28)

implies that σ ◦ σ = idA×B .
• Associativity uses diagram chasing at its full potential:

(A×B)× C
pA×B

xx

��

⟨pBpA×B ,pC⟩ &&

⟨papA×B ,⟨pBpA×B ,pC⟩⟩

��

A×B
pA

|| pB

))

B × C

�� !!

A

A× (B × C)

p′
A

jj
pB×C

@@

B C

(2.29)

the blue arrow ⟨pBpA×B , pC⟩ is induced by its arguments pBpA×B , pC ; sim-
ilarly for the red arrow ⟨papA×B , ⟨pBpA×B , pC⟩⟩. In a similar fashion one
can induce an arrow A × (B × C) → (A × B) × C; these two arrows are
mutually inverse to each other, and unique.
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Exercise 2.7. Let D : J → C be a diagram; show that if J has an initial object
0, then limD = D0.
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