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Abstract

The plan of this note is to present (in a way that is particularly self-
contained to those who know little Category Theory) the ideas in [Uuye]’s
paper, giving a precise account of the methods in it, and using the whole
and well-established machinery of Homotopical Algebra to give C∗-Alg an
homotopical calculus.
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Perhaps it is not frivolous to say that [. . . ] model
categories are “convenient categories to do
homotopical algebra in”, and to view them as
non-abelian counterparts of Grothendieck abelian
categories.

Tibor Beke

INTRODUCTION. A model category is a category C endowed with three suit-
ably interacting classes of morphisms, weak equivalences, fibrations and cofibra-
tions, letting us study Homotopy Theory in a purely arrow-theoretic setting.

The definition of model categories as an abstract setting to do Homotopy
Theory is due to [Quillen]’s seminal work (even if a tentative of “abstracting
Homotopy Theory” dates back to Kan’s series of articles on Simplicial Homotopy
published since 1956 by the Proceedings of the National Academy of Sciences
of the USA), and the philosophy behind that definition is
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Thou shalt astray a minimal set of properties that permit to extend Homo-
topy Theory to categories other than topological spaces; moreover, thou
shalt try to internalize classical homotopy-theoretical notions (the theory of
fundamental groups and higher homotopy groups, stable homotopy, action
of the π1 on the fibers of a space, the behaviour of a covering map with
respect to paths and homotopies, . . . ) in a suitable “category with weak
equivalences”.

Roughly speaking, a weak equivalence in a category C is an arrow in a certain
sense “as similar as possible” to an isomorphism (in classical Homological Al-
gebra there exists a well-established notion of quasi-isomorphism), and what we
want to do is to pass in a setting (the homotopy category of C, Ho(C)) where this
arrow is a real isomorphism, adding the inverse it lacks: this apparatus willingly
resembles the notion of (weak) homotopy equivalence in Algebraic Topology,
where such maps are continuous functions f : X → Y inducing isomorphisms
between all homotopy groups. The purely formal procedure of inversion of all
quasi-isomorphisms falls under the name of localization theory, and it has been
introduced by [Zisman] in their famous book: weak equivalences are all we
need, or in a few words

all that matters is what we want to invert,

in the sense that any category with a distinguished class of weak equivalences can
be endowed with an “homotopical calculus” which allows us to define homotopy
invariants of objects. The whole machinery gravitating around weak equiva-
lences serves to avoid certain annoying pathologies: fibrations and cofibrations
work in sinergy ensuring that the localized category Ho(C) =: C[WK−1] is not
as badly-behaved as it might happen (set-theoretic issues can prevent Ob(Ho(C))
from being a set). They also ensure that we can figure the -highly untractable-
set homHo(C)(A,Y ) of arrows between A and Y in the localized category to be
the set (and even before, to be a set) of (abstract) homotopy classes of arrows
between A and Y (cfr. [Brown] as cited in [Uuye], Corollary 1.19).

It is a truism (or perhaps the proof that our machinery is really working)
that the archetypal example of a model category is Top (let’s call with this
name a monoidal closed subcategory of spaces, suitable for Homotopy Theory
in the sense of [Steenrod]), for example compactly generated weakly Hausdorff
spaces (cfr. [May]): what really matters is a monoidal closed structure). In fact
there are various1 homotopical structures on Top, all of which recognize a weak
equivalence f : X → Y as a map inducing isomorphisms on (all, infinitely many,
some) homotopy groups, πn(X) ∼= πn(Y ); what changes from one structure to
another is what we call a fibration and a cofibration, in order to mantain mutual
lifting properties and stability conditions (see Definition 5.3).

These ideas showed to be extremely fruitful in studying categories of “things
that resemble spaces” and structured spaces, keeping track of their structure in
the step-by-step construction of the desired homotopy invariants; so in a certain

1http://ncatlab.org/nlab/show/homotopy+n-type
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sense it is natural to apply this complicated machinery to the category C∗-Alg:
what’s nearer to a space –albeit not being one– than a commutative unital C∗-
algebra? Recall that Gel’fand-Naimark’s theorem asserts an (anti-)equivalence
of categories

C∗-Algc
∼= LCHaus

(it is worth to stress the importance of this equivalence in translating many
“difficult” problems on one side into “simple(r)” problems on the other: see
Theorem 5.2 in the last Section of this exposition).

Starting from this we shouldn’t be surprised by the existence of homotopical
methods in C∗-algebra theory. Hence it should be natural to spend a considerable
effort to endow C∗-Alg with a model structure, maybe exploiting one of the
various pre-existing model structures on Top: this is what [Uuye] proposed in
his article.

The main problem is that the category of C∗-algebras admits an homotopi-
cal calculus which can’t be extended to a full model structure in the sense of
[Quillen]. This is precisely Theorem 5.2, which we take from [Uuye] repeating
an unpublished argument by Andersen and Grodal; the plan to overcome this
difficulty is to seek for a weaker form of Homotopical Calculus, still fitting
our needs. To this end, the main reference is [Brown]’s thesis, which laid the
foundations of this weaker abstract Homotopy Theory, based on the notion of
category with fibrant objects. Instead of looking for a full model structure on
C∗-Alg we seek for a fibrant one, exploiting the track drawn by [Uuye]’s paper,
which is the main reference of the talk together with Brown’s thesis.

Once noticed that we can find a fibrant structure on C∗-Alg, but that it doesn’t
come from a Quillen model structure, the obvious question that may arise is

Does the category C∗-Alg admits a suitable, different model structure?

A tentative answer can be found in [Østvær]’s paper, where the category C∗-Alg
is embedded in SetsC∗-Alg via the (co-)Yoneda functor (obtaining a category
of C∗-spaces), and then enriching this copresheaf category over the category
of cubical sets2, obtaining cubical C∗-spaces, denoted C�-Spc; this category
admits a Quillen model structure, and [Østvær] studies its homotopy category in
the stable and unstable version, mainly using the methods introduced in section 3.

Another possibility is to categorify the notion of C∗-algebra introducing the
(2-)category of C∗-categories, which are –roughly speaking– categories enriched
over the symmetric monoidal category C∗-Alg; we refer the interested reader
to the final chapter(s) of [Warner]’s monography (which is particularly well-
written from the point of view of Category Theory): it is interesting to notice
that this model structure on C∗-Cat is intimately linked to the “canonical” one
on the categories Cat/Gpd of small categories/groupoids (and functors between
them; weak equivalences are categorical equivalences): the interested reader can

2http://ncatlab.org/nlab/show/cubical+set

5

http://ncatlab.org/nlab/show/cubical+set


again refer [Warner]’s monography and the paper [Dell’Ambrogio,2] (the most
updated version of it is 20 days old at the moment we are writing this note).

The ideal reader of this exposition should have a little acquaintance with
classical Homotopy Theory, even if we will try to keep at minimum level the
prerequisites needed (action of the π1 on the fibers of a covering, the related
Galois’ theory, a little confidence with Spanier’s “functorial topology”. . . ). This
reading is strongly advised to those cherishing for abstract nonsense arguments,
because of its evident categorical flavour.

1 CATEGORIES WITH FIBRANT OBJECTS.

Comme il s’agit de catégories il y a des flèches, des
diagrammes. Il y a peu, très peu, ou pas du tout de
calculs.

J. Roubaud

The goal of this preliminary section is to establish suitable properties of a
“category in which to develop Homotopy Theory”. The typical category C we
will consider admits at least any finite limit and colimit: notice that this entails
C admits a initial and terminal object.

Definition 1.1 (Category with Weak Equivalences). A category with weak equiv-
alences is a category C with a distinguished class of morphisms WK ⊆Mor(C)
which contains all isomorphisms of C, which is closed under composition and
which satisfies the two-out-of-three property:

For f ,g any two composable morphisms of C, if any two of { f ,g,g◦ f}
are in WK, then so is the third.

Definition 1.2 (Fibrations and Path Objects). Let (C,WK) be a category with
weak equivalences, and consider another class of morphisms FIB ⊂Mor(C), to
be called fibrations. A morphism f ∈WK∩ FIB will be called an acyclic (or
trivial, or aspherical) fibration.

A path object for an object B ∈ ObC consists of a triple

(BI ,s,〈d0,d1〉) ∈ ObC×hom(B,BI)×hom(BI ,B×B),

where the composition

B s // BI 〈d0,d1〉 // B×B

is a factorization of the canonical arrow ∆ : B→ B×B obtained by the universal
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property of the product in the diagram

B
1

""

1

||

∆

��

B B×B
π1
//

π2
oo B.

and where the arrow s is a weak equivalence, and the arrow 〈d0,d1〉 is a fibration.

Notation. We will often write ∼−→ to denote a weak equivalence, and � to
denote a fibration.

Definition 1.3 (Category with Fibrant Objects). A category with fibrant objects
(cfo for short) is a triple (C,WK,FIB) where (C,WK) is a category with weak
equivalences, and where FIB is a class of maps such that

CF1 (closure) Any isomorphism is a fibration; FIB is closed under composition.

CF2 (base change stability) FIB and FIB∩WK are stable under pullback: if
f : A� B is a(n acyclic) fibration, and u : X → B is any arrow, then in the
diagram

A×B X

����

// A

f
����

X u
// B

the arrow A×B X → X is again a(n acyclic) fibration.

CF3 (Existence of “enough” path objects) For all B ∈ ObC there exists at least
a path object (BI ,s,〈d0,d1〉) (possibly non-functorial in B).

CF4 (“Fibrance”) Every object is fibrant, that is the unique arrow B→∗ to the
terminal object is a fibration.

REMARK 1 : In a cfo the projection maps A×B→ A,B are fibrations –they can
be obtained via a pullback

A×B //

��

A

��
B // ∗.

Hence in a cfo, for any B the composition maps di = πi ◦ 〈d0,d1〉, i = 0,1, are
acyclic fibrations in hom(BI ,B).

Lemma 1.1 (Brown’s Factorization Lemma). The couple (WKC,FIBC) is a
factorization system in C, i.e. any arrow u ∈Mor(C) can be factored as the
composition p ◦ i of a weak equivalence i and a fibration p; this fibration is
acyclic if and only if u was a weak equivalence.
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Proof. Choose once and for all a path object (BI ,s,〈d0,d1〉) for B = codu. It is
always possible to factor u as a composition

A u //

i=〈1A,su〉 ""

B

A×B BI
d1pr2=p

<<

where A→ A×B BI can be obtained from the diagram

A×B BI pr1 //

pr2

��

A

u

��

A

bb

1

@@

su
{{

BI
d1

// B

using the universal property of pullback. The composition

p◦ i = d1 ◦ s◦u = p1 ◦ 〈d1,d2〉 ◦ s◦u = 1B ◦u = u,

hence (i, p) really factors u; the composition

pr1 ◦ i = p1 ◦ (1A,s◦u) = 1A,

shows that i is right inverse to an acyclic fibration, hence by 2-out-of-3 it is a
weak equivalence.

Now we have to show that p is a fibration. Consider the two diagrams

B

A×B BI pr2 // BI 〈d0,d1〉//

d0

<<

d1
""

B×B

π1

OO

π2

��

B

A u // B

A×B BI
〈pr1,d1◦pr2〉

//

pr1

77

pr2
��

A×B
u×1

//
π2

//

π2
����

π1

OOOO

B×B

π2
xxxx

π1

OOOO

BI
d1

// // B.

Let’s show that the square

A×B BI pr2 //

〈pr1,d1◦pr2〉
��

BI

〈d0,d1〉
��

A×B
u×1

// B×B
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is commutative and cartesian (i.e. a pullback square); this entails (pr1,d1 ◦pr2)
is a fibration, hence π1 ◦ (pr1,d1 ◦pr2) = d1 ◦pr2 = p is a fibration; to this end
let’s notice that

π1 ◦ 〈d0,d1〉 ◦pr2 = d0 ◦pr2 = u◦pr1

π1 ◦ (u×1)◦ 〈pr1,d1 ◦pr2〉= u◦π1 ◦ 〈pr1,d1 ◦pr2〉= u◦pr1

π2 ◦ 〈d0,d1〉 ◦pr2 = d1 ◦pr2 = π2 ◦ 〈pr1,d1 ◦pr2〉.

2 THE HOMOTOPY CATEGORY.

The fundamental problem of Algebraic Topology can
be stated in Danish: ’Er en smultring en
berlinerbolle?’

A. Stacey

Definition 2.1 (Homotopy Category). Let (C,WK) be a category with weak
equivalences; we call homotopy category of C the category Ho(C) = C[WK−1]
obtained localizing C over the multiplicative system of weak equivalences (see
[Zisman] and more generally [Krause]’s review for a precise account about
localization theory).

Let C be a cfo. Then the fundamental theorem of homotopical algebra asserts
that the homotopy category Ho(C) can be explicitly described via homotopies
between maps.

Definition 2.2 (Homotopy relation). Two arrows f ,g : A⇒ B are called (right)
homotopic if there exists a path object BI and a third arrow h : A→ BI such that
d0 ◦h = f ,d1 ◦h = g. We write f oh g to denote that f ,g are right homotopic
via h.

Being right homotopic is an equivalence relation on hom(A,B); reflexivity
can be obtained choosing h= s◦ f : A→BI for a fixed path object (BI ,s,〈d0,d1〉).
Simmetry holds because of the presence of the arrow σB : B×B→ B×B such
that σ ◦ pi1 = π2,σ ◦π2 = π1: if f oh g, then goσh f . Transitivity requires a
more involved argument.

REMARK 2 : Homotopic maps become equal in Ho(C), because if we denote
γ : C→ Ho(C) the localization functor then

γ( f ) = γ(d0)γ(h) = γ(s)−1
γ(h) = γ(d1)γ(h) = γ(g).

It is straightforward that if f oh g, then f ◦ uoh◦u g ◦ u for any u : C→ A
composable with f ,g; on the other hand, there can be no homotopy k between
v◦ f and v◦g. But there is still hope:
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Proposition 2.1. Suppose v : B→ C, and f oh g, then there are an acyclic
fibration t : A′→ A and a homotopy k : A′→CI such that u f t ok ugt.

We need to collect some preliminaries to prove this proposition:

Lemma 2.1. Suppose that in the square

A //

i ∼
��

E

p
����

X // B

(i, p) ∈WK×FIB. Then i can be factored as a composition A→ X ′
∼
� X .

Proof. Apply Brown’s Factorization Lemma to the (unique by universal prop-
erty) arrow u : A→ A×B E we obtain

A

((

j∼
��

%%

i∼
..

X ′ // //

∼
## ##

X×B E

πX

��

πE // E

p
����

X // B

Now, πX is a fibration (it is obtained by pulling back via p), and πX ◦ r is the
acyclic fibration we want: πX ◦ r ◦ j = i and j are weak equivalences, and the
2-out-of-3 property concludes the argument.

The following Lemma is not only necessary to show what we stated before,
but also to ensure the existence and functoriality of the loop object in Theorem
2.3.

Lemma 2.2. Let u : B→ C be an arrow in a cfo C and choose path objects
(BI ,sB,〈dB

0 ,d
B
1 〉), (CI ,sC,〈dC

0 ,d
C
1 〉). Then there exist a second path object (BI′ ,s′,〈d′0,d′1〉)

for B, an acyclic fibration t : BI′ → BI and an arrow ū : BI′ →CI such that the
diagram

B u //

��

s′

""

sB

||

C

sC

��

BI

〈dB
0 ,d

B
1 〉 ""

BI′t
∼

oooo
ū

//

〈d′0,d
′
1〉||

CI

〈dC
0 ,d

C
1 〉

��

B×B
u×u

// C×C

commutes.
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Proof. Apply the previous Lemma to the square

B sCu //

s
��

CI

〈dC
0 ,d

c
1〉

��

BI
〈udB

0 ,udB
1 〉
// C×C

and notice that this gives a factorization B→ Z→ BI ; let Z = BI′ , and notice
that it is a path object because the square

B //

�� ∆
!!

BI′

��

BI // B×B

commutes (∆ is the curved vertical arrow).

Proof of Prop. 2.1. Let f oh g via h : A→ BI , and consider the diagram

A′

pr

��

t

vvvvA

h ��

f
// B u //

��

s′

""

sB

||

C

sC

��

BI

〈dB
0 ,d

B
1 〉 ""

BI′t0
∼

oooo
ū
//

〈d′0,d
′
1〉||

CI

〈dC
0 ,d

C
1 〉

��

B×B
u×u

// C×C

where A′ ∼= A×BI BI′ , BI′ being obtained as in the second Lemma. Then the
composition A′

pr−→ BI′ ū−→ CI acts like an homotpy between u f t e ugt (simply
follow suitable arrows in the previous intricated diagram).

Now, the homotopy category Ho(C) can be in a certain sense approximated
with a category πC obtained from C in the following way:

• Objects in πC are the same as in C and Ho(C);

• Morphisms between A and B in πC are collected in the set of homotopy
classes of arrows f ,g : A⇒ B:

homπC(A,B) = homC(A,B)/o

where f og if and only if there exist a weak equivalence t : X → A and a
homotopy h such that f ◦ t oh g◦ t.
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Ho(C) is now obtained by localizing πC with respect to the class WKπC of
(homotopy classes of) weak equivalences, and this localization can be made
explicit by the fact that

Proposition 2.2. The class WKπC admits a right calculus of fractions in the
sense of [Zisman], namely

• Any diagram A→C t←−
∼

B admits a completion to a commutative square
(in πC)

A′

t ′ ∼
��

// B

t
��

A // C

• Given two arrows f ,g : A⇒ B, there exists a weak equivalence equalizing
themm if and only if there exists a weak equivalence coequalizing them.

Now we can deduce that the relation o(−) is a real congruence in homC(A,B).
The proof exhibiting a calculus of fraction for WKπC is based on the following

Lemma 2.3. Given any diagram A u−→C v←− B the projection A×C CI×C B→ A
is a fibration, acyclic if v ∈WK.

which we accept without proof (see [Brown], Proposition 2).
At this point you probably have had enough of this endless plethora of

abstract-nonsense arguments, but thanks to it we are able to state the following
corollary.

Let A,B ∈ ObC, and

[A,B]C := lim−→
πC/A

homπC(−,B)

where πC/A contains as objects [t] : X → A homotopy classes of weak equiv-
alences in πC, and an arrow [t : X → A]→ [s : Y → A] consists of a homotopy
class of arrows X → Y making the obvious triangle commute.

Theorem 2.1. Let C be a cfo. Then, for any A,B ∈ObC there exists a canonical
isomorphism

homHo(C)(A,B)∼= [A,B]C.

In particular if γ : C→ Ho(C) is the localization functor, then

• Any arrow f : A→ B in Ho(C) can be written as a right fraction γ( f ′)◦
γ(t)−1 where t ∈WK:

A′

f ′

��

t

��

A
f

// B
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• If f ,g : A⇒ B, then γ( f ) = γ(g) if and only if there exists a weak equiva-
lence t which coequalizes both.

REMARK 3 : It’s easy to show, by directly checking every axiom, that if C is
a cfo, then the subcategory CB of the slice category C/B obtained by taking
fibrations X � B as objects is again a cfo (the only non-immediate axiom to
verify is the existence of enough path objects: use the Factorization Lemma).

Lemma 2.4. Let C be a cfo. Then for any u : B′→ B the functor u∗ : CB→CB′

preserves fibrations and weak equivalences.

Proof. Factorization Lemma applied to CB ensures that without loss of generality
it suffices to show that u∗ preserves (acyclic) fibrations (any weak equivalence
can be written as the composition of an acyclic fibration and a weak equivalence).
But this follows entirely from functoriality of u∗, sending X → B in its pullback
via u:

u∗(X → B) //

��

X

��

B′ u
// B.

It is straightforward that any pullback is completely determined by the cone

• → •← • defining it, hence if p : (E1
e1
� B)� (E2

e2
� B) is a fibration in CB,

juxtaposing the two squares

U //

��

  

E1

p
����

e1

~~~~

B′×B E2 //

��

E2

����

B′ u
// B

one has U =
(
B′×B E2

)
×E2 E1 ∼= B′×B E1. Hence by axiom [CF2] we can

deduce U � B′, and this arrow is an acyclic cofibration if p was.

Lemma 2.5. Change of base of a weak equivalence with respect to a fibration is
a weak equivalence.

Proof. Let u : B′→ B be the weak equivalence and p : E→ b the fibration; we
have to show that in the cartesian square

B′×B E
αB′ //

αE

��

B′

u∼
��

E p
// B

13



the arrow αE is a weak equivalence.
Now, without loss of generality the arrow u can be considered the inverse of

an acyclic fibration v : B′→ B (Factorization Lemma). Hence we can consider
the pullback of v and v◦ p:

E 1E

##

p

## ##

f &&

B×B′ E
βE // //

βB

����

E

����

p

$$ $$
B

v{{{{
B v

∼ // // B′;

f = (p,1E) is the unique arrow factoring the two morphisms to the factors of
the fibered product. It is a weak equivalence by 2-out-of-3 (βE ◦ f = 1E ). Now
consider the diagram

B′×B E
u∗( f )
∼
//

vp

��

B′×B E1

γ1

��

E
f
∼ // E1

where γ1 : E ∼= B′×B E1→ E1 is obtained by pulling back u via βB.
Thanks to the previous Lemma u∗( f ) is a weak equivalence, hence showing

that also γ1 is suffices to conclude (one can invoke again 2-out-of-3 property).
On the other hand this follows from

B′×B E1 ∼= B′×B
(
B×B′ E

)∼= E

i.e. from the fact that in the commutative diagram

E
γ1 //

vp
����

E1
βE // //

βB
����

E

vp
����

B′

1B

77u
∼ // // B v

∼ // // B

one has βE ◦ γ1 = 1E , and βE ∈WK∩FIB.

We call a cfo C pointed if C admits a zero object. The following two highly
technical (and boring) results are necessary to show that in any pointed cfo C we
can build the loop object of an object B, exploiting the existence of enough path
objects in C: the construction is a (hopefully) straightforward abstraction of the
existence of the loop space ΩX in Top for any space X .
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Lemma 2.6 (Homotopical 5 lemma). Let C be a pointed cfo, and

F ′ i′ //

h
��

E ′
p′
// //

g
��

B′

f
��

F
i
// E p

// // B

a commutative diagram where p, p′ ∈ FIB, and i, i′ are the inclusions of the
typical fibre, i.e. the natural morphisms arising from the pullback

F // i //

��

E

p
��

∗ // B.

If f ,g ∈WK, then also h is.

Proof. Omitted (see [Brown], Lemma 3, pag. 429).

Lemma 2.7. Let C be a pointed cfo, p1 : E1 � B, p2 : E2 � C ∈ FIB with
typical fibers F1,F2, u : B→C any arrow and f ,g : E1⇒ E2 such that p2 ◦ f =
p2 ◦g = u◦ p1, as in the following diagram:

E ′1
t
∼
// E1

f
//

g
//

p1

��

E2

p2

��

B u
// C.

If t ∈WK equalizes both f and g then the image of f and the image of g via the
localization functor coincide in Ho(C).

Proof. Omitted (see [Brown], Lemma 4, pag. 429).

2.1 The loop-object Functor.

Definition 2.3. Let C be a pointed cfo. Define the loop object of B ∈ ObC,
denoted ΩI(B), as the typical fibre of 〈d0,d1〉 : BI → B×B, once a particular
path object BI has been chosen for B.

Theorem 2.2. The correspondence B 7→ ΩI(B) defines a functor Ho(C)→
Ho(C). The loop object of B is an internal group in Ho(C); iterated loop objects
Ωk(B) are internal abelian groups.
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Proof. Part of the proof is obviously devoted to show that the definition of ΩIB
is well posed (i.e., independent from the choice of BI): we want to show that
the correspondence B 7→ΩI(B) defines a functor Ho(C)→ Ho(C), and for any
two path objects BI ,BI′ of the same object B, there exists a weak equivalence
ΩI(B) ∼−→ΩI′(B).

Once you finished reading this sketch of proof, notice how many times we
exploited Lemma 2.2.

Denote (BI ,s,〈d0,d1〉) the chosen path object for B, and define ΩIB to be the
typical fiber of BI → B×B. Given any arrow f : B→ B′, the universal property
of pullbacks (in particular the functoriality of the construction) entails that there
exists an arrow f̂ : ΩIB→ΩIB′ in the following diagram:

ΩIB
ΩI f

||

//

��

BI

f̄
zz

δB

����

ΩIB′ //

��

B′I

��

∗ // B×B

f× f
zz

∗ // C×C.

This arrow induces the dotted one by functoriality. Let’s show that ΩI(B) doesn’t
depend on the choice of BI .

Suppose there exists an arrow BI→ BI′ between two different path objects for
B; hence Lemma 2.2 implies that there exists an induced arrow BI → BI′ , which
is a weak equivalence by Lemma 2.4, becoming an isomorphism in Ho(C):
ϕ : ΩIB∼= ΩI′B in Ho(C). Notice that this equivalence is unique using Lemma
2.7 over the diagram

B s //

∆
!!

BI
ϕ

//

ψ
//

��

BI′

��

B×B
1
// B×B.

Hence ΩIB∼= ΩI′B in a canonical fashion.
Suppose now that the arrow BI → BI′ doesn’t exist, and create it by standard

cofiltration: Lemma 2.2 implies the existence of a roof of the form

BJ

  ��

BI BI′

16



and ensures that arrows can be chosen to be weak equivalences (this is not so
astonishing: any two path objects of the same object have to become isomorphic
in the homotopy category, turning the correspondence B 7→ BI into a functor.
Having a right calculus of fractions allows exactly to represent an isomorphism
BI → BI′ as a suitable roof). We now reduced to the previous case, and we can
deduce the existence of two canonical isomorphisms

Ω
IB

can∼= Ω
JB

can∼= Ω
I′B =: ΩB.

whose composition is the desired identification. Let’s now show that ΩIB = ΩB
is a internal group in the homotopy category.

Consider two path objects BI ,BI′ for B, and refer your notations to the
following diagram:

ΩIB×ΩI′B

yy

j
//

��

BI+I′

{{

��

α

##

ΩI+I′B
i+

oo

��

ΩIB //

��

∼
%%

BI d0 //

��

B

∆B

��

ΩI′B

yy

// BI′
d′0

;;

∗ // B×B

;;

B×B ∗oo

Every face in the cube is a pullback (vertices are uniquely determined by the
directions of arrows), and also the right rectangle is a pullback with vertex
ΩI+I′B.

The object BI+I′ = BI×B BI′ can be defined via

BI×B BI′ prI′ //

prI
��

BI′

d′0
��

BI
d0

// B,

and it can be showed that it is a third path object for B: consider the diagram

B

σ !!

∆B // B×B

BI+I′
∆Bα

;;

(σ is obtained by universal property of the pullback applied to the pair (s,s′));
the composition ∆B ◦α ◦σ equals ∆B ◦d0 ◦prI ◦σ = ∆B ◦d0 ◦ s = ∆B. A simple
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diagram chase now shows the existence of a unique map ΩI×ΩI′B→ΩI+I′B
completing the dotted arrow, i.e. a unique m : ΩB×ΩB→ΩB.

ΩIB×ΩI′B

''

$$

m
&&

ΩI+I′B
i+
//

u

��

BI+I′

∆Bα

��

∗ // B×B

Similar methods can be used to show that the diagrams

ΩB×ΩB×ΩB
m×1

//

1×m
��

ΩB×ΩB

m
��

∗×ΩB
u×m
// ΩB×ΩB

m
��

ΩB×∗m×u
oo

ΩB×ΩB m
// ΩB ΩB

commute in the homotopy category (u : ∗→ΩB is the unique possible arrow).
Finally, the commutativity of Ω(Ω(B)) follows from Eckmann-Hilton argument,
once noticed that. . .

3 STABLE HOMOTOPY.

The following procedure is a general construction with which we can extend a
category E to a bigger one SW Ω(E) where a given endofunctor Ω is invertible.
The category SW Ω(E) is called the Spanier-Whitehead category of E. Refer to
[Dell’Ambrogio]’s Diplomarbeit for more information about the general theory
of Spanier-Whitehead construction.

From now on we will consider the case of a pointed cfo C and E = Ho(C), Ω

the loop-object functor. The category we are going to exhibit is SW Ω(Ho(C)) =
SHo(C).

Definition 3.1 (Stable Homotopy Category of a cfo). Let’s call the category
we want to build the stable homotopy category SHo(C), pictorially denoted
Ho(C)[Ω−1]. Its objects are pairs (A,n) ∈ Ob(C)×Z, and the collection of
arrows (A,n)→ (B,m) corresponds to the colimit (in Set)

lim−→
k∈N

[Ωn+kA,Ωm+kB]C.

This is a well posed construction (or in other words SHo(C) really defines a

18



category), because there exists a canonical arrow

lim−→k∈N[Ω
n+kA,Ωm+kB]C× lim−→k∈N[Ω

m+kB,Ωr+kC]C

∼(?)
��

lim−→k∈N

(
[Ωn+kA,Ωm+kB]C× [Ωm+kB,Ωr+kC]C

)
lim−→ΩkcABC

// lim−→k∈N[Ω
n+kA,Ωr+kC]C

induced by functoriality of lim−→k
(isomorphism (?) follows from [Schapira],

Theorem 3.1.6).
Associativity of the composition map follows from associativity of cABC (one

has to check that a square is commutative, and this square is precisely one of the
vertical faces of the cube of natural transformations between functors

lim−→k ◦(−×−×−)
∼

((

//

��

lim−→k ◦(−×−)

��

∼

&&

lim−→k× lim−→k× lim−→k
//

��

lim−→k× lim−→k

��

lim−→k ◦(−×−)
∼

((

// lim−→k

∼

&&
lim−→k× lim−→k

// lim−→k

the arrows joining the two faces being isomorphisms).
Define a family of correspondences on objects of Ho(C), Ωi : SHo(C)→

SHo(C), as
Ω

i : (A,n) 7→ (A,n+ i).

If all these Ωi are functors one has the following results “for free”:

• SHo(C) contains a faithful copy of Ho(C), obtained by Ω0 : A 7→ (A,0)
(all of them are embeddings, because they are equivalences: Ωi ◦Ω j =
Ωi+ j, hence (Ωi)−1 = Ω−i);

• The functor Ω1 : (A,0) 7→ (A,1) plays the rôle of a shift functor.

Proof of the functoriality of {Ωi}. First of all elements of homSHo(C)((A,n),(B,m))
belong to (⊔

k Mk

)/
∼

(it is the explicit characterization of the colimit in study: we call Mk = [Ωn+kA,Ωm+kB]C
for short) where the relation ∼ is defined by ( f ∈Ma)∼ (g ∈Mb) if and only if
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there exists c≥max{a,b} such that αca( f ) = αcb(g), where αmn : Mn→Mn is
defined for all n≤ m by sending f 7→Ωm−n f .

It is evident that all this defines for any k ∈ Z, and by functoriality of lim−→k
,

two arrows

[Ωn+kA,Ωm+kB]C
Ωi
−→ [Ωn+i+kA,Ωm+i+kB]C

lim−→
k∈N

[Ωn+kA,Ωm+kB]C
lim−→Ωi

−−−→ lim−→
k∈N

[Ωn+i+kA,Ωm+i+kB]C

because if n+ i+ k̄ < 0, there always exists Ki,n > k̄ such that n+ i+Ki,n > 0,
hence for any `≥ Ki,n the set [Ωn+i+`A,Ωm+i+`B] is well-defined, and

lim−→
k∈N

[Ωn+i+kA,Ωm+i+kB]C ∼= lim−→
`≥K

[Ωn+i+`A,Ωm+i+`B]C

because it is the same colimit, computed precomposing a cofinal functor (namely
the inclusion ιK : N≥K ↪→ N).

REMARK 4 : The stable homotopy category is triangulated by the inverse of the
loop functor Σ = Ω−1. Distinguished triangles are those of the form

(ΩB,n)→ (F,n)→ (E,n)→ (B,n)

where E� B, F ↪→ E is the homotopy inclusion of the typical fibre and ΩB→ F
can be obtained exploiting the action F×ΩB→ F , as the image of the basepoint
under the adjoint of the natural action map, F → FΩB.

Refer to [Holm] to get acquainted with the powerful machinery of triangulated
categories; the fact that the loop object of the codomain of a fibration acts on
the fibers of this fibration is a far reaching generalization of the well-known
homotopy-theoretic topological analogue where ΩB ∼= π1(B): see [Brown],
Propositions 3 and 4.

A pointed cfo C is said to be stable if the loop functor Ω is already an
autoequivalence of Ho(C). If C is a stable cfo, then Ω0 : Ho(C)→ SHo(C) is
an equivalence, hence Ho(C) is itself triangulated by the shift functor Ω−1.

Triangulated categories are somehow the best approximation of an abelian
category (i.e. of a place where the machinery of Homological Algebra applies):
we are now interested in taking the axiomatic path proposed by Eilenberg and
Steenrod (see [Steenrod] and [Vick] to a precise account about this approach).
We intentionally light up a little the discussion, addressing the interested reader
to deeper presentations as [Rotman]. The theory of abstract stable homotopy
presented in [Uuye] is almost the same of that in the seminal paper by [Heller].

3.1 Homology Theories.
We now collect in a single subsection various results linked to axiomatic homol-
ogy theory in the sense of the following Definition.
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Definition 3.2 (Homology theory). A homology theory in a pointed cfo is a
homological functor H : SHo(C)→ Ab.

Definition 3.3 (H -equivalences and H -acyclic objects). A morphism q : A→ B
is said to be an H -equivalence with respect to a homology theory H on C if

H (Ωnt) : H (A,n)→ H (B,n)

is an isomorphism in Ab for any n ∈ Z. An object X is said H -acyclic if
H (X ,n) = 0 for any n ∈ Z. The class of H -equivalences form a multiplicative
system which is compatible with the triangulated structure (see [Krause], §4.3).

Classical Homological Algebra suggests the existence of a link between the
two last notions: indeed a morphism q : A•→ B• in a triangulated category is
a quasi-isomorphism (i.e. an H-equivalence, H being classical (co)homology)
if and only if the triangle A•

q−→ B• → 0• → A•[1] is distinguished: it is now
possible to prove that

REMARK 5 : A morphism f : A→ B is a H -equivalence if and only if its
homotopy fiber is H -acyclic (this is precisely a corollay of the existence of a
long exact sequence induced by a a distinguished triangle

(ΩB,n)→ (F f ,n)→ (A,n)
Ωn f−−→ (B,n)).

This has a useful corollary: a fibration with typical fibre F is an H -equivalence
if and only if F is H -acyclic.

The class of H -equivalences are the WK part of a cfo structure on C (fibra-
tions are the same). The cfo structure is denoted RH C.

REMARK 6 : We can take a slightly more general path: call S-equivalences
the arrows in the smallest multiplicative system S−1WK compatible with the
triangulation and containing S⊆Mor(C) (this is precisely the collection of all
t : A→ B which are H -equivalences with respect to any homology theory H for

which any s ∈ S is a H -equivalence: it’s easy to see that any A
f−→ B t←−C can be

completed into a square where if t lies in S−1WK then the parallel arrow also
lies in S−1WK; this amounts to the existence of a right calculus of fractions).

The classes S−1WK and FIBC define a cfo-structure on C, and the resulting
cfo is pointed if C was. This structure is denoted RSC.

The stable homotopy category SHo(RSC) is triangle-equivalent to the Verdier
localization (see [Krause], §4.6) SHo(C)[(Ω0S)−1].

4 THE CFO STRUCTURE ON Top.
Notation and base assumption. We denote Top the category of Kelley spaces,
i.e. the category of compactly generated Hausdorff spaces (see [Mac Lane] and
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[Steenrod]’s paper); this is the usual candidate for a “well behaved” category
Spaces of topological spaces, which can be replaced with any other having a
closed symmetric monoidal structure (i.e. the functor X ×− admits a right
adjoint (−)X for any X ∈ Spaces)3.

The aim of this section is to show that the category Top can be made into
a cfo in a really elementary fashion: this will be the building block of the cfo
structure we want to impose to C∗-Alg (see next section).

Definition 4.1 (0-Fibration). Define an arrow p ∈ homTop(E,B) to be a 0-
fibration if any commutative square

{0} //

j0
��

E

p

��

[0,1] //

α

>>

B

in Top admits a diagonal filler α ∈ homTop([0,1],E) which turns the two trian-
gles ( j0 being the inclusion {0} ↪→ [0,1]) into commutative ones.

We say for short that a fibration has the right lifting property (RLP) with
respect to the inclusion {0} ↪→ [0,1].

We denote the class of 0-fibrations as FIBTop,0.

Definition 4.2 (Weak equivalence). Define an arrow f ∈ homTop(A,B) to be a
weak equivalence if it induces a bijection at the level of the zero-th homotopy
set, i.e. if π0( f ) : π0(A)→ π0(B) is a bijection between (pointed) sets.

We denote the class of weak 0-equivalences as WKTop,0.

Theorem 4.1. The triple (Top,WKTop,0,FIBTop,0) is a cfo, denoted π0-Top for
short.

Proof. For the sake of clarity let’s enumerate what we have to prove:

• The classes of weak 0-equivalences and 0-fibrations are closed under
composition;

• WKTop,0 satisfies the 2-out-of-3 property.

• Any isomorphism is an acyclic fibration;

• The class of (acyclic) fibrations is closed under base change;

• For any B ∈ Top the unique map B→{∗} is a fibration;

3A central point in the following discussion is to embed the category C∗-Alg of C∗-algebras into
the category of topological spaces; our procedure is not affected by the base assumption because any
metric space (C∗-algebras are such) is obviously Hausdorff compactly generated.
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• There exists a functor F : Top→ Top such that the diagram

B ∆ //

i
!!

B×B

F(B)

p

;;

commutes for any B ∈ Top. The arrow i is the inverse of an acyclic
fibration (in particular, i ∈WKTop,0), and p ∈ FIBTop,0. The map ∆ is the
diagonal one: b 7→ (b,b).

The only two non-evident properties are the existence of enough (functorial)
path objects and the closure of FIBTop,0∩WKTop,0 under base change.

I Define F(B) = Top([0,1],B) (= BI in more suggestive notation): it is a
topological space with respect the compact open topology a subbase of
which is made by functions f sending a compact K b [0,1] into an open
V ∈ B: thanks to the initial assumption the correspondence B 7→ BI is
functorial.

To show that this defines a true path-object for B consider the canonical
map i : B→ F(B) sending b in the constant path γb(t) ≡ b. This is a
continuous function thanks to the assumptions made on the topology of
BI : hom(B× I,B) = hom(B,Top([0,1],B)).
The map i is indeed a section of the morphism of evaluation at 0 ∈ [0,1],
ev0 : γ 7→ γ(0), which is again continuous thanks to the assumptions made
on our category of spaces. The map ev0 is a fibration, because if we
are given a path γ : [0,1]→ B, we can define γ̃ : [0,1]→ hom([0,1],B)
by γ̃(t) = γt , where γt(s) = γ(t +(1− t)s). This is easily seen to be a
continuous map again by adjoint nonsense, or if you want just because
it is exactly the map which corresponds to [0,1]× [0,1]→ B : (t,s) 7→
γ(t +(1− t)s) under the bijection

homTop([0,1]× [0,1],B)∼= homTop([0,1],BI).

Finally, ev0 is easily shown to be (much more than) 0-acyclic: it is an
homotopy equivalence (in the classical sense of inducing isomorphisms
between all homotopy groups). Indeed, if we define Φ : BI × I→ BI in
such a way that Φ(γ, t) = tγ , tγ(s) = γ((1− t)s), this map is continuous
and realizes BI as a deformation retract of i(B).

It remains only to define the map p: just send γ in p(γ) = (γ(0),γ(1)) in
such a way that (p◦ i)(x) = p(i(x)) = (x,x) = ∆(x), and notice that p is a
fibration because it is a product of fibrations.

More geometrically, suppose that a distinguished point (i.e. a path γ) in
BI is fixed. Its image under p is (x0,y0) = (γ(0),γ(1)). Suppose we are
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given a path in B×B starting in (x0,y0): it is obvious that this amounts to
give two paths, α,β : [0,1]→ B such that α(0) = x0 and β (0) = y0.

Now for any t ∈ [0,1] define αt ,βt : I→ B by αt(s) = α(ts), βt(s) = β (ts)
(they are the paths α,β restricted to [0, t]), and

Ψ : [0,1]→ BI : Ψ(t) = αt ? γ ?βt ,

where the ? denotes junction of paths and αt is the path in the inverse
direction (you go through α ? γ ?β more and more until you tread it all:
this is the desired lifting because it’s easy to see that p(α ? · · · ? β ) =
(α(0),β (1))).

I The class of fibrations is closed under base change: consider the diagram

{0} //

��

A×B E //

��

E

p
����

[0,1]
γ

// A u
// B;

if we apply RLP to the outer rectangle, we find α : [0,1]→ E lifting u◦ γ ,
and the universal property of the pullback implies the existence of a unique
β : [0,1]→ A lifting γ .

Lemma 4.1. Acyclic fibrations p : E ∼−→ B are surjective maps.

Proof. If π0(p) is surjective, then any arcwise connected component in B
must be reached by a continuous arc, hence for any C ∈ π0(B) there exists
D such that C = π0(p)(D), i.e. for any b ∈ [b] = C ⊂ B there exists an
e ∈ [e] = D ⊂ E such that [p(e)] = b, which is equivalent to say that for
any b ∈ B there exists a continuous path between b e p(e) for some e ∈ E.

Now, given a point b ∈ B let’s find a path h : b! p(e′) for some e′ ∈ E;
lift h to a path α : [0,1]→ E, which must have endpoint α(1) such that
p(α(1)) = b:

{0} //

��

E

p

��

[0,1]
h
//

α

==

B.

Now let’s consider the diagram induced by π0(−):

∗ //

��

π0(A×B E) //

��

π0(E)

π0(p)∼
��

∗ // π0(A) // π0(B).
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Pulling back a surjective map returns a surjective map in Top, because
of the exactness properties of this category (it is an elementary topos,
so it is Barr-exact), and the functor π0 preserves surjections (it’s easily
seen). Injectivity of the pulled-back map can be showed directly: suppose
[ f (x)] = [ f (y)], so there exists a continuous arc γ : f x! f y, and a con-
tinuous arc starting at x in A×B E, say α , such that f (α(t)) = γ: this is
responsible of [x] = [y].

5 HOMOTOPY THEORY IN C∗-Alg.
A few categorical properties of C∗-Alg. Recall that a topological (complex)
vector space (VC,τ,+) is an internal C-module in our category Top of “nice”
topological spaces; a Banach space B = (〈VC,+〉,‖ · ‖) is a normed4 topological
vector space, whose topology is induced by that norm, and which is (Cauchy-)
complete with respect to the metric induced by the same norm. A Banach algebra
A = (〈A,+, ·〉,‖ · ‖) is a Banach space endowed with a bilinear multiplication
turning it into a C-algebra, such that ‖a · b‖ ≤ ‖a‖‖b‖; this entails that the
multiplication V ×V → V is automatically (and separately in both variables)
continuous. Finally, a (Banach-)∗-algebra A = (A,(−)∗) is a Banach algebra
endowed with an involutory conjugate-linear anti-automorphism (−)∗ : A→ A.

Let VectC,Ban,BanAlg,∗-Alg respectively denote the categories of (topo-
logical) complex vector spaces, Banach complex spaces and bounded linear
maps, Banach complex algebras and continuous algebra-homomorphisms, and
complex ∗-algebras and algebra homomorphisms f : A →B such that f : A→B
commutes with (−)∗: f (a∗) = f (a)∗; there is the chain of categorical inclusions

∗-Alg⊂ BanAlgC ⊂ BanC ⊂ VectC.

Define the category C∗-Alg to be the full subcategory of those ∗-algebras satisfy-
ing the ∗-property of the norm:

‖a∗ ·a‖= ‖a‖2

4The concept of a seminorm on a vector space A, ‖ · ‖ : A→ R+ can be internalized exploiting
two diagrams of sets and functions:

C×A
αA //

|·|×‖·‖

��

A

‖·‖

��

A×A
+A //

‖·‖×‖·‖

��

A

‖·‖

��

R+×R+
µR+

// R+ R+×R+
+R

// R+

the first is asked to be commutative, and in the second the composition ‖ · ‖◦+A is asked to be less
or equal to +R ◦ (‖ · ‖×‖ ·‖) in the obvious partial order in hom(A×A,R+), f ≤ g ⇐⇒ f (a,b)≤
g(a,b) for all (a,b) ∈ A×B. A norm on A is a seminorm ‖ · ‖ : A→ R+ such that the composition

C 0A−→ A
‖·‖−→ R+ is the zero-arrow C→ R+.

25



(in other words the composition a 7→ (a,a) 7→ (a∗,a) 7→ (a∗ ·a 7→ ‖a∗ ·a‖ equals
a 7→ ‖a‖ 7→ ‖a‖2).

C∗-Alg is a complete and cocomplete, Top-concrete and Top-enriched cate-
gory, the functor C∗-Alg→ Top being the forgetful one, regarding a C∗-algebra
A = (A,(−)∗) (or the support A of the whole structure, for short) as a compactly
generated space.

In this way, giving homC∗(A,B) the subspace topology via the inclusion in
homTop(A,B), Gel’fand duality becomes an equivalence of enriched categories
(see [Borceux], II.6.7).

Lemma 5.1. The main reason we repeatedly underlined the assumption of
cartesian closure for our base category Spaces is the that we can obtain the
following canonical identification:

homTop(X ,homC∗(A,B))∼= homC∗(A,C(X)⊗B) (1)

where A,B ∈ C∗-Alg, and X is a compact Hausdorff space.

Proof. It is a straightforward example of adjoint-nonsense, based on the classical
fact that the function space BX = Top(X ,B) can be given the structure of a C∗-
algebra by

‖ f‖ := sup
x∈X
‖ f (x)‖B ,

and this C∗-algebra is ∗-isomorphic to C(X)⊗B. Hence

homTop(X ,BA)∼= homTop(X×A,B)
∼= homTop(A×X ,B)
∼= homTop(A,BX )
∼= homC∗-Alg(A,C(X)⊗B).

One can now define a category π0C∗-Alg starting from C∗-Alg with the same
objects as C∗-Alg and

homπ0C∗-Alg(A,B) := π0
(

homC∗-Alg(A,B)
)

(this can be motivated by the fact that if X ∈LCTop, homotopy classes of contin-
uous maps X → Y in Top can be identified with arcwise connected components
of the map space Y X in the compact-open topology.

Definition 5.1 (Weak C∗-equivalence). Define a ∗-morphism to be a weak equiv-
alence if for any D ∈ C∗-Alg the induced map

t# : homC∗-Alg(D,A)→ homC∗-Alg(D,B)

is a weak equivalence in π0-Top. (Notice that t ∈ Mor(C∗-Alg) is a weak
equivalence if and only if π0(t) ∈ π0C∗-Alg is an invertible map.)

The class of weak equivalences in C∗-Alg is denoted WKC∗ .
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Definition 5.2 (C∗-fibration). Define a ∗-morphism p : E→ B to be a Schochet
fibration if for any D ∈ C∗-Alg the induced map

p# : homC∗-Alg(D,E)→ homC∗-Alg(D,B)

is a fibration in π0-Top.
The class of Schochet fibrations in C∗-Alg is denoted FIBC∗ .

Notation. In [Schochet]’s paper our π0-fibrations are called π0-cofibrations,
because the RLP asked to one of our π0-fibrations corresponds to the LLP asked
to SpecB→ SpecA to be a cofibration in Top (LCHaus⊂Top in our notations),
via Gel’fand duality.

Similarly, one can show that the suspension functor Σ : S1∧− corresponds
via Gel’fand duality to the functor C∗(S1)⊗−; proving this boils down to the
chain of natural isomorphisms (the first of which is Lemma 5.1)

BS1
= homTop∗(S

1,B)
∼=C∗(S1)⊗B
∼=C∗(S1)⊗C∗(SpecB)
∼=C∗(S1∧SpecB)

where C∗(X) is the algebra of functions (X ,ptX )→ (C,0). This suggests to
define the path object in C∗-Alg is such a way that it corresponds to the path
object (SpecB)[0,1] in Top: it is the algebra C∗([0,1])⊗B, clearly a functorial
correspondence.

Theorem 5.1 ([Uuye], thm. 2.11). The triple (C∗-Alg,WKC∗ ,FIBC∗) is a
pointed cfo. The homotopy category Ho(C) is the category π0C∗-Alg defined
before, hence we denote the triple (C∗-Alg,WKC∗ ,FIBC∗) as π0C∗-Alg (we also
denote this particular cfo structure on C∗-Alg as the “π0 structure”).

Proof. The only thing we can’t derive from Theorem 4.1 is that any Schochet
fibration is a surjective map, and this follows easily “mimicking” the simple
proof of Lemma 4.1 (see [Uuye], Prop. 2.10).

5.1 A Brief Interlude: Model Categories.

A model category is in some sense a smoothing of the notion of cfo. In a
few words, a model category consists of a cfo (C,WK,FIB) endowed with an
additional class of arrows COF, the elements of which are called cofibrations,
having suitable stability and lifting properties with respect to fibrations. These
properties give a reasonably general context in which it is possible to set up the
basic machinery of Homotopy Theory.
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Definition 5.3 (Model Category). A (Quillen) model category is a small-complete
and small-cocomplete category endowed with three distinguished classes of mor-
phisms: weak equivalences, WK; fibrations, FIB; cofibrations, COF, such that
the following axioms are satisfied:

• (C,WK) is a category with weak equivalences;

• WK,FIB,COF are stable under taking retracts;

• For any commutative square

X //

i
��

Z

p
��

Y // W,

where i ∈ COF and p ∈ FIB, If either i or p is acyclic, then there ex-
ists a lifting Y → Z. In other words, acyclic fibrations/cofibrations have
the right/left lifting property (RLP, LLP for short) with respect to fibra-
tions/cofibrations;

• (WK∩FIB,COF), (FIB,WK∩COF) are (weak) factorization systems in
C.

REMARK 7 : Mutual lifting properties are what really define the notion of
model category: a model category is uniquely determined by the datum of weak
equivalences and fibration or by the datum of weak equivalences and cofibrations:
in the first case, cofibrations are maps having the LLP with respect to acyclic
fibrations, and in the second case fibrations are maps having the RLP with respect
to acyclic cofibrations (see Prop. 3.13 in [Dwyer-Spalinski]).

Examples of model categories live in algebraic, topological and even pure-
categorical contexts. Refer again to [Dwyer-Spalinski] to have plenty of ex-
amples and explicit constructions: “each of these settings has its own technical
and computational peculiarities [in general the task of proving that a particular
choice of weak equivalences and (co)fibrations really gives a model category is
extremely long and involved: see for example [Gelfand-Manin], V.1.2-V.2.4],
but the advantage of an abstract approach is that they can all be studied with the
same tools and described in the same language.

What is the suspension of an augmented commutative algebra? One of
incidental appeals of Quillen’s theory (to a topologist!) is that it both makes a
question like this respectable and gives it an interesting answer.”

REMARK 8 [[UUYE], EXAMPLE 1.4]: If (C,WK,FIB,COF) is a model cate-
gory, then the full subcategory Cfib consisting of the sole fibrant objects in C is a
cfo, by restricting the weak equivalences and the fibrations to Cfib.
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5.2 π0C∗-Alg is not a rhm.

Proposition 5.1. The loop functor Ω : Ho(C∗-Alg)→ Ho(C∗-Alg) preserves
finite products.

Proof. It is a one-diagram proof: consider the cube

ΩB×ΩC

xx

//

��

BI×CI

∼

uu

��

Ω(B×C) //

��

(B×C)I

��

∗ // (B×B)× (C×C)

∼

uu

∗ // (B×C)× (B×C)

and notice that by functoriality the arrow ΩB×ΩC→Ω(B×C) (which is the
canonically induced map) must be an isomorphism.

If we were able to prove that Ω doesn’t commute with infinite products we
would be able to show that5 Ω isn’t part of an adjoint pair Σ a Ω; this should
seem quite easy to check, but notice (see for example the first pages of [Warner]
and the paper by [Avitzour]) that the construction of arbitrary products and
coproducts in C∗-Alg if very far from explicit.

So we choose to take the direct path. This will imply as a corollary that
the π0 structure built in Theorem 5.1 doesn’t come from a model structure in
the sense of Quillen on C∗-Alg, i.e. that there is no model structure M on
C∗-Alg such that π0C∗-Alg = Mfib (we call these structures restricted homotopy
models, rhm for short). Indeed, recall that if C is a model category, then the full
subcategory Cfib of its fibrant objects becomes in a natural way a cfo (this is
Remark 8). The natural inclusion “passes to homotopy”, and the loop functor
admits a restriction Ω|F : Ho(Cfib)→Ho(Cfib) and a left adjoint, the suspension
functor Σ : Ho(C)→ Ho(C).

Now, the category C∗-Alg of commutative C∗-algebras is a reflective subcat-
egory of C∗-Alg, let’s call it C∗-Algc (the reflector is the abelianization functor
A 7→ Aab). The (2-)functor Ho is particularly well-behaved with respect to this
reflection (more technically, the inclusion functor is part of a Quillen adjunction),
which ensures that the reflection C∗-Alg� C∗-Algc descends to an adjunction

5This is because in a suitably “smooth” category as Top is, a functor is a right adjoint if and only
if it commutes with limits; the rather technical condition which ensures this is Freyd’s SAFT, see
[Mac Lane].
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Ho(C∗-Alg)� Ho(C∗-Algc) which is again a reflection. The diagram

Ho(C∗-Alg) // Ho(C∗-Alg)

Ho(C∗-Algc)
Ω|C∗-Algc

//

OO

Ho(C∗-Algc)

OO

commutes. From this we can deduce that the stable homotopy category of
C∗-Algc is a full triangulated subcategory of SHo(C∗-Alg); now Theorems
I.1.1 and I.2.2 in [Quillen] say that if C is a model category, the loop functor
Ω|c : Ho(Cfib)→ Ho(Cfib) must be a right adjoint.

Theorem 5.2. The loop functor Ω : Ho(C∗-Alg)→ Ho(C∗-Alg) doesn’t admit
a left adjoint, so the cfo structure on C∗-Alg isn’t the restriction of a Quillen
model structure on C∗-Alg.

Proof. Our plan is to prove that the loop object functor Ω : Ho(C∗-Algc)→
Ho(C∗-Algc) doesn’t admit a left adjoint: this will imply that Ω : Ho(C∗-Alg)→
Ho(C∗-Alg) doesn’t admit it too, because if there wa a functor Σ such that
[ΣA,B]∼= [A,ΩB], then the composition

Ho(C∗-Algc)
ι−→ Ho(C∗-Alg) Σ−→ Ho(C∗-Alg)

(−)ab

−−−→ Ho(C∗-Algc)

would be a left adjoint to Ω|c.
Now that the plan of the proof is clear, notice that by Gel’fand-Naimark du-

ality it suffices to show that the (topological) suspension functor Σ : CHaus∗→
CHaus∗ doesn’t admit a right adjoint: it is a general consequence of the presence
of an antiequivalence Cop ∼= D that the adjunction F : C�C : G transports to an
adjunction D� D (a suitable diagram must commute: contravariant nonsense
does the rest).

In the end the whole proof boils down to show that Σ : X 7→ X ∧S1

doesn’t admit a right adjoint.

In particular let’s show that the functor A 7→ [ΣA,S1] is not representable. Sup-
pose it is and hope to bump into a contradiction: there exists a compact Hausdorff
space Y ∈ Ho(CHaus∗) such that

[ΣA,S1]∼= [A,Y ].

Now, in the whole category Top∗ of pointed spaces the functor Σ does admit
a right adjoint (precisely the loop-space functor Ω : (X ,∗) 7→ (X ,∗)(S1,1) ∼=
π1(X ,∗)) , hence we have the chain of natural bijections

[A,Y ]Top∗
∼= [A,Y ]CHaus∗
∼= [ΣA,S1]CHaus∗
∼= [A,ΩS1]Top∗
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Yoneda lemma entails now that the natural bijection we found for any X must
come from an isomorphism f : Y →ΩS1 in Ho(CHaus∗), namely from a weak
(homotopy) equivalence Y →ΩS1, inducing degree-wise isomorphisms between
homotopy groups πi(Y ) and πi(ΩS1). The space S1 being a K(Z,1), this boils
down to say that πi(Y )∼= πi+1(S1) for i = 0,1.

Now π0(Y )∼= π0(ΩS1)∼= π1(S1)∼= Z, hence Y must have an infinite number
of arcwise connected components.

Let’s see why this is the desider contradiction (and notice that we can’t
conclude now the proof because there is plenty of compact spaces having an
infinite number of non-open connected components).

In particular, let’s show that any C ∈ π0(Y ) must be an open set: in the
composition

Y ∼−→ΩS1 deg−−→ Z

the function deg is an isomorphism between topological groups, once we en-
dowed the codomain with the discrete topology, hence the preimage of open sets
in Z (=singletons) must be open, and is exactly one of the arcwise connected
components of Y .

A Appendix

A.1 The πn-structure on Top.
This paragraph is adressed to answering some somehow natural questions
stemmed from Theorem 4.1:

1. Is π0-Top the degree-zero element of a family {πn-Top}n∈N of fibrant
structures on Top, recognizing as weak equivalences as a map f : X → Y
inducing isomorphisms between all homotopy groups/pointed spaces
πk(X ,x)∼= πk(Y, f (x)) for any 0≤ k ≤ n, and for any choice of the base-
point?

2. Can a suitable (2-)“limiting” procedure as lim−→n

(
πn-Top

)
of these fibrant

structures recover the fibrant structure induced forgetting cofibrations and
mutual lifting properties of a suitable model structure on Top (the limit
has to be understood in the (2-)category ModCat of model categories,
whose 1-cells are Quillen pairs)6?

3. Is this more general path useful in application to C∗-algebra theory? For
example, a positive answer to question 1 would give a countable family of

6Morphisms between model categories are pairs of adjoint functors F : C� D : G : in fact,
the natural request for a functor between model categories is that it induces a functor between the
homotopy categories Ho(C)→ Ho(D), and to this end the very least we can ask is that the left
adjoint preserves cofibrations and acyclic cofibrations, or (it is equivalent) the rght adjoint preserves
fibrations and acyclic fibrations, or again that the left adjoint preserves (acyclic) cofibrations, and the
right adjoint preserves (acyclic) fibrations.
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rhms on Top, inducing a similar one on C∗-Alg by “transport of structure”.
Now the question is: can the cfo structure on C∗-Alg induced by a rhm on
Top be itself a rhm on C∗-Alg? Maybe the same question can be asked in
a more general flavour:

Let M be a symmetric monoidal closed model category, and
consider the (2-)category M-Cat of M-enriched categories.
Given a M-category C, can it become a model category defin-
ing fibrations/weak equivalencess as maps X → Y such that
homC(−,X)→ homC(−,Y ) is a fibration/weak equivalence
(better to say: for any A ∈ C homC(A,X)→ homC(A,Y ) is a
fibration/weak equivalence)? Can this become a (2-)functor
M-Cat→ModCat?

Even if the condition for a map to be a πn-equivalence seems rather obvious, the
condition for a map to be a πn-fibration has to be taken with care once one notices
that it’s not at all clear how the lifting condition with respect to paths given the
initial point has to be extended. At first glance, it resembles a “truncation” of the
condition for a map to be a Serre fibration: a private communication [Uuye2]
with O. Uuye unfortunately pointed out that this is not the case: the pullback of
a Serre (or even Hurewicz) acyclic fibration is not necessarily a πn-equivalence.

For example, the Hopf fibration S3→ S2 is a π1-equivalence, but the pullback
along ∗ → S2 is S1→ ∗, which is not a π1-equivalence. So the notion of a πn-
fibration has to be something stronger (not weaker) than the notion of a Serre
fibration, which is not desirable.

As a minor issue, the definition of πn-equivalence is not satisfactory for
another reason: it is different from the standard definition of n-equivalence,
where the maps πn(X ,x0)→ πn(Y, f (x0)) (at the highest level of homotopy
groups) are only required to be surjective.

This stronger notion of n-fibration is provided by [Donazar]’s paper7, where
an n-fibration p : E→ B in Top (or in a suitable cartesian closed subcategory of
spaces) is defined to be a map having the RLP with respect to V k−1→ [0,1]k for
any 0 < k ≤ n+1, and with respect to V n+1→ ∂ [0,1]n+2, where V k−1 denotes
the union of all faces of [0,1]k except for [0,1]k−1×{1} in the case n = 0, this
boils down to ask the RLP which defines 0-fibrations plus the RLP with respect
to the inclusion t ↪→� of three sides of a square in a square (“any loop on the
base can be lifted, given a piece of the path”):

t //

��

E

p
��

� //

α

>>

B.

7I’m thankful to D. White who found out this paper at http://mathoverflow.net/questions/
112069/a-fibrant-objects-structure-on-top/114916
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The proof of the main theorem in [Donazar]’s paper proceeds in parallel with the
category SSet= Sets∆op

of simplicial sets, betraying a particularly combinatorial
nature (the condition for a map to be a fibration is not so far from the definition
of a Kan fibration in SSet); the link between this combinatorial approach and the
third point remain at the moment untouched, but in view of [Dell’Ambrogio,2]
and [Østvær]’s papers it seems that the well-known homotopical structure(s) on
SSet can help in establishing analogous homotopical structure(s) on C∗-Alg.

A.2 Cubical C∗-algebras.

The main idea in [Østvær]’s paper is to combine C∗-theory with the well-
established homotopy theory of cubical sets; in the same way a simplicial set
can be thought as a graded set {Kn} with suitable functions ∂ n

j : Kn → Kn−1

(faces), sn
j : Kn→ Kn+1 (degeneracies) satisfying suitable simplicial identities8,

a cubical set can be characterized as a graded set {Kn} with suitable functions
dn

i,α : Kn→ Kn−1, sn
j : Kn→ Kn+1 satisfying cubical identities:

dn
i,α ◦ sn

j =


sn

j−1 ◦dn
i,α i < j

1 i = j
sn

j ◦dn
i−1,α i > j.

The category of cubical sets is again a presheaf category: defining � to be the
category having as objects the posets [n] = P({1, . . . ,n}), for every n ∈ N, and
as arrows [n]→ [m] monotone mappings which can be written as compositions
of faces and degeneracies, a cubical set now is a functor �op→ Sets. [Østvær]
denotes the category of cubical sets with �Sets.

Now, if we consider the classical Yoneda embedding yon: C∗-Algop →
SetsC∗-Alg : A 7→ homC∗-Alg(A,−) we can find a faithful copy of C∗-Alg in
its (co)presheaf category, via a continuous functor yon. Now one can con-
sider the subcategory of cubical set-valued presheaves Fun(C∗-Alg,�Sets)∼=
Fun(C∗-Alg,Sets)�op

, obtaining the category of cubical C∗-spaces. Mimicking
the construction of the Reedy model structure9 on a functor category Fun(C,D)
one is lead to define a weak equivalence X → Y between cubical C∗-spaces as
an objectwise weak equivalence X (A)→ Y (A) between cubical sets.

A.3 C∗-categories and simplicial algebras.

[Dell’Ambrogio,2]’s paper defines a cofibrantly generated, SSetQuil-enriched
monoidal model structure on the category C∗-Cat of C∗-categories:

8These identities can be deduced from the fact that a simplicial set is nothing but a presheaf over
∆ = FinOrd, the category of totally ordered finite sets and monotone maps: see [Mac Lane], §7.5.
The category ∆ is now generated by face and degeneracy arrows.

9http://ncatlab.org/nlab/show/Reedy+model+structure
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• A C∗-category is, roughly speaking, a category C enriched over the sym-
metric monoidal category of (complex) C∗-algebras, such that for any
X ∈ C the set homC(X ,X) is a unital C∗-algebra: see [Warner], ch. 15.
The class of all C∗-categories becomes a (2-)category if we define 1-cells
C→ D to be the collection of all ∗-functors F : C→ D, and 2-cells to be
bounded natural transformations F → G (see again [Warner], ch. 15).

• A cofibrantly generated model category consists of a model category in
which acyclic cofibrations COF∩WK and fibrations FIB can be recovered
as maps having the right lifting properties with respect to all maps in
suitable sets I, J:

COF∩WK = rlp(I), FIB = rlp(J)

• The unitary model structure constructed in [Dell’Ambrogio,2]’s paper
recognizes as weak equivalences unitary equivalences of categories (see
[Warner], ch. 17, or better [Dell’Ambrogio,2], Lemma 4.6) mere equiv-
alences of categories; cofibrations are ∗-functors injective on objects.
Proposition 4.15 in [Dell’Ambrogio,2] shows that the (2-)category of
C∗-categories is cofibrantly generated by the sets

I =
{
∅→ C,CqC→ 1,P→ 1

}
J =

{
C→ 1

}
where ∅ is the empty category, 1 is the discrete category {0,1} and P is
the pushout of the diagram 1← CqC→ 1 (compare this result with a
formally analogous statement for groupids, in [Warner], ch. 15).

• A simplicial model category is a model category which is enriched over the
category SSet of simplicial sets, regarded as a closed model category with
respect to Quillen’s structure. In particular the enrichment is compatible
with the monoidal structure on SSet, and renders C∗-Cat tensored and
cotensored.

The simplicial enrichment is deduced from the following tetrahedron of adjoint
functors:

SSet

Π1

��

OO

N

Π

$$

dd

isoπ
||

<<

ν

Cat //
oo C∗-Cat

Gpd
ι

bb

""

iso C∗m
;;

{{
uni
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where the adjunction π : C∗-Cat >
uni // Gpd

Gmax
oo >

N // SSet : ν

Π1

oo is obtained via

homC∗-Cat(Gmax(Π1(A)),B)∼= homGpd(Π1A,uniB)∼= homSSet(A,N(uniB))

(the adjunction Gpd� SSet is classical, C∗-Cat�Gpd is constructed explicitly
in [Dell’Ambrogio,2], §3.2).

This adjunction is a Quillen pair, hence it defines a simplicial enrichment
turning C∗-Cat into a simplicial SSet-algebra in the sense of Hovey.
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