g W N

© o N o

Di- is for Directed:
First-Order Directed Type Theory via Dinaturality

ANDREA LARETTO, FOSCO LOREGIAN, and NICCOLO VELTRI, TalTech, Estonia

We show how dinaturality plays a central role in the interpretation of directed type theory where types are
given by (1-)categories and directed equality by hom-functors. We introduce a first-order directed type theory
where types are semantically interpreted as categories, terms as functors, predicates as dipresheaves, and
proof-relevant entailments as dinatural transformation. This type theory is equipped with an elimination
principle for directed equality, motivated by dinaturality, which closely resembles the J-rule used in Martin-
Lof type theory. This directed J-rule comes with a simple syntactic restriction which recovers all theorems
about symmetric equality, except for symmetry. Dinaturality is used to prove properties about transitivity
(composition), congruence (functoriality), and transport (coYoneda) in exactly the same way as in Martin-Lof
type theory, and allows us to obtain an internal “naturality for free”. We then argue that the quantifiers of
directed type theory should be ends and coends, which dinaturality allows us to capture formally. Our type
theory provides a formal treatment to (co)end calculus and Yoneda reductions, which we use to give distinctly
logical proofs to the (co)Yoneda lemma, the adjointness property of Kan extensions via (co)ends, exponential
objects of presheaves, and the Fubini rule for quantifier exchange. Our main theorems are formalized in Agda.

CCS Concepts: » Theory of computation — Type theory.
Additional Key Words and Phrases: directed type theory, coend calculus, dinaturality

ACM Reference Format:

Andrea Laretto, Fosco Loregian, and Niccolo Veltri. 2018. Di- is for Directed: First-Order Directed Type Theory
via Dinaturality. In Proceedings of Make sure to enter the correct conference title from your rights confirmation
email (Conference acronym "XX). ACM, New York, NY, USA, 42 pages. https://doi.org/XXXXXXX XXXXXXX

1 Introduction

Homotopy type theory [7, 78, 81] revolutionized the way we think about types. One of the funda-
mental insights that inspired this revolution was first given in a seminal paper by Hofmann and
Streicher [42], with a remarkably simple idea: rather than viewing types just as sets of inhabitants,
they give an interpretation of Martin-Lof type theory where types are taken to be groupoids, i.e.,
categories in which every morphism is an isomorphism. The inhabitants of a type become the
objects of a groupoid, and the morphisms in a groupoid represent the equalities between inhabitants,
of which there can be more than a unique one. The reason why morphisms need to be invertible is
because of the inherently symmetric nature of equality: given a proof of equality e : x = y, there is
always a proof of the equality ¢’ : y = x.

A natural question follows: why not categories, rather than groupoids? Can there be a type theory
where types are interpreted as categories, where morphisms need not be invertible? Such a system
should take the name of directed type theory [2, 4, 34, 51, 61, 84], where the directed aspect comes
precisely from this asymmetric interpretation of “equality”.

Authors’ Contact Information: Andrea Laretto; Fosco Loregian; Niccolo Veltri, TalTech, Estonia.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

Conference acronym "XX, Woodstock, NY

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-XXXX-X/2018/06

https://doi.org/XXXXXXX XXXXXXX

, Vol. 1, No. 1, Article . Publication date: October 2018.

https://orcid.org/0000-0002-6413-5794
https://orcid.org/0000-0003-3052-465X
https://orcid.org/0000-0002-7230-3436
https://doi.org/XXXXXXX.XXXXXXX
https://orcid.org/0000-0002-6413-5794
https://orcid.org/0000-0003-3052-465X
https://orcid.org/0000-0002-7230-3436
https://doi.org/XXXXXXX.XXXXXXX

50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

2 Laretto, Loregian, Veltri

Types C | Categories C
Functions f : C — D | Functors F: C —» D
Relations R : C X D — Bool | Profunctors P : C°? x D — Set
Predicates P : C — Bool | Presheaves P : C°P — Set
Points of a type | Objects of a category
Equalities e : a =¢ b | Morphisms e : hom¢(a, b)
Equality types =¢: C X C — Type | Hom functors homc : C°? X C — Set
Universal quantifiers | Ends fx o P(xx)

Existential quantifiers | Coends / e P(x, x)

Fig. 1. The directed generalization of logical concepts.

Directed type theory has been a hot topic of type-theoretical research for the past decade [4,
19, 35, 59, 60, 62, 64, 83]. This quest for the directed generalization has a specific application in
mind: in the same way that HoTT can be used to study homotopy theory in a type-theoretical way,
directed type theory promises the study of category theory in a type-theoretical way.

Category theory has proven to be a fundamental topic in the semantics of programming lan-
guages [23, 46, 57, 76], where it shines as the common framework that ties together logic, proofs,
and types in the Curry-Howard-Lambek correspondence [17, 37, 43]. The unifying role of category
theory stretches even beyond computer science, in algebraic topology [53], universal algebra [47],
quantum mechanics [39], and physics [8].

This compelling series of applications comes at a cost: category theory can be overwhelming
for newcomers, with overly abstract results and seemingly complicated ideas (e.g., the Yoneda
lemma [15], Kan extensions [40]). Even worse, these abstractions come baggaged with a plethora
of naturality and functoriality side conditions that need to be checked [60].

Directed type theory promises to reinterpret category theory itself under a logical perspective,
taking the Curry-Howard-Lambek correspondence to the next level: what once were abstract yet
overarching results in category theory become simple type-theoretical statements, which one can
then prove in a system that takes care of naturality and functoriality bureaucracy for free.

One of the ultimate goals of directed type theory is to capture this multitude of directed phe-
nomena under a single, unified type-theoretical framework: since morphisms of a category can
be viewed just as (directed) equalities, one can use directed type theory as a tool to represent and
reason about programs, processes, rewrites, transitions [1], concurrency via directed spaces [28, 61],
types and terms of type theories (e.g., via “directed higher inductive types” [44, 83]), all internally
to the same type theory.

What is currently missing from the current conception of directed type theory is a direct
description of what such a system should look like in the elementary case of 1-categories. Taking
inspiration from the simplicity of the groupoid model in Hofmann and Streicher’s approach,

We introduce a first-order directed type theory with simple, straightforward semantics in 1-categories:
proving theorems about directed equality follows the same exact steps of Martin-Lof type theory,
and non-trivial theorems in category theory can be captured in a concise and distinctly logical way.

How should type-theoretical ideas change under the view of directed type theory? Category
theorists have long known what the most natural path for the directed generalization should
be [49]: functions between types should be functors (i.e., functions which respect directed equalities),
relations are naturally interpreted as profunctors [16], and (co)presheaves can be thought of as
generalized predicates [9]. We summarize the main ideas of the directed generalization in Figure 1.

, Vol. 1, No. 1, Article . Publication date: October 2018.

99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
1

5
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135

137
138
139
140
141
142
143
144
145
146
147

Di- is for Directed: First-Order Directed Type Theory via Dinaturality 3

Under this directed lens, familiar type-theoretical statements of equality become elementary
definitions in category theory: we give a few simple examples in Figure 2 in the canonical setting
of first-order logic, which is closely connected to the formal system later explored in this paper.

X=y AN y=z Fox=2z Transitivity of equality
home (x,y) X hom¢(y, z) = homc(x,z) | Composition in a category
x=y + f(x)=f(y) Congruence / functions respect equality
home (x,y) — homp (F(x), F(y)) Action on morphisms of functors
x=yAP(x) + P(y) Substitution / transport along equality
homc(x,y) X P(x) — P(y) Action on morphisms of copresheaves

Fig. 2. Elementary statements for symmetric equality and their directed counterparts.

However, directed type theory is not so straightforward. We list some fundamental challenges:

Challenge 1. How to change rules for equality. One can use their favorite proof assistant or
logical system to prove the theorems in Figure 2: in the case of symmetric equality, typically this is
done using an introduction rule (refl=) and an elimination rule (/=) called J-rule [41], shown in
Figure 3 again for first-order logic. The introduction rule simply states that equality is reflexive.
The elimination rule J intuitively says that, if we assume an equality e : a = b and we want to
prove a predicate P(a, b) for some variables a, b : C, it is sufficient to consider the case “on the
diagonal” P(x, x), where a and b are identified with the same x. These two rules allow all of the
above statements about symmetric equality to be derived almost “for free” just by contracting
away equalities. However, (/=) allows for symmetry of equality to be derived, simply by picking
P(a,b) := b = a. This is incompatible with the directed case, as not every morphism has an inverse.

The fundamental question then becomes: how can we tweak the rules of equality to disallow
symmetry, and yet be able to derive “for free” the above theorems also in the case of directed equality?

(refl=) [x:C] O(x,x)+ h:P(x,x)

[a:C,b:Cla=0b, ®(a,b)+ J(h): P(ab) =)

[x:C]DFrefl: x=x

Fig. 3. Introduction and elimination rules for symmetric equality in first-order logic.
(ref) [x:C] ®(x,%) - h:P(Xx)
[a:C°, b:C] hom(a b), ®(a,b) + J(h) : P(ab)

[x : C] @ F refl : home (X, x)
Fig. 4. Introduction and elimination rules for directed equality in first-order dinatural directed type theory.

Challenge 2. Polarity problems. Another issue arises in the first example of Figure 2: since
types are now categories, with each type C there should be a type C°P (the opposite category) of
the opposite “polarity”, where the inhabitants are the same but all directed equalities are reversed.
The type of directed equalities homc (x, y) then is asymmetric, and receives a “negative” argument
x:C° and a “positive” one y: C, and provides the set (i.e., a category with only trivial directed
equalities) of morphisms between objects x, y of C.

The problem is that in the statement for transitivity of directed equality (i.e. composition)
the variable y appears both on the right side of homc¢(x, y), with type C, and at the same time
on the left side of homc(y, z), with seemingly different type C°P! The same problem arises in

, Vol. 1, No. 1, Article . Publication date: October 2018.

148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169

171
172
173
174
175
176
177
178
179

181
182
183
184

186
187
188
189
190
191
192
193
194
195
196

4 Laretto, Loregian, Veltri

(refl), since x is used on both sides of hom, and in (J) because in P(x, x) the same x needs to
be used with both polarities. One solution first considered by North [61] and later revisited by
Altenkirch and Neumann [4] is to revert back to the undirected case of groupoids. This solution
may feel unsatisfactory, since one does not intuitively expect groupoids to appear in the semantics
of a type theory where types are categories. How do we solve these polarity problems without having
to resort to groupoids?

Challenge 3. Directed quantifiers. Another fundamental yet unexplored question is what the
quantifiers of directed type theory should be in the I-categorical case. Because of the above polarity
issues, this is not a trivial question: should the variable y in the statement of transitivity be bound
as a variable of type y : C or y : C°P? A natural expectation is that quantifiers should be able to
bind both occurrences of y at once.

This paper proposes a simple solution that addresses
all of the above challenges for directed type theory: dinaturality [26].

The intuition behind dinaturality and dinatural transformations is that the same variable is
allowed to appear both positively and negatively at the same time, irrespectively of polarity.

Not only do we deal with the variance problems without ever having to mention groupoids, but
dinaturality also tells us what a directed J rule should look like, which we illustrate in Figure 4 next
to the symmetric case. Curiously, this rule is reminiscent of the elimination rule for equality of
standard Martin-Lof type theory, but it comes equipped with a precise syntactic restriction that
does not allow symmetry of directed equality to be derived.

What about quantifiers? Dinaturality comes again to the rescue, hinting at a possible answer:
intimately connected to the notion of dinatural transformation are the notions of end and coend [52].
Ends and coends, respectively denoted as fx ¢ P(x.x) and / e P(x, x) for some functor P : C°P x
C — Set, are to be thought of as a sort of universal and existential quantifiers on P, respectively. Just
like a quantifier, the integral sign of (co)ends binds positive and negative occurrences of variables,
indicated as x : C and x : C°P.

The main application of (co)ends is that they allow non-trivial statements in category theory to
be formulated in a concise way [52]: for example, one can use ends to characterize the set of natural
transformations as the end Nat(F,G) = fx chomp (F(x), G(x)); note the resemblance between
this end and the universal quantification used in the usual definition of natural transformation.
With this, we can rephrase the well-known Yoneda lemma [50] as a simple isomorphism, shown in
Figure 5a next to its logical “decategorified” interpretation. A similar statement holds for the case of
existential quantifiers and coends, shown in Figure 5b, which often takes the slogan of “presheaves
are colimits of representables” [50] or “coYoneda lemma” [20, 52].

P(a) = [, homc(aX) = P(x) o F@ = S5 home (X, a) x P(x)

Pla) ©V¥(x:C). a=cx = P(x) Pla) ©3(x:C). x=ca AP(x)
Fig. 5. Yoneda and coYoneda lemma using (co)ends and their corresponding logical statements.

The first-order formula behind the (co)Yoneda lemma can be proven using any formal system:
our directed type theory is the first elementary treatment of a formal system for the directed case,
where one can modularly use rules for quantifiers and equality as done in logic, e.g., with suitable
introduction/elimination rules specific to directed equality and (co)ends. To give a taste of how
closely our approach follows that of a standard logical proof, we show in Figure 6 a proof of the
Yoneda lemma in our type theory next to its “decategorified” proof in first-order logic.

, Vol. 1, No. 1, Article . Publication date: October 2018.

197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245

Di- is for Directed: First-Order Directed Type Theory via Dinaturality 5

[a:C] ®(a) F Y(x:C).a=c x = P(x) ") [a:C] ®(a) + fx:c hom¢(a,x) = P(x) (end)

[a:C,x:C] ®(a) Fa=c x = P(x) - [a:C,x:C] ®(a) + homc(a, %) = P(x) :
[a:C,x:C] a=c x A®(a) F P(x) _ [a:C,x:C] homc(a,x) X ®(a) + P(x) (eXp
[z: C] @(2) + P(2) [z:C] ®(z) P(2) /)

Fig. 6. A proof of the Yoneda lemma in first-order logic, and its proof in dinatural directed type theory.

(Co)end calculus. It is common knowledge among category theorists that there is a formal aspect
to the manipulation of ends and coends, outlined in [52], that allows such non-trivial theorems to
be proven using simple “mechanical” rules. This “(co)end calculus” has proven to be particularly
useful in theoretical computer science, for example in the context of profunctor optics [15, 20] and
their string diagrams [14, 74], strong monads and functional programming [5, 6, 40, 80], quantum
circuits [38], and logic [31, 68, 70]. Our work gives a logical interpretation to (co)end calculus by
reconceptualizing it just as a first-order instance of directed type theory, which is what motivates
our focus on a non-dependent presentation of directed type theory.

Dinaturality. Dinaturality is not a novel concept: dinatural transformations are a generalization
of natural transformations for functors F, G : C°? x C — D with mixed-variances [26].

Serendipitously, the “di” in dinatural stands for diagonal: a dinatural is a family of maps «a, :
F(x,x) — G(x,x) which is required to be given only on the diagonal of F,G by equating the
contravariant and covariant variables with the same value x : C. Such family of maps is required to
satisfy a certain equational property, which generalizes the usual square of natural transformations.

Famously, however, dinatural transformations do not always compose: a well-known sufficient
condition for the composability of dinaturals is the absence of loops in a suitably associated
graph [27, 55]. This loop-freeness similarly arises in linear logic with the Danos-Regnier criterion
[11-13, 36], and more in general in logic where composition corresponds to cut elimination [32, 66].

There is a particularly deep connection between dinaturality and parametricity in programming
languages [67, 69, 72, 82] and realizable models for System F [10, 29] where all dinaturals compose.
Dinaturality has remained somewhat of an understudied subject, partly because this lack of general
compositionality has proven to be particularly hard to explain in full generality [75]: an in-depth
review on dinaturality and its importance for computer science can be found in [75], [76, Sec. 3].

1.1 Contribution

In this work, we connect for the first time dinatural transformations to directed type theory, showing
how they turn out to be the key technical notion needed to capture directed type theory in an
elementary and straightforward way.

Our general approach to directed type theory is to take the simplicity of the groupoid model of
Hofmann and Streicher [42] and generalize it to the directed case with a first-order (yet expressive)
system aimed at capturing two specific aspects of directed type theory: first, the ability to construct
and prove properties about theorems of directed equality by following precisely the same steps as
in Martin-Lof type theory; second, the ability to exploit the power of (co)ends-as-quantifiers [52]
to give simple and concise logical proofs of well-known theorems in category theory.

We summarize the main contributions and technical aspects of this paper:

(1) Setting. We introduce a first-order (non-dependent) directed type theory where types are
semantically interpreted as (small) 1-categories, terms as functors, predicates as dipresheaves
(i.e. functors C°P x C — Set), directed equality predicates as hom-functors, and proof-relevant
entailments as dinatural transformations which are not required to compose in the usual sense.

, Vol. 1, No. 1, Article . Publication date: October 2018.

246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272

274
275
276
277

279
280
281
282

284
285
286
287
288
289
290
291
292
293
294

(2)

Laretto, Loregian, Veltri

First-order type theory. Our directed type theory builds on the well-known canonical setting of
first-order logic, with judgments structured in a similar way [43, 4.1]: we have simply-typed
types and terms, on which we build a proof-relevant logic with predicates, entailments, and
equality of entailments. This last aspect is typically absent in usual accounts of first-order logic,
but it is crucial in our presentation because it is precisely the point in which we use dinaturality.
Our system is a type theory in the sense of Jacobs [43, p. 9, (iii)]: proofs have an explicit
computational content, e.g., the proof of transitivity of directed equality is a bona-fide family of
functions that can be used to compose equality witnesses (i.e., morphisms) in the type theory.

Directed equality elimination. In our 1-categorical setting, the rules for directed equality are
straightforward: the directed equality introduction rule is essentially the same as the usual refl,
which we validate using identities in hom-sets. We identify a directed equality elimination rule
which is again syntactically reminiscent of the J-rule, but equipped with a syntactic restriction
that does not allow for symmetry to be derived. This syntactic restriction is not ad-hoc, but it is
justified by a precise semantic fact: the connection between dinaturality and ordinary naturality.
In short, the syntactic requirement to contract a directed equality in context homc (x, y) for
x : C°P,y : C is that both x and y must appear only covariantly (i.e., with the “correct polarity”)
in the conclusion and only contravariantly (i.e., with the “wrong polarity”) in the assumptions
in context. The non-derivability of symmetry, aside from the syntactic restriction of J, follows
by soundness and the existence of a countermodel.

Directed theorems. The rules for directed equality allow us to recover in Section 3 the same
type-theoretic definitions about symmetric equality derivable in standard Martin-Lof type
theory, except for symmetry: e.g., transitivity of directed equality (composition in a category),
congruences of terms along directed equalities (the action of a functor on morphisms), transport
along directed equalities (i.e., the coYoneda lemma).

Directed properties. In our type theory one can also prove properties of these maps using a
dependent version of directed J specific to the judgment of equality of entailments: for example,
one can show that the composition of directed equalities is automatically associative and unital
on both sides (one of the two sides is definitionally unital on the equality that is being contracted).
The semantic notion of dinaturality is not used to construct such maps (functoriality suffices),
but to validate this dependent directed J rule. With this rule one can internally prove that
functoriality and naturality follow “for free”, again, by a simple directed equality contraction.

Polarity. Our type theory is equipped with a precise notion of polarity and variance which
is used to implement the syntactic restriction behind the J rule. Even in our non-dependent
case the treatment of variables is non-trivial, since dinaturality requires a precise definition of
variance/polarity that differs from the approaches described in other works [4, 34, 61, 63].

Category theory, logically. Our type theory allows us to give direct, concise, and distinctly logical
proofs of well-known (yet non-trivial) theorems in category theory by using hom as a directed
equality: e.g., the (co)Yoneda lemma, Kan extensions computed via (co)ends are adjoint to
precomposition, presheaves form a closed category, hom-functors preserve (co)limits, and the
Fubini rules; each of these follows by modularly using the logical properties of each connective.

(Co)end calculus. The approach used to prove these theorems is to combine the perspective of
hom as directed equality with the ideas of “(co)end calculus” [52], viewing (co)ends as the directed
quantifiers of directed type theory. (Co)end calculus as treated in [52] uses various semantic
properties of (co)ends, which are however selected ad-hoc and not modularly organized in a
precise set of rules: our type theory gives a formal treatment to these techniques, approaching

, Vol. 1, No. 1, Article . Publication date: October 2018.

295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
334
335
336
337
338
339
340
341
342
343

Di- is for Directed: First-Order Directed Type Theory via Dinaturality 7

proofs in a different and more logical fashion. The choice of a first-order (hence non-dependent)
type theory is to capture (co)end calculus, which is typically first-order in practical applications.

(9) Yoneda technique. Our proofs are logical, yet mirror the way that (co)end calculus is used in
practice (e.g., [15, 40, 74]), i.e., via a “Yoneda-like” series of natural isomorphisms of sets: to
prove that two objects A, B: C are isomorphic, one assumes a generic object ® and then applies
a series of isomorphisms of sets natural in @ to establish that C(®, A) = C(®, B), from which
A = B follows by the fully faithfulness of the Yoneda embedding [15, 50]. The same technique
can be used to show adjunctions, and that functors are naturally isomorphic.

(10) Adjoint-form rules. In typical syntactic presentations of type theory, rules for connectives are
formulated to make cut admissible [41, 77]. In our case, we cannot have in the semantics that
all entailments (i.e. dinaturals) compose, and therefore our rules must be stated in such a
way that cut is not admissible. In his seminal paper [48], Lawvere introduced the categorical
understanding of logic by viewing quantifiers/connectives as adjoints: we formulate (some of)
the rules of our type theory with dinaturals precisely in Lawvere’s “adjoint-form” (e.g. [43,
4.1.7, 4.1.8]), i.e., as natural bijections between entailments. In standard accounts of logic this
adjoint-form is equivalent to the usual intro/elim. rules for connectives, but only in the presence
of cut; the key observation is that, despite the absence of a general cut rule, the rules for
quantifiers/connectives in adjoint-form can be validated in our semantics with dinaturals.

(11) (Co)ends-as-quantifiers. The rules for ends and coends are reminiscent of the quantifiers-as-
adjoints paradigm by Lawvere [48], which we captured as “right and left adjoint” operations
to weakening [43, 1.9.1]. This adjointness relation should be only interpreted suggestively,
since (co)ends are functorial operations for naturals but in general not dinaturals [52, 1.1.7].
Our approach has the advantage that several properties of quantifiers, e.g., that they can be
exchanged and permuted, follow automatically from certain structural properties of contexts.
For example, in first-order logic the formulas Vx.Vy.P & Vy.Vx.P & V(x,y).P are logically
equivalent for any predicate P: this is indeed also verified for ends (and coends with existentials),
and takes the name of “Fubini rule” [53, IX.8], [52, 1.3.1], which we prove in Example 6.4. More
details on (co)ends and their calculus can be found in [53, IX.5-6], [52, Ch. 1].

(12) Dinaturality. Dinatural transformations do not compose in general [75]: this lack of general
composition turns out not to be a problem in practice, since they do compose in all examples of
interest. In such cases, dinaturals compose essentially because they compose with other natural
transformations [26], and we capture this in our system by providing two restricted cut rules.

Because of the lack of general compositionality, we do not consider a categorical semantics of our
type theory using standard categorical models, e.g., fibrations [43] or categories with families [18],
since they all ask for full composition, which cannot be guaranteed in our semantics. Hence, our
approach is to simply consider the main rules described in Figure 11 (which have restricted rules
for composition of entailments) and prove soundness w.r.t. the category model with dinaturals.

We formalize the soundness theorems given in this paper about dinaturality using the Agda proof
assistant and the agda-categories library. Whenever present, the symbol ({’f) next to theorems
links to the formal proof, for which we report here just the core idea. The full formalization is
accessible at https://github.com/iwilare/dinaturality.

1.2 Related work

Directed type theory has been approached in several (mutually incompatible) ways, with different
methodological choices regarding semantics and rules for directed equality, but without ever
investigating the connection to dinaturality.

, Vol. 1, No. 1, Article . Publication date: October 2018.

https://github.com/agda/agda-categories
https://github.com/iwilare/dinaturality/blob/main/
https://github.com/iwilare/dinaturality

344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365

367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
384
385
386
387
388
389
390
391
392

8 Laretto, Loregian, Veltri

Directed type theory with groupoids. North [61], Altenrkirch and Neumann [4] describe a
dependent directed type theory with semantics in the category of (small) categories Cat, but using
groupoidal structure to deal with the problem of variance in both introduction and elimination
rules for directed equality. This line of research has been recently expanded in [19, 62] by extending
judgments with variance annotations.

We focus on non-dependent semantics, and avoid groupoids by tackling the variance issue

with dinatural transformations; using dinaturality and (co)ends-as-quantifiers allow us to capture
naturality for free and characterize natural transformations inside of the type theory.
Directed type theory, judgmental models. Another approach to modeling directed equality is
at the judgmental level. This line of research started with Licata and Harper [51] who introduced a
directed type theory with a model in Cat. Since directed equality is treated judgmentally, there
are no rules governing its behavior in terms of elimination and introduction principles, although
variances are similarly used in context as in our approach. Ahrens et al. [2] similarly identify a
type theory with judgmental directed equalities and semantics in comprehension bicategories, and
extensively compare previous works on both judgmental and propositional directed type theories.
Logics for category theory. New and Licata [60] give a sound and complete presentation for
the internal language of (hyperdoctrines of) certain virtual equipments. These models capture
enriched, internal, and fibered categories, and have an intrinsically directed flavor. In these contexts,
the type theory can give synthetic proofs of Fubini, Yoneda, and Kan extensions as adjoints. This
generality however comes at the cost of a non-standard syntactic structure of the logic, especially
when compared to standard Martin-L6f type theory. Directed equality elimination takes the shape
of the (horizontal) identity laws axiomatized in virtual equipments [24], which in the Prof model
is essentially the coYoneda lemma. Their quantifiers are given by tensors and (left/right) internal
homs, which in Prof correspond to certain restricted (co)ends which always come combined with
the tensors and internal homs of Set.

Our work is similar in spirit in that we provide a formal setting for proving category theoretical
theorems using logical methods; we only focus on the elementary 1-categorical model of categories
and do not yet capture enriched and internal settings. However, we treat (co)ends as quantifiers
directly, viewing them as operations which act on the variables of the context, without the need for
them to include any conjunction or implication. Our rules for directed equality are more direct and
reminiscent of standard Martin-Lof type theory, and specifically focus on the semantic justification
of dinaturality. Since we consider less general models, our contexts do not have any linear nor
ordered restriction and the same variable can appear multiple times both in equalities and contexts:
for example, this allows us to write down the statement of symmetry (without being able to prove
it), and to consider profunctors of arbitrary variables, as typically needed in (co)end calculus.
Geometric models of directed type theory. Riehl and Shulman [73] introduce a simplicial type
theory for synthetic (oo, 1)-categories. A directed interval type is axiomatized in a style reminiscent
of cubical type theory [22], which allows a form of (dependent) Yoneda lemma to be derived
using such identity type. This type theory has been implemented in practice in the Rzk proof
assistant [45]. On this line of research, Weaver and Licata [84] present a bicubical type theory with
a directed interval and investigate a directed analog of the univalence axiom; the same objectives
were recently advanced in Gratzer et al. [34, 35] with triangulated type theory and modalities.

In comparison with the above works, we do not explore the geometrical interpretation of
directedness and focus on “algebraic” 1-categorical semantics; moreover, our treatment of directed
equality is done intrinsically with elimination rules as in Martin-Lof type theory rather than with
synthetic intervals, with semantics directly provided by hom-functors.

Coend calculus, formally. Caccamo and Winskel [25] give a formal system in which one can
work with coends and establish non-trivial theorems with a few syntactical rules. The flavor is

, Vol. 1, No. 1, Article . Publication date: October 2018.

393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429

431
432
433
434
435
436
437
438
439
440
441

Di- is for Directed: First-Order Directed Type Theory via Dinaturality 9

explicitly that of an axiomatic system, and does not take inspiration from type-theoretic rules: for
instance, presheaves are postulated to be equivalent under the swapping of quantifiers (Fubini), so
this principle is not derived from structural rules as typically done in a logical presentation.

1.3 Structure of the paper

We start in Section 2 by describing syntax and judgmental structure of the type theory, and give
examples of directed type theory in Section 3. We recall notions about dinaturals in Section 4,
which we then use for the semantics in Section 5. We then apply our type theory to give logical
proofs of theorems in category theory in Section 6, concluding in Section 7 with future works.

2 Syntax
We introduce the main syntactic judgments of our proof-relevant first-order directed type theory,
for which we describe the main ideas and notation in Sections 2.1 and 2.2.

Our type theory is structured in a similar way to first-order logic [43, 4.1], with judgments for
types and terms (i.e., sorts and function symbols), and predicates indexed by a term context.

We will omit several uninteresting equality judgments for contexts, terms, propositional contexts,
as well as usual congruence and equivalence rules. We list here the main judgments of our type
theory alongside a brief description of their semantics to aid intuition, with details in Section 5.

o | C type |types C, D are interpreted in the semantics as small categories. Types can
have —°P, and include the terminal T, product C x D, and functor categories [C, D].

. judgmental equality of types, interpreted as isomorphisms of categories;
we use this to simplify (C°P)°P = C and propagate the op inside types.

° contexts I', A are finite lists of categories, interpreted as products in Cats;
. variable in context, which captures the de Bruijn indices of variables

Figure 8: in context I'; for us variable names are irrelevant, and we always identify variables
with these judgments. Semantically, these are the projections out of [I'].

. terms F, G as functors [I'] — [C], which are similar to terms in STLC;

e | [T'] P prop | predicates P, Q as dipresheaves, i.e., functors [P]:[T']° x [T] — Set;

Figure 9: 1 ¢ | [T'] ® propctx | propositional contexts ®, &’ are finite lists of predicates, which
we interpret via the pointwise product of dipresheaves in Set;

Figure 7:

e [[T'] ®+ a: P|entailments a, §, y are interpreted semantically as dinatural trans-

formations [®] —= [P]; we axiomatize composition/cut only with natural trans-

Figure 11: . .. -
formations, not requiring general composition;

. ‘ [T]®+a=p:P ‘ equality of entailments, i.e. equality of dinaturals in Set.

For predicates we consider the following logical connectives, which we denote syntactically with
the same symbol later used in the semantics:
e conjunction — X —, interpreted as the pointwise product of dipresheaves in Set;
e polarized implication — = —, by postcomposing dipresheaves with homg,; : Set°P X Set — Set;
e propositional directed equality homc is interpreted by hom-functors : C°P x C — Set;
e universal and existential quantifiers /x o P(xx), f x:CP(Tc, x) are given by ends and coends.
The judgments for types, terms, propositions and entailments are given in Figures 7 to 9 and 11.
Our directed type theory is equipped with an equational theory for entailments, which we
describe the key features of in Section 2.2 without spelling it out in detail. The most important
cases are given in Figure 11 for directed equality, Figure 15 for cuts, Figure 16 for adjoint rules.

, Vol. 1, No. 1, Article . Publication date: October 2018.

442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478

480
481
482
483
484
485
486
487
488
489
490

10 Laretto, Loregian, Veltri

c Ce¥p Ctype Ctype Dtype Ctype Dtype
t
Ctype C°P type C x D type [C,D] type T type

(C®)°P=C (CxD)®=C®xD® [C,D| =[C®,DP] To% =T

Fig. 7. Syntax of first-order dinatural directed type theory — types and judgmental equality.

Ictx Ctype T ctx

[] ctx T, C ctx TP ctx

7 C=C Tr=r
=] [®=[] LO®=T®C® ~[c-rc

- I's>x:C

ILx:Cax:C TLy:D>x:C
I's>x:C r'+t:C fe3r Trt:dom(f)
: F'rx:C T o CoP T+ f(¢): cod(f)
F'ts:C Trt:D TrHp:CxD TrHp:CxD
rv!:T Tk (s,t):CxD IF'rm(p):C Trm(p):D

I'ts:[C,D] T+t:C T,x:Crt(x):D

IF'rts-t:D I+ Ax.t(x): [C,D]
Ix:Crf(x):D Trt:C Ix:Cr f(x):D
't (Ax.f(x))-t=f[x—t]:D T,x:Cr (Ax.f(x))-x=f(x):D
I'rp:CxD I'et:T Trs:C Trt:D Trs:C Trt:D
Tr{(m(p),m(p)=p:CxD Trt=1:T Ttm{st))=s:C Trm(st))=t:D
T'rt:C IT'ts:C T+rt:D TP, x:Crt:D

Tr(P)P=¢t:D TPF(s£)% = (sP,1tP) : CP XD T (Ax.t(x))°P = Ax.t°P(x) : [C°P, D°P]
Fig. 8. Syntax of first-order dinatural directed type theory — contexts, variables, terms and their equality.

[T] Pprop [I'] Qprop [T°P] Pprop [I']Q prop

I'| P pro
[T'] P prop [T] P x O prop [T] P = O prop [T] T prop
P Trs:CP TPT+t:C PeZp TP°TFs:neg(P)®® T T +t:pos(P)
[T] homc (s, t) prop [T] P(s | t) prop

[T,x:C] P(x,x) prop [I,x:C]P(x,x) prop
(T] fx:c P(x,x) prop [I] fx:c P(x, x) prop

® propctx P prop

Fig. 9. Syntax of first-order dinatural directed type theory — predicates and propositional contexts.

, Vol. 1, No. 1, Article . Publication date: October 2018.

491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Di- is for Directed: First-Order Directed Type Theory via Dinaturality 1

‘Fax:AcovinP

I'sx:AcovinP T>x:AcovinQ T°>5x:A®covinP T >x:AcovinQ
I'sx:AcovinPxQ I'sx:AcovinP=Q
I'°P T >x:A%° unusedins : C°? T°, T >Xx:A% unusedint:C
I' > x:Acovin homg(s,t)
P, T 5 X : A°’ unused ins : neg(P)°®? T°P,T 5 x:A° unused int : pos(P)
I'sx:AcovinP(s|t)
TP 5 x : A°? cov in P°P
I'>x:AcontrainP
I'sx:C x+#y

’I‘ax:AcontrainP‘

’Fax:Aunusedint:C‘

I'sy:Cunusedinx:C
I'sx:Aunusedint: dom(f) I's>x:Aunusedint:C
I > x:Aunusedin f(t) : cod(f) T°P 3 x:A° unused int° : CP

Fig. 10. Syntax of first-order dinatural directed type theory — syntactic conditions for covariant/contravariant
variables in predicates. Full rules in Figure 14.

[T]®Fa:Q T
TP e UL S ey

I[P THF:C [x:CT]o(,x)Fa:Q(x,x)) [T]P,P, o+ a:Q
— — (idx) (contr)
[T] ®(F(x,%), F(x,x)) + F*(a) : Q(F(x,x), F(x,x)) [T] P,® + contrp(a) : Q
[T]®+PxQ [x:T] A(x, x), ®(x, x) + B(x,x)
(prod) (exp)
[[]®rP, [[]®FQ [x: T] O(X, x) - A% (x,%) = B(%, x)
. - a:C —
[a:C,T] @+ P, a)_ gy T ([““pG@ a)),@ L0 e
[T1@+ [P@a) [a:C.T| P(@a).®r O
T unused in P I unused in P
[a:A% b:A] ®(a,b) ra :P(a,b) [z:A] @(E,f) Fy :P(z,2)
[z:A] k: P(zZ, z),d)(f, z) +ylk] :Q(f, z) (cut-din) [a:A°P,b:A] k:P(a,b),®(a,b) + a[k]:Q(a,b) (cut-nat)
[z:A] @(2,2) +Fy[a]:0(z,2) [z:A] ©(Z,2) + a[y]:0(z 2)
(reﬂ) [Z : C, F] (D(E, Z) b h P(E, Z)

[x: C.TT @ - reflc : homc (, x) [a:C% b:C,Ie: home(ab),®(5,a)+ J(h)[e] : Pa,b)

[Mlera=4:P| Licrk oGt JWhefic]=h pGa o P

[z:C,T] ®(z,2) + alreflc] = p[reflc] : P(z,z)
[a:C b:CT]e:home(ab),®(ba)r ale] = Ble] : P(a, b)

(J-eq)

Fig. 11. Syntax of first-order dinatural directed type theory — entailments and judgmental equality.

, Vol. 1, No. 1, Article . Publication date: October 2018.

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588

12 Laretto, Loregian, Veltri

The rules for entailments implicitly use the notion of variance for variables, described in Re-
mark 2.2. Variance is captured formally in Figures 10 and 13 by the following judgments, all of
which presuppose I' 3 x : A for a variable x of type A in context I':

Figure 13: {o ’ I'>x:Aunusedint:C ‘for x:A does not syntactically appear in a term ¢.

e [I'>x:AcovinP ‘ states that x:A is covariant in the predicate [T'] P.

Figure 10:
e |[I'>x:AcontrainP ‘ states that x: A is contravariant in the predicate [T'] P.

To make the type theory non-trivial, our judgments are implicitly parameterized by a standard
notion of signature ¥ := (Xp, X1, Xp, 24), i.e., sets of base type symbols, term symbols, predicate
symbols, and base entailments respectively. Base predicates P(s | t) for P € Xp are equipped with
two terms, a negative one s : neg(P)°P and a positive one ¢ : pos(P) typed in the same context I'°P, T
This choice is motivated by the fact that hom is similarly equipped with two sides. The judgments
for equality of types are not extended by the signature. We omit the details of this extension.

2.1 Polarity and variance

The main idea behind dinatural transformations is that variables in a predicate are allowed to be
used irrespectively of the op in their type (or lack thereof). To give a taste for our type theory, we
show what the statement and proof of transitivity of directed equality look like in our system:

(var)

: C, :C : h Z, - h z,
[z c:C] g : hom(z,¢) + g : hom(z,c) 0

[a:C%,b:C,c:C]f:hom(ab), g:hom(b,c)F J(g) : hom(a,c)

Whenever a variable b : C is used with the “wrong polarity” we denote such use with b:C% asin
the above example. In order to make this intuition precise, we formally introduce the concepts of
position, polarity, and variance and their notation in the type theory. Variance is ultimately used to
implement the syntactic restriction of directed equality elimination (J).

We use the term polarity of a type to refer to the fact that types always come in pairs: whenever
C is a type, its opposite C°P is also a type. Polarity is a relative notion: we say the type C°P is the
negative of C irrespectively of the fact that C itself might have an outermost syntactic op.
Polarity is used in the syntax of the type theory in the following way:

e The op operation is also present in contexts, i.e., for a I' ctx there is a negative context T'°P
which is definitionally equal to the context obtained by adding op to each type.

e In the formation rule for [T'] homc(s,) in Figure 9, the term s is given return type C°P.

o In the formation rule for [T'] P = Q in Figure 9, the predicate P is given type in I'°P.

The other crucial idea of our system is the above-mentioned fact that variables can appear at the
same time irrespectively of their polarity. This is implemented by the following ideas:

e There are two cases where variables can appear in a predicate, namely the base cases
[T] homc(s, t) and [T'] P(s | t), where the two terms s, ¢ can use the variables from T'.

o The key idea is that both s, ¢ are not given type in T', but in the context concatenation P, T

e Intuitively, this allows for variables to be used in s, ¢ also in the “wrong way” (with respect
to the original polarity of the context I' in which P is given type).

We give a specific name to the terms of this shape in concatenated contexts I'°P, T, since they also
play a crucial role in reindexing.

Definition 2.1. A diterm is a term of the form I'°?,T' - ¢ : C for some context I'.

We now capture the above intuitive ideas behind polarity and variance with precise terminology.

, Vol. 1, No. 1, Article . Publication date: October 2018.

589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637

Di- is for Directed: First-Order Directed Type Theory via Dinaturality 13

Definition 2.2 (Positions in a predicate). The name position refers to a point in which a variable
x:C can appear in a predicate, e.g., there are four possible positions x, y, z, w for variables to appear
in the predicate homc (x, y) X P(z, F(w)).

Definition 2.3 (Variant use of a variable). For any predicate [I'] P and a position of type C°P in P,
we say that a variable I' 3 x : C (with no op) is used contravariantly in that position iff the variable
used in that position is taken from the left side I'°P (in the context concatenation I'°P, '), i.e., with
type x : C°P. Accordingly, we will always denote variables taken from such left side of the context
with an overbar x. Similarly, given a position of type C in P we say that a variable I' 3 x : C is
used covariantly in that position iff it is taken from the right side I (i.e. in the usual way), which we
denote without any overbar.

The notation x is suggestive of the fact that x : C°? and x : C will be identified with the same
value when using dinatural transformations in the semantics of entailments.

Example 2.4 (Derivation of a predicate). We provide an example derivation of a predicate in context
combining the previously introduced ideas of co/contravariant variables, for aterm x : C + F(x) : D.

x:C,y:D,x:CP,y:DP +x:C
x:C,y:D,x:CP,y:DP + y:D°? x:C,y:D,x:C,4y:DP + F(x) : D i Fx:C
[x:C°P,y:D°P] homp (y, F(x)) prop [x:C,y:D] P(x) prop
[x:C,y:D] homp(y, F(x)) = P(x) prop

Definition 2.5 (Variance of a variable). Variables can occur in multiple positions at the same time:
we say that a variable I' 5 x : C is covariant in a predicate [I'] P iff it is always used covariantly in
the positions of P, i.e., it is always picked from the right side I" of the context I'°P,T" and is hence
always used “correctly” with respect to I'. Similarly, a variable T’ 3 x : C is said to be contravariant
in a predicate [T'] P when it is always used contravariantly in the positions of P, i.e., it is always
picked from the left side T'°P of the context I'°P, T and is hence always used “in the wrong way”
with respect to I'. A variable is said to be natural when it is either covariant or contravariant, i.e., it
is consistently used with the same variance. A variable is said to be dinatural or mixed-variance iff
it is neither covariant nor contravariant, i.e., it occurs at least once covariantly and at least once
contravariantly in a predicate.

Example 2.6 (Variance). In the predicate [x:C°,y:C] homc(x,y), both x and y are covariant.
In [x:C,y:C, z:C] homc(X,y) X homc(y, z) the variable x is contravariant, y is dinatural, and z
is covariant. In [x:C°P, z: C°P] homc(X,z) = homc(z,X), x is contravariant and z is covariant.
Finally, for a term C°P + F : D (i.e., a “contravariant functor”), x is covariant in [x:C] homp (F(x), x).

The above definitions capture the way that natural and dinatural usage of variables is referred
to in practice. Formally, variance of variables in predicates is captured using the judgments in
Figures 10 and 13. The actual implementation of variance is slightly different from the description
above, but they are equivalent: the judgment I' 3 x : A cov in P is derivable, i.e., the variable x is
covariant, when its contravariant counterpart x is not syntactically used anywhere in the predicate.
This last aspect is itself captured by a straightforward judgment, described in Figure 10, which
underapproximates syntactic unusedness of variables in terms. The well-formedness of these
judgments occasionally relies on the fact that I' 5 x : A implies that I'°? 5 x : A°?, and similarly
TP, T 3 x:Aand I'P,T 3 X : A° in the intuitive way.

, Vol. 1, No. 1, Article . Publication date: October 2018.

638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686

14 Laretto, Loregian, Veltri

Example 2.7 (Variance, formally). We give an example of a formal derivation for covariance using
the predicate in Figure 10, assuming for simplicity that the predicate P does not have any variables:

[x:C,y:D,x:C°,y:D°°] 5y :Dunusediny [---] 27 :D unused in F(x)
[x:C°P,y:D°P] 5 y : D cov in homp(y, F(x))
[x:C,y:D] 3y :D covinhomp(y, F(x)) = P

REMARK (NOTATION FOR VARIANCE IN PREDICATES). We indicate with [x : C,y,D,T'] P(X,x,73,y)
the fact that a predicate P can depend on x, y both co- and contravariantly; we will often omit in P the
(unrestricted) presence of variables coming from a context I'. When either variance is omitted, e.g., as
in P(x,), the predicate must depend only on x and 7y, i.e., x is covariant and y is contravariant in P.
Variance for entire contexts is intuitively denoted as [y : T'| P(y), i.e., all variables in T are covariant.

Formally, these restrictions are captured using the predicates for variance of Definition 2.5. We use
this convention in the rules for entailments of Figure 11.

There are many choices for the system of variances presented so far: the one presented here is a
simple setup that closely matches the intuition for contravariance typically used in mathematics,
denoting variables as contravariant precisely when one expects it as shown in Example 2.4.

Mnemonically, positions have polarity, and variables have variance. Covariant variables are
“compliant” and they are used as they are told, while contravariant variables are “contrarian” and
always reject well-typing laws.

For any predicate [I'] P, there is an associated opposite predicate [T°P] P°P, defined by induction
on the derivation of P, obtained intuitively by inverting the variance of variables in each position:
i.e., whenever x was used in some position, x is used instead, and vice versa. This operation is used
in the rule for polarized implication (exp), described in Section 2.2, and to define contravariance in
Figure 10. Note that this operation on predicates is defined metatheoretically: types and terms are
the only two judgments for which there is a —°P in the syntax.

We start by first defining a metatheoretical operation on diterms that simply swaps contexts:

Definition 2.8 (Context swap of a term). Given a diterm I'P, T + ¢ : C, we indicate with I', TP
tswap . C the context swap of t, which is the term derivation obtained in the intuitive way
by swapping the left and right side of its context; for example, (X : D, x : D I x : D)™V =
(x:D,x:D° +x:D),and (x : C°P,x : C + F(x) : D)™™ = (x : C,x : C°P + F(x) : D) for some
term X : C°P,x : C + F(x) : D. Crucially, the return type of the term does not change, which would
be the case with the t°P operation internal to the syntax. Effectively this operation only rearranges
the de Bruijn indices of variables, which is what the judgments for variance in Figure 10 use to
detect co/contravariance.

Definition 2.9 (Opposite predicate). Given a predicate [I'] P, there is a predicate in context I'°P
called the opposite of P defined by (metatheoretical) induction on derivations of predicates:
= : {[I'] = prop} — {[T°P] — prop}
(MP:=71
(P = Q)% = PP = Q%
(P x Q)°P := P°P x Q°P
(P(S | t))op = P(sctxswap | tctxswap)
(homc (S, t))op = homc (sctxswap’ tctxswap)

[rn) = 1 i
([or0)” = o P

, Vol. 1, No. 1, Article . Publication date: October 2018.

687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735

Di- is for Directed: First-Order Directed Type Theory via Dinaturality 15

This operation can similarly be defined by inverting the polarity of a single variable: given a
predicate [x : C,T'| P(x,x) we denote with [x : CP,T'] P*7°P(x,X) the predicate obtained by
inverting the polarity of each position in P where x is used. A similar definition can be extended
on propositional contexts ®. All these operations on predicates are clearly involutive.

Example 2.10. Taking the predicate of Example 2.4 and applying the predicate inversion operation
(homp (y, F(x)))° produces the following derivation:

x:CP,y:D?,x:C,y:Drx:C
x:CP,y:DP,x:C,y:D+7y:D° x:C°,35:D,x:C,y:D+ F(x) : D
[x:C,y:D] homp(y, F(x)) prop

The judgment for contravariance I' 3 x : A contra in P in Figure 10 is defined in terms of the
covariant one and the notion of opposite predicate P°P. Note that the well-formedness of this
judgment relies on the fact that I' 3 x : C implies I'°P 3 x : C°P.

Example 2.11 (Contravariance, formally). We give an example of a formal derivation for con-
travariance, following Example 2.7:

[x:C°,y:D°,x:C,y:D] 5% : C? unused inx : D
[(--]12Xx:C%P°unusediny [x:C°,3:D,x:C,y:D] > x : C°? unused in F(x) : D
[x:C,y:D] 3 x : C cov in homp (7, F(x))
[x:C°P,y:D°P] 3 x : C°P cov in homp(y, F(x)) = P
[x:C,y:D] > x : C contra in homp(y, F(x)) = P

2.2 Rules

We now describe and give intuition for the main rules for entailments of our type theory in Figure 10.
REMARK (NOTATION FOR ENTAILMENTS). We use type-theoretic notation for entailments,
[x:Cy:D,..]a:P(xx7y..).b:0(x,x7y,..),... Falab,..] : R(x,x,73,y,...)

where we give names to each assumption in the list ® := P, Q, We overload square brackets a[a, b, ...]
both to indicate the assumptions and to denote composition of entailments in (cut-din) and (cut-nat).

Some of our rules are formulated in “adjoint-form” (e.g. [43, 4.1.7, 4.1.8]), i.e., as natural bijections
between entailments. We use double lines in Figure 11 to indicate such isomorphisms of entailments,
using judgmental equality of entailments to ensure that one direction is the inverse of the other.
Naturality coincides with the fact that these isomorphisms commute with (both) the cut rules in
the equational theory whenever possible: we use this in Section 6 for the Yoneda technique. We
give a spelled-out example of adjoint-form in Figure 16 for the (end) rule, describing precisely the
naturality requirement for the rules in such form.

o Structural rules. The rules (var), (wk), (contr) capture the usual structural rules for assumptions,
weakening, and contraction.

e Products. The rule (prod) for conjunction P X Q is standard: reading the rule top-to-bottom,
given a proof [I'] ® + P X Q one can extract a proof [I'| ® + P. Similarly, given two entailments
with type P and Q in the same context one obtains an entailment with type P X Q.

o Polarized implication. Implication (exp) is similarly captured via the adjoint formulation, with
a catch regarding polarity: the key idea is that a predicate P(x, x) can be curried from one side to
the other of the entailment by reversing the variance of all its variables, i.e., using P°P. Contrary

, Vol. 1, No. 1, Article . Publication date: October 2018.

736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784

16 Laretto, Loregian, Veltri

to naturals and presheaves [50], dinaturals can be curried directly via the (exp) rule by currying
each component of « in Set. A similar idea is described in [10, 32] as twisted exponential.

e (Co)ends. The rules (end), (coend) capture the directed quantifiers of our type theory, i.e.,
(co)ends. These are also characterized in “adjoint-form”, following precisely the same formulation
of [43, 4.1.8]. Note that ® is given type in I', and we do not make this weakening explicit.

e Reindexing. Following the doctrinal presentation of logic (see [43, 71] for standard accounts),
variables in entailments can be substituted with terms using the rule (idx): in particular, entail-
ments can be substituted with diterms, i.e., terms that are allowed to access the whole concatena-
tion of contexts I'°P,T'. The fact that F is a diterm is not a mere technical point, and it is used in
Remark 3.2 and theorem 3.14 to derive certain non-trivial structural rules related to variance.

e Cut naturals-dinaturals. We present two restricted cut rules (cut-din), (cut-nat) that allow
entailments to be composed together. Associativity and identities for these is captured in Figure 15,
along with a coherence condition that makes the two cuts agree whenever both entailments are
naturals. The occurrences E,E in @ in (cut-nat) are needed to make sure that, in the semantics, «
is natural in a, b when the domain is just P, i.e., by using (exp) to move ® and invert the variance
of a,b. Similarly, P must also not syntactically depend on I to ensure naturality in g, b, but both
® and Q can depend on I' without any restriction; we elaborate on this in the semantics of cuts
in Section 5, which we use to state the naturality requirement for, e.g., ends in Figure 16.

o Directed equality elimination. The operational meaning behind (J) is the following: having
identified two covariant positions a:C° and b:C in the predicate P, if there is a directed equality
homc (a, b) in context then it is enough to prove that P holds “on the diagonal”, where the two
positions have been collapsed with the same dinatural variable z : C; moreover, a, b can be
collapsed together in the context ® only if they appear contravariantly, i.e., as a and b.

e Dependent hom elimination. A dependent version of directed J, rule (J-eq), is needed to
prove equational properties of maps definable with (J); this is done by allowing hom(a, b) to
be contracted inside equality judgments. Intuitively, given entailments a[e] and f[e] with an
equality in context e : homc (g, b) which can be contracted using (J), we can deduce that « and
B are equal everywhere as soon as they are equal on e = reflc , for every z : C.

3 Directed equality a la Martin-Lof

We show how the rules for directed equality can be used to obtain the same terms definable
with symmetric equality in Martin-Lof type theory, and proving properties about them follows
precisely the steps of the usual proofs, i.e., by equality contraction and computation rules [41, 78].
All examples in this section satisfy the constraints for (cut-nat), (cut-din) to be applied.

We start by showing transitivity of directed equality, i.e., categories have composition maps.

Example 3.1 (Composition in a category). The following derivation constructs the composition
map for C, which is covariant in a : C°?, ¢ : C and dinatural in b : C:

(var)

)

[z:C,c:C] g : hom(z,c) + g : hom(z, c)
[a:C% b:C,c:C]f:hom(ab), g:hom(b,c)F J(g) : hom(a,c)

We contracted the first equality f : hom(a, b). Rule (J) can be applied since a, b appear only
contravariantly in context (a does not appear) and covariantly in the conclusion (b does not).
We now prove that comp|[f,g] := J(g), denoted as “f ; g, is unital on identities (i.e., reflc) and
associative. Since we chose to contract f, the computation rule ensures unitality on the left:

(J-comp)

[z:C,c:C] g:hom(zc) + refl, ;g =g : hom(z, c)

, Vol. 1, No. 1, Article . Publication date: October 2018.

785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806

808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833

Di- is for Directed: First-Order Directed Type Theory via Dinaturality 17

On the other hand, to show that composition is right-unital we use dependent directed equality
induction (J-eq), where now it is enough to just consider the case in which a = z = w and f = refl,,,

(J-comp)
(J-eq)

[w:C] .+ refl,, ; refl,, = refl,, : hom(w, w)
[a:C%,z:C] f:hom(a,z) + f;refl, = f : hom(a, z)

which follows by the computation rule for comp since refl,, is on the left. Similarly, to show
associativity we just need to consider the case a = b = z and f = refl,,

(J-comp)

[z:C,c:C,d:C] g :hom(z,c), h : hom(c,d) + refl,; (g;h) = (refl,;g) ; h : hom(z, d) (J-eq)
-eq

[a:C,b:C,c:C,d:C]f:hom(E,b),g:hom(E,c),h:hom(E,d) Ffi(g;h)=(f;9);h:hom(ad)

where in the top sequent both entailments are equal to g ; h by the computation rules of comp.

Example 3.2 (Functorial action on morphisms). For any term/functor C + F : D, the functorial
action on morphisms of F corresponds with the fact that any term F respects directed equality, i.e.,
directed equality is a congruence:

(idx)+(refl)
W)

[z:C] « + F*(reflc) : homp (F°P(2), F(z))
[x:C,y:C]f:homc(x,y) v J(F*(reflc)) : homp (F°P(X), F(y))

and thus we define mapg[f] := J(F*(reflc)), using (idx) with F in the top sequent.
The computation rule states that F maps identities to identities:

" — (J-comp)
[z : C] T + mapg[reflc] = F*(reflc) : homp (F°P (), F(x))

The following shows functoriality for free; both top sides reduce to map[g] using (J-comp):

(J-comp)
(J-eq)

[z:C,c:C] g :hom(z,c) r mapg[refl; ; g] = reflg(;) ; mapp[g] : hom(z, d)
[a:C,b:C,c:C] f:hom(ab),g: hom(b, ¢) + mapg(f;g] = mapg[f]; mapg[g] : hom(a, d)

Example 3.3 (Transport). Transporting points of predicates along directed equalities [78, 2.3.1] is
the functorial action of copresheaves P : C— Set, i.e., predicates [x : C] P prop, for x only positive:

(var)
)

[z:C]k:P(z)rk:P(z)
[a:Cb:C] f:hom(ab) k:P(a)r J(k):P(b)

The computation rule simply states that transporting a point of P(a) along the identity morphism
with subst[f, k] := J(k) is the same as giving the point itself, i.e., subst[reflc, k] = k.

Example 3.4 (Pair of rewrites). Pairs of directed equalities induce directed equalities between
pairs. The other direction (i.e., “directed injectivity of pairs”) follows from congruence of directed
equality with the projections 7y, 7, and then using the judgmental equality of terms.

(idx)+(refl)
)
U)

[z:C,2’ : D] « F homcxp((Z,2), (z, 2))
[@":C°P,b" : D,z :C] g:homp(b,b’) + homexp((Z,), (z,b))
[a, @’ : C°P,b,b" : D] f : homc(a,a’),g : homp (b, b’) + homexp((a,b), (a’, b))

, Vol. 1, No. 1, Article . Publication date: October 2018.

834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882

18 Laretto, Loregian, Veltri

Example 3.5 (Higher-dimensional rewriting). The following shows that a directed equality between
functors induces a natural transformation [52, 1.4.1] (omitting the resulting term for simplicity):
(idx)+(refl)

(end)

[H:[C,D],x:C]-+rhomp(H- X H - x)
[H:[C.D]]++ [. homp(H X H-x)

[F:[C,D]°®,G: [C,D]] e:hom|cp|(F,G) + fx:C homp(F - x,G - x)
The opposite direction is not derivable in general, since in the case where C, D are discrete categories
(i-e., sets), it corresponds to function extensionality.
Example 3.6 (Existence of singletons). The following derivation asserts that singleton subsets are
inhabited [78, Remark 1.12.1], i.e., there is a proof for the first-order logic formula Vx.3y.x = y:
(var)

[x:CoP] k: fy:c home (x,y) + k : fy:C homc(x,y)

(coend)
[x:C°, y:C] f:homc(x,y) + coend™ ! (k)[f] : fy:C homc¢(x,y)
(cut-nat)

[x:C] «+ coend ! (k)[refly] : /y:C homc (X, y)

[1++ end(coend ™ (k) [refl,]) : [[* homc(%.y)

This derivation is actually an isomorphism in the model, i.e., singletons are contractible. This
follows from dependent directed equality contraction, which we show in detail in Example B.1.

(end)

The following theorems show that in our type theory both naturality and dinaturality follow
“for free” from dependent directed equality contraction. Cuts are allowed in both cases because of
the natural appearance of variables in subst.

Example 3.7 (Internal naturality for entailments). For any [x : C] P(x) + @ : Q(x), an internal
version of naturality for entailments holds via (J-comp):

[z:C]k: P(z) + afsubstp[refl,, k]] = substg[refl,, a[k]] : O(2)
[a:C%,b:C]f:homc(a,b),k:P(a) + a[substp[f, k]] = substo[f, a[k]] : O(D)

Example 3.8 (Internal dinaturality for entailments). For any [x : C] P(x,x) + a : Q(X,x), an
internal version of (di)naturality for entailments, as in Definition 4.2, holds via (J-comp):

(J-comp)

(J-comp)
(J-eq)

[z:Clk: P(zz) + substo[(refl,, refl;), [a[substp[(refl,, refl;), k]]]]
= substg [(refl,, refl,), [a[substp[(refl;, refl;), k]11] : Q(Z, 2)

- (J-eq)
[a:C%,b:C]f:homc(a,b),k:P(b,a)k substo[(refly, f), [a[substp[(f, refl,), k]]]]
= substg [(f, refly), [a[substp[(refly, £), k]1]1] : Q(a, b)
We elucidate more in detail why the above sequence of cuts is valid in Appendix H.

We show in Examples B.2 to B.4 how natural transformations between terms can be captured
using ends [52, 1.4.1]. We show the identity natural, composition of naturals, and internal naturality.

3.1 On the adjoint formulation

We elaborate how the adjoint formulation, i.e., the fact that rules are formulated as bijections of
entailments, differs from the standard type-theoretical presentation of connectives in the style of
natural deduction or sequent calculus [56, 5.1.6]. Since in both of these systems cut is either derivable
or admissible, we cannot recover the usual rules for introduction/elimination for quantifiers and

, Vol. 1, No. 1, Article . Publication date: October 2018.

883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904

906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924

926
927
928
929
930
931

Di- is for Directed: First-Order Directed Type Theory via Dinaturality 19

implication, since in the semantics this would enable us to compose any two entailments/dinatural
transformations. We give an example of introduction/elimination-like rules derivable from the
adjoint formulation for (co)ends in Example 3.9.

Example 3.9 (Rules for (co)ends with terms). The following derivations capture an elimination
rule for ends and, dually, an introduction rule for coends using a concrete diterm I'°P,T + F : C:

x:C
[F]Cbl—a:/ P(x, x) [F]k:/ P(x,x),®oFa:Q
x:C -1 -1
(end™1) (coend™")
[x:C,T]®Fend ! (a):P(xX,x) . [x:C,T] k:P(x,x),®+rcoend !(a): Q
idx) idx)

[[] ®F F*(end™!(a)) : P(F,F) [T] k : P(F,F),® + F*(coend ' ()) : Q

We can recover the the projection and injection maps of (co)ends (i.e., the “(co)units” of the adjoint
formulation) by picking Q := /x:C P(x,x),®:= /xzc P(x,x),®" and a := (var) as follows:

[T] k- /»c P(x,x),® + F*(end™'(k)) : P(F,F) [T]k :P(F,F),®+ F*(coend™'(k)) : /X:C P(x,x)

The crucial aspect is that we cannot derive the above introduction/elimination rules where,
instead, the end appears on the left, or the coend on the right: these would be the remaining rules
for the quantifiers of sequent calculus, and hence full cut would be admissible. In particular we only
recover Vg and Jr, but not V; and g, using the terminology of [56, 5.1.8]. We formally prove the
non-admissibility of an unrestricted cut rule in Theorem 5.3.

In standard accounts of logic, the adjoint-form is equivalent to the usual introduction and
elimination rules for connectives, but only in the presence of cut [43, 4.1.8]. Hence, in our setting
we can recover the usual rules only in contexts that are sufficiently natural to allow for cuts to be
applied. We give an example of this situation in Example 3.10 to derive introduction/elimination-
like rules for existentials in the style of natural deduction [56, 5.1.6], and derive in Example 3.11
transitivity of implication (which directly translates to an elimination rule).

Example 3.10 (Natural deduction-style rules for coends). The following derivations capture rules
where coends are on the right of the turnstile: an elimination rule, an introduction rule with a
concrete term A + F : C (not a diterm), and an introduction rule with two variables x : C°P,y : C:

[T.d:Al ©d) F [““PRxd) [T.d:A] (d) + Q(F(d).d) [T,x:Cy:C] B(x,) - R(x.y)

[[,z:C,d:A] P(z,2,d),®(d) + Q(d) o 2C
I,d:Al®d)+r [,d Il ®(x,y) R(z,
e iale@ro@ MA@ o (M ety) r [TRER)
Note that the variables of A are always used naturally, and P, Q, R do not depend on I'. F cannot be
a diterm since Q(F (x, x)) would make the top entailment dinatural in the variables of A. We report
complete derivations for these rules in Appendix C.

Example 3.11 (Transitivity of implication). Implication is transitive in natural contexts, with [T'] ®:

[a:C]PFa:P(a) = Qa) . [a:C]®F pB:Q(a) = R(a)

@ rop @ 0@ | [aClo@.er op(h): Ria)
[a:C]P(a), @+ a;p=exp™(B)exp~'(a)] : R(a)

Polarized implication is in general not transitive, since, as we will see in Section 5, entailments are
interpreted as dinaturals which do not compose in general; we show how in Theorem D.4 one can
use implication and ends to internalize the set of all entailments/dinaturals.

(exp™)

(cut-nat)

, Vol. 1, No. 1, Article . Publication date: October 2018.

932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973

975
976
977
978
979
980

20 Laretto, Loregian, Veltri

3.2 Aspects of directed type theory

We investigate in this section other proof-theoretical aspects of our directed type theory: in
particular we show why symmetry is not immediately derivable and how all rules for directed
equality can be equivalently characterized as a single isomorphism.

REMARK (SYNTACTIC FAILURE OF SYMMETRY FOR DIRECTED EQUALITY). The restrictions in (J)
illustrate why one cannot derive that directed equality is symmetric, i.e., obtain a general map

[a:C% b:C]e:homc(a,b) +sym : home(b, a).

The equality e : homc (a, b) cannot be contracted because a appears in the conclusion contravariantly
(similarly with b), whereas (]) requires that the conclusion only has covariant occurrences of the
variables being contracted.

The remark above merely illustrates why it is not derivable from the syntactic restriction. We show
in Theorem 5.2 that the existence of a countermodel implies that it is not admissible in general.

As in the symmetric case, the rule for directed equality elimination is actually an isomorphism,
and asking (J) to be an isomorphism fully characterizes all the rules of directed equality [43, 3.2.3]
(in the presence of the structural rules (cut-nat) and (var)):

THEOREM 3.12 (DIRECTED J As 1somorpHISM). ({f) Rule () is an isomorphism, and the inverse
map is given by J~1(h) = h[reflc] using (cut-nat) and (refl). Moreover, (J-eq) is logically equivalent
to the rule J(J'(«)) = « in the equational theory for every a.

ProoF. The computation rule states precisely that J~!(J(a)) = a. To show J(J~!(a)) = a, we in-
stantiate (J-eq) with « := J(f[reflc]) and use (J-comp) in the hypothesis, i.e., J(B[reflc]) [reflc] =
Blreflc], to obtain J(B[reflc]) = B as desired. We show that J(J~!(a)) = « implies (J-eq): the
hypothesis in (J-eq) states exactly J™*(«) = J~1(f), hence « = B by applying J on both sides. O

THEOREM 3.13 (J~! < refl). Rule (refl) is logically equivalent to (J71).

Proor. Clearly (refl) implies (/') by definition. Rule (refl) follows from (J~!) in Theorem 3.12 by
picking P(a, b) := hom(a, b) and using the projection (var) to return the hypothesis e : homc(a, b)
as the bottom side map h, obtaining reflc := J~!(e). We leave the proof that the computation rule
J(h)[reflc] = h holds in Appendix E. o

The following derivations illustrate how dinaturality, intuitively, allows us to “ignore” polarity
in the contexts of predicates, i.e., one can equivalently consider a contravariant variable of type C
as a covariant variable of type C°P, and viceversa.

THEOREM 3.14 (op OF ENTAILMENTS). The following rule is derivable:

[x:CT] ®(x,x) Fa: P(x,x)

[x : C,T] &~ (x,X) F ¥ : P~ (x, %)

Proor. Follows by reindexing (idx) with the “negative projection” ditermx : C,x : C°P + x : C.
The predicate obtained by substituting this term in P coincides (metatheoretically) with P*~°P.
This reindexing is involutive in the sense that (a*~°)*~° = ¢ in the equational theory. |

In particular, the above derivation allows us to derive different versions of (J) which adopt one
or the other convention: for example (/) could be stated by requiring a : C (rather than C°P) but
then ask for contravariance of a in the conclusion and covariance in ®. The formulation chosen
in (J) with a : C°P, b : C is simpler to state in terms of “correct” and “incorrect” appearances and
emphasizes how the two variables play different asymmetric roles.

, Vol. 1, No. 1, Article . Publication date: October 2018.

https://github.com/iwilare/dinaturality/blob/main/Dinaturality/J-Iso.agda

981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029

Di- is for Directed: First-Order Directed Type Theory via Dinaturality 21

The following derivation shows how dinaturality allows us to capture a sort of “mixed-variance
reindexing” C — C°P x C, since even variables with different polarities can be identified together.

THEOREM 3.15 (DINATURAL COLLAPSE). The following rule is derivable:
[x:CPy:CT] O(X, x5y Fa:P(x,x7y)
[z:CT] ®(2,2,2,2z) + a©¥7% : P(2,2,%,2)

Proor. Follows by reindexing (idx) with the “identity”ditermx : C?,x : C+ (x,x) : C’xC. O

The dinatural collapse operation can be used to “downgrade” natural transformations to dinatural
transformations, which no longer compose; since we check for naturality syntactically, this allows
for a situation in which two (dinatural) entailments do not compose in the syntax despite composing
in the semantics (since the map being constructed remains unaltered).

REMARK (COLLAPSE LOSES COMPOSITIONALITY). We illustrate how dinatural collapse can make an
entailment no longer composable. Recall the composition map complf, g] := J(g) from Example 3.1:
then, the following entailments are not composable in the syntax, since both comp®% and refl are
dinatural in z; however, comp|refl,, k] is a valid application of (cut-nat):

[a:C°,b,c: C] home(a,b), home(b,c) F comp : home(a, c)

a,b—z

[z: C] @+ refl : hom¢(Z, z)

[z, ¢ : C] home(z, z), home(z, ¢) F comp : hom¢ (z, ¢)

Note that one can apply comp to a constant dinatural [] « + « : homc (A, A) that selects some
endomorphism for a concrete constant [| + A : C, since @ would be natural in the empty context.

We elucidate using (exp) why the exponential object in the category of presheaves and natural
transformations is non-trivial [50, 6.3.20], and is not the pointwise hom in Set.

REMARK (EXPONENTIALS FOR NATURALS). Given an entailment which is fully covariant in x (i.e., a
natural transformation) for predicates [x : C] F(x), G(x), H(x), by directly applying (exp),
[x:C] F(x) X G(x) + H(x)
— (exp)
[x:C] G(x) + F(x) = H(x)
one has a natural transformation on top, but the bottom family of arrows is dinatural in x.

We show in Example 6.2 how (exp) and the rules for directed equality can be used to give a
logical proof that the usual definition of exponential for presheaves is indeed the correct one.

4 Dinaturality

We recall some preliminary facts about dinatural transformations and (co)ends in order to present
the semantics of our type theory. We will often abbreviate the term dinatural transformations
simply as “dinaturals”, and ordinary natural transformations as “naturals”.

Definition 4.1 (Dipresheaves and difunctors). Consider the (strict) comonad —° : Cat — Cat
defined by C +— C°PxC, where the counit is given by projecting and comultiplication by duplicating
and swapping. A dipresheaf is simply a functor C° — Set, i.e. a functor C°P X C — Set.

We always denote composition diagrammatically, i.e., f;g:a - cfor f:a —> b,g: b — c.

Definition 4.2 (Dinatural transformation [26]). Given functors F,G : C°? x C — D, a dinatural
transformation o : F = G is a family of arrows a, : F(x,x) — G(x, x) indexed by objects x : C
such that Va, b : C, and f : a — b the following equation between arrows F(b,a) — G(a, b) holds:

F(idp,) s ap ; G(f,idp) = F(f,ida) 5 aq ;s G(idp, f).

, Vol. 1, No. 1, Article . Publication date: October 2018.

1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078

22 Laretto, Loregian, Veltri

LEMMA 4.3 (DINATURALS GENERALIZE NATURALS [26]). A natural transformation a : F — G for
F,G : C — D equivalently corresponds with a dinatural a : (m ; F) = (71, ;G) : C°?* x C — D.

The pointwise composition of two dinatural transformations is not necessarily dinatural (see [30,
55]), but dinaturals always compose with naturals on both the left and right side:

LEMMA 4.4 (DINATURALS COMPOSE WITH NATURALS [26]). Given a dinatural transformation
Y : F =5 G and natural transformationsa : F* — F,f: G — G’ for F,F',G,G" : C°? X C — Set,
themapa;y;f: F —> G’ defined by (a;y; f)x = Qxx ; Yx ; Pxx IS dinatural.

Non-compositionality of dinaturals is an intrinsic property of directed proof-relevant type theory,
since in the groupoidal case they all compose (in the proof-irrelevant case, where Set is replaced by
the preorder I := {0 — 1}, dinaturals compose trivially since there is no hexagon to check):

THEOREM 4.5 (DINATURALS IN GROUPOIDS COMPOSE). ({*f) Given a groupoid C and a category D
for functors F,G,H : C°? x C — D, any two dinaturals o : F = G, f : G = H compose.

The fundamental idea behind all rules for directed equality is given by the following elementary
result, which connects dinatural transformations in Set with a corresponding natural one:

THEOREM 4.6 (DINATURALS AND hom-NaTuRaLs). ({f) ForanyP,Q : C° x C — Set, there is
a bijection between set of dinatural transformations P — Q and certain natural transformations
between functors C°P x C — Set, as follows:

ay : P(x,x) = Q(x, x)

Yab : hom(a, b) — P°P(b,a) = Q(a, b)

Proor. We describe the maps in both directions:
() Given a dinatural « : P = Q and a morphism f : hom(a, b), the map P(b,a) — Q(a,b)
corresponds precisely with the sides of the equation given in Definition 4.2 for dinaturality,
which is obtained by applying the functorial action of P and Q.
() Take a = b and precompose with id, € hom(a, a).
The fact that this is an isomorphism follows from the (di)naturality of both sets of maps. Note the
similarity between the above argument and the proof of the Yoneda lemma, where the two central
ideas are precisely applying the functorial action and instantiating at id, with the isomorphism
following from (di)naturality. O

We now recall definitions for the semantics of (co)ends, later used to give semantics to quantifiers.

Definition 4.7 ((Co)wedges for P [52, 1.1.4]). Given P : C°? x C — D, a wedge for P is a pair
object/dinatural (X : D, a : Kx = P), where Kx is the constant functor in X. A wedge morphism
(X,a) = (Y,&')isan f: X — Y of D such that Ve : C,a. = f; a/. A cowedge is a wedge in D°P,
denoting the categories of (co)wedges as Wedge(P), Cowedge(P).

Definition 4.8 ((Co)ends [52, 1.1.6]). Given a functor P : C°? x C — D, the end of P is defined to be
the terminal object of Wedge(P), whose object in D is denoted as fx:C P(x, x). Dually, the coend of P

is the initial object of Cowedge(P), denoted similarly as f P P(x, x). The integral symbol acts as a
binder, in the sense that “ fc c P(c,c)” and ¢ fx c P(x,x)” are (a-)equivalent; moreover, P can depend
on many parameters, e.g., if P : (AP x A) x (B°? x B) — D then A:B P(a,a,bb): A% x A — D.
(Co)ends exist when D is (co)complete [52].

, Vol. 1, No. 1, Article . Publication date: October 2018.

https://github.com/iwilare/dinaturality/blob/main/Dinaturality/GroupoidCompose.agda
https://github.com/iwilare/dinaturality/blob/main/Dinaturality/NaturalDinatural.agda

1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127

Di- is for Directed: First-Order Directed Type Theory via Dinaturality 23

5 Semantics

We now describe the categorical semantics of our directed type theory: the main idea behind
categorical semantics is that we define functions that associate a certain mathematical object to
each derivation tree, inductively. Whenever present, the symbol ({*f) links to the Agda formalization
of the semantic interpretation of each rule.

The semantics for types, contexts, variables, terms, predicates and propositional contexts is given
in Figure 12. The equality judgments associated to these are interpreted in a straightforward way,
which we omit from this presentation; such equalities are only used to take care of involutions and
the equational theory of terms, for which we therefore give a strict semantics: equality of types
and contexts is interpreted as isomorphisms of categories, term equality is strict isomorphism of
functors. Equality of predicates is similarly trivial since it only inherits congruence rules from the
previous equality judgments.

The main rules of our type theory are those of entailments, for which we describe in detail the
intuition behind the semantics of each rule and its soundness in dinatural transformations.

[-]°:AT > =: C} > [[TL[C]] [-]:{[T] - prop} — [[T] x [I]. Set]

[-]:{-type} - Cat [[,x:C3x:C]’:=m, Il =AY, Y- Tset
%Copﬂ | - HOP [D] [fy:D5y:Clo=m:[y]° [Px0Q] = ([P]. [Q]) ; Xset
CxD]:=[C]x[D)) [P= Q] = {[P], [Q]) s =set
ficon=tielol) [0 O = ILED funcn) = (sl i) home
[Tl =T [[topj] =[] [/";Ecp(i 0] =2y ";Ecp(i YY)
[[]: {-ctx} = Cat [(s,0)] := {[s]. []) [/ PEO]= A7y [PZx.7.y)
) = [7(p)] = [p] s m
[TeP] == [r]°P [(p)] = [p] ; 72 [-] : {- propctx} — [[T]°P X [T, Set]
IT.C] = [T] % [C] [s - t] = ([s]. [£]) ; eval [] =2y Tse

[Ax.t(x)] := A(t) [, P := ([@]. [P} : Xset

Fig. 12. Semantics for the main judgments of directed dinatural type theory.

THEOREM 5.1 (SOUNDNESS IN DINATURAL TRANSFORMATIONS). ({*f) Each rule in Figure 11 is
validated using the semantics in categories, functors, dipresheaves, dinatural transformations. Inference
rules are interpreted by functions between sets of dinaturals; these are isomorphisms when double-lines
appear. Moreover, every function is natural in all the dipresheaves (both predicates and propositional
contexts) that appear in the rule.

We unpack this theorem by validating and describing the intuition behind each rule, using semantic
brackets [—] to indicate the semantic object denoted by each constructor.

o Structural rules. ({"/) Rule (var) is interpreted as the dinatural which projects away the predicate
P. Moreover, (wk) and (contr) state that dinaturals always compose on the left with, respectively,
the projections and the diagonal map in Set.

e Products. ({f) Dinaturals validate the interpretation of conjunction in (prod) via the pointwise
product of dipresheaves in Set; the bottom sequent indicates the product of sets of dinaturals.

e Polarized implication. ({*/) Contrary to naturals and presheaves [50], dinaturals can be
curried directly via the (exp) rule by currying each component of & in Set. In the semantics, the
metatheoretical operation Example 2.10 corresponds to swapping arguments in a dipresheaf.

e Reindexing with functors as terms. ({7f) Dinaturals can always be “reindexed” by plugging
functors in each index of the component, preserving dinaturality.

, Vol. 1, No. 1, Article . Publication date: October 2018.

https://github.com/iwilare/dinaturality/blob/main/
https://github.com/iwilare/dinaturality/blob/main/All.agda
https://github.com/iwilare/dinaturality/blob/main/Dinaturality/Products.agda
https://github.com/iwilare/dinaturality/blob/main/Dinaturality/Products.agda
https://github.com/iwilare/dinaturality/blob/main/Dinaturality/Exponential.agda
https://github.com/iwilare/dinaturality/blob/main/Dinaturality/Reindexing.agda

1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176

24 Laretto, Loregian, Veltri

e Cuts naturals-dinaturals. ({f) The two restricted cut rules (cut-din), (cut-nat) correspond
precisely to Lemma 4.4. Intuitively, both rules are stated in such a way that the dipresheaf P (in
the middle of the composition) only contains natural occurrences of variables. The use of I" in
®, Q is unproblematic since one can suitably take the (co)end over T to “hide” these variables and
compose naturals together. Associativity, unitality and coherence in Figure 15 are immediate.
The dinatural-into-natural rule (cut-nat) essentially corresponds to vertical composition in Prof
as a virtual equipment [24, 60]: in this type theory, however, contravariant occurrences a,bare
allowed to appear in the same predicate P(a, b), but in the double-categorical setting they must be
splitas P(...,a), Q(a, b), R(E, ...). Note that composing a natural with a dinatural yields a dinatural,
hence the resulting map is always collapsed via Theorem 3.2, e.g., in (cut-nat-id;), (cut-din-id,).

e Directed equality introduction. ({*f) The rule (refl) states reflexivity of directed equality, and
is validated semantically by a, (k) := id,. Dinaturality holds since Vf : a — b, f ;idy = id, ; f.

¢ Directed equality elimination. ({*f) This rule and its syntactic restriction comes precisely
from Theorem 4.6: in the bottom side of the isomorphism, the dipresheaf P is curried on the left
of the turnside but inverting the polarity of a, b. This is precisely the propositional context of (/).
Hence, the restriction behind (/) comes from the naturality of the bottom map. Explicitly, given
a dinatural h, the dinatural J(h) is defined as follows for indices a : [C], b : [C°P], x : [T]:

](h)abx = Ae, k-([[q)]](idbs e, idy, idx) 5 hbx 5 [P]](e, idbs idy, 'dx))(k)

The computation rule clearly holds when a = b = z and e = id,, without the need for dinaturality.
e Dependent hom elimination. ({f) As shown in Theorem 3.12, the fact that J is an isomorphism
characterizes directed equality. In particular, dependent equality elimination is the J(J~!(a)) = &
direction, which uses naturality in the proof just like the Yoneda lemma [50, 4.2].
e (Co)ends. ({?f) The rules for (co)ends (end) and (coend) express an adjoint-like (up to the

L . AlC .
non-composition of dinaturals) correspondence / el Talc)

functor ﬂ;[c] : [C?, Set] — [A® x C°,Set] and the functors /A[C],/A[C] : [A® x C°,Set] —
[C?, Set] sending dipresheaves to their (co)end in A. Semantically, these are simply the bijective
correspondences between (co)wedges and morphisms (out of) into (co)ends, but parameterized
by an additional context of variables I'. Quantifiers in categorical logic typically have to satisfy
additional requirements in order to faithfully model logical operations: the Beck-Chevalley
condition [43, 1.9.4] states that “quantifiers commute with substitution”, and the Frobenius
condition [43, 1.9.12] logically corresponds to having an additional context ® in rules for colimit-
like connectives [43, 3.4.4], as in (coend). We show these technical conditions in Theorem F.1.

4 /A[C] between the weakening

THEOREM 5.2 (SYMMETRY IS NOT ADMISSIBLE). The statement of symmetry of directed equality in
Remark 3.2 is not admissible in the type theory.

Proor. Add to the signature the category I := {0 — 1} with a unique non-invertible morphism.
By soundness, the lack of symmetry in I implies that symmetry cannot be derived in general. O

The set of all dinaturals can be characterized as an end Dinat(P, Q) = /x:c P(x,x) = Q(x, x);
we prove this in Theorem D.4. We internalize this idea to show that full cut cannot be derived:

THEOREM 5.3 (No FULL cUT). A cut rule where ®, P, Q are fully unrestricted is not admissible.

Proor. Assuming full cut, the adjoint formulation is equivalent to the rules of natural deduction
of first-order logic, which allows one to derive the following map in the empty context:

[1 [PxX) = Q0Fx), [0xX) = REx)F [P(x,%) = R(Xx)

by soundness of the semantics, this corresponds to composing all dinatural transformations. O

, Vol. 1, No. 1, Article . Publication date: October 2018.

https://github.com/iwilare/dinaturality/blob/main/Dinaturality/Cuts.agda
https://github.com/iwilare/dinaturality/blob/main/Dinaturality/Refl.agda
https://github.com/iwilare/dinaturality/blob/main/Dinaturality/J.agda
https://github.com/iwilare/dinaturality/blob/main/Dinaturality/J-Iso.agda
https://github.com/iwilare/dinaturality/blob/main/Dinaturality/J-Iso.agda

1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225

Di- is for Directed: First-Order Directed Type Theory via Dinaturality 25

6 Coend calculus via dinaturality

We show how the rules for directed equality and (co)ends can be used to give concise proofs with
a distinctly logical flavor to several central theorems of category theory. The technique we use
mirrors the way (co)end calculus is applied in practical settings (e.g., [15, 40, 74]) via a “Yoneda-like”
series of natural isomorphisms of sets: to prove that two objects A, B:C are isomorphic, one can
assume to have a generic object ¢ and then apply a series of isomorphisms of sets natural in ® to
establish that C(®, A) = C(®, B), from which A = B follows by the fully faithfulness of the Yoneda
embedding [15, 50]. The same technique can be used to show that functors are naturally isomorphic,
as well as adjunctions, e.g., Examples 6.2 and 6.3. We now show our main examples, with additional
derivations of (co)end calulus in Appendix D, which use Yoneda with ® on the right side instead.

REMARK (YONEDA TECHNIQUE AND NATURALITY). ({*f) All rules given in previous sections are
natural in each of the dipresheaves involved. In the following series of examples no proof ever involves a
“dinatural isomorphism”, since it would not be possible to state the final isomorphism with cuts; natural
isomorphisms between sets of dinaturals are only used as intermediate steps. We show in Appendix G
a spelled-out example of this Yoneda technique in the equational theory by explicitly constructing the
isomorphisms and using naturality of the adjoint-form rules (i.e., they commute with cuts).

Example 6.1 ((co)Yoneda lemma). For any predicate/copresheaf [x : C] P(x) prop, and a predi-
cate/copresheaf [x : C] ®(x) propctx acting as generic context, the following derivations capture
the Yoneda lemma [52, Thm. 1] (using the characterization of naturals as an end) and coYoneda
lemma [53, II.7, Theorem 1] (i.e., presheaves are isomorphic to a weighted colimit of representables)
[a:C] ®(a) + | ~ homc(a,X) = P(x))

fee (end) [a:C] [™° homc(X, a) X P(x) F ®(a)
[a:C,x:C] ®(a) + homc(a,x) = P(x) (coend)
— (exp) [a:C,x:C] homc(X,a) X P(x) + ®(a)
[a:C,x:C] homc¢(a,x),®(a) + P(x)

[z:C] ®(z) + P(z) [z:C] P(2) + ®(2)

Example 6.2 (Presheaves are cartesian closed). For any [C] A, B, @, the following derivation shows
that the internal hom in the category of presheaves and naturals [50, 6.3.20] defined by (A =
B)(x) := Nat(hom(x, —) X A, B) is indeed the correct one. We show here the tensor/hom adjunction:

[x: C] ®(x) + (A = B)(x) := Nat(homc(x,—) X A, B)
= [,c home(x.9) x A() = B(y)

d
[x:Cy:C] ®(x) F homc(x,y) X A(y) = B(y) (end)
[x:C,y:C] A(y) X homc(x,y) X (x) + B(y) P
coend)
[y : C] A(y) X (17 home (%, y) x <I>(x)) F B(y)
(coYoneda)

[y : C] A(y) x @(y) + B(y)
We precompose with the (coYoneda) isomorphism given in Example 6.1 (which is a natural isomor-
phism). Note that (J) cannot be applied immediately since y appears positively in context in A(y),
whereas it should be negative to identify it with x. The above derivation is a simple application of
our rules via dinaturality, but it is unclear how it can be captured using the proarrow equipment
approach of [60, 85] as an abstract property of Prof, due to the repetition of variables y, 7.

Example 6.3 (Pointwise formula for right Kan extensions). Using our rules, we give a logical proof
that the functor Rang : [C, Set] — [D, Set] sending (co)presheaves to their Kan extensions along

, Vol. 1, No. 1, Article . Publication date: October 2018.

https://github.com/iwilare/dinaturality/blob/main/Dinaturality/NaturalityExample.agda

1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274

26 Laretto, Loregian, Veltri

F : C — D computed via ends [52, 2.3.6] is right adjoint to precomposition (F ; —) : [D, Set] —
[C, Set]. We again precompose with the (coYoneda) isomorphism, which we reindex implicitly with
F. Note the similarity between this derivation and the argument given in [71, 5.6.6] to compute
adjoints in a general doctrine. For any [x : C] P(x), [y : D] ®(y), a functor/term F : C — D:

[y : D] ®(y) + (RanpP)(y) := [, . homp(y, F(X)) = P(x)
[x:C,y:D] ®(y) + homp(y, F(x)) = P(x) (
[x:C,y: D] homp(y, F(x)) X ®(y) + P(x)

(end)

exp)

coend)

[x:C] [homp(7, F(x)) X ®(y) + P(x)

[y : C] ®(F(x)) + P(x)
Example 6.4 (Fubini rule for ends). For convenience we only show the case for ends. For [| ® propctx
in the empty context (i.e., just an object [®] : Set) and [C, D] P prop the following are all equivalent
thanks to the fact that certain structural properties of contexts hold by cartesianness of Cat.

(coYoneda)

(structural property)

[1or [c [PEXT.Y) [p:CxD] @+ P(p,p)
(end) (end)
[x:Cl®r [PExTy) [y:D] @+ [PFxTy)
Y (end) (end)
[x:C,y:D] @r P(X,x,3,y) [Ter [p fcPEXTY)
(structural property) (end)

:D,x:C]®FP(X,x, 7 T
[y:D,x:C] @+ P(x,x,1.y) 1@+ [cpPExTY)

Example 6.5 (= resp. limits). Ends are limits [52], and functors — = — : Set®® xSet — Set preserve
them (ends/limits in Set®P, i.e., coends/colimits in Set). For [] ® propctx, [] Q prop, [C] P prop:

[10+0= [P(Xx) oo 1o+ ([PFEx) =0 o)
[10.9F [P(Fx) o) [1 ([PEx).®FQ coond)
[x:C] Q,®F P(x,x) — (exp) [x:C] P(x,x),®+ Q o)
[x:C]®+Q = P(x,x) (end) [x:C]®+P(xX) =Q fend)
[1o+ [. (Q=PFx) [1&+ [P(xT) =Q

7 Conclusions and future work

In this paper we showed how dinaturality is the key notion to give a simple and natural description
to a first-order directed type theory where types are interpreted as (1-)categories and directed
equality as hom-functors. Our type theory is powerful enough to express theorems about directed
equality in a straightforward way, and to give a distinctly logical interpretation to well-known
theorems in category theory by reinterpreting them under the light of directed type theory.
Dinaturality. The compositionality problem of dinatural transformations is a long-standing and
famously difficult problem [75], which both the category theory and computer science communities
have relatively left unexplored since their introduction in the 1970s [26, 27]. Our work gives a
concrete motivation to further investigate this more than 50-years old mystery by connecting it to
directed type theory. We conjecture that this connection could possibly hint to a deeper directed
homotopical reason [28, 33] for why dinaturals fail to compose. Strong dinaturals [58, 65] are one
possible approach to deal with non-compositionality, but they lack in expressivity, e.g., they are not

, Vol. 1, No. 1, Article . Publication date: October 2018.

1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323

Di- is for Directed: First-Order Directed Type Theory via Dinaturality 27

closed in general [79]. Following Theorem 4.5, this non-compositionality is intrinsic to the directed
proof-relevant setting, i.e., non-groupoidal categories. We leave investigating the relation between
dinaturality and geometric models of (oo, 1)-categories in the spirit of [34, 73, 84] for future work.

Type dependency. Our treatment of directed equality via dinaturality is a first step towards
understanding the precise interplay of polarity, directedness and variance in fully dependent
Martin-Lof type theory, especially with respect to how polarity of variables is influenced by their
appearance in types, which we conjecture to be particularly non-trivial.

Initiality. The syntactic system presented in this paper could be axiomatized into a suitable
initial object in a category of models that captures the behavior of variables in dinaturals and
naturals (e.g., as in [75]): one possible approach could be to abstractly consider two classes of maps
(dinaturals, naturals) and requiring such maps to interact as in Lemma 4.4.

Doctrines. All of our results can be specialized in the category of posets Pos rather than Cat,
where dinaturals compose trivially and our work provides a “logic of posets”, captured via a
bona fide doctrine, at the cost of trivializing (co)ends with (co)products. This posetal case could
be axiomatized in the style of the doctrinal approach [43, 54], with a notion of directed doctrine
capturing the roles played by variance, the —°P involution, and (di)naturality. This would allow our
syntactic rules to be organized in a well-known structure, with a suitable initiality result.

Internalizing Yoneda. The Yoneda technique for isomorphisms follows from “manually” using
naturality of isomorphisms in the equational theory. One could also get this naturality for free
by making the theory second-order with a universe of propositions Set and adding a directed
univalence statement homs (A, B) & A = B (as in [4, 34, 84]): this would allow for implication to
be represented as a directed equality, contractible with (J), and “synthetically” reproduce the same
argument as in Example 3.8 by quantifying over all predicates involved.

Higher (co)end calculus. There are other conceptual examples of coend calculus which have
not yet been interpreted in terms of directed equality: for instance, one should be able to express that
composition maps exist for all categories C : Cat, where this quantification can be expressed via a
suitable pseudo-end in Cat [52, 7.1]; similarly, the category of elements of a functor, reminiscent

of a 3-type, can be given as the pseudo-coend EI(F) = fC:C ¢/C x F(c), where ¢/C is the coslice
category and F(c) is seen as a discrete category [52, 4.2.2]. These examples could be captured by
considering the category of small categories Cat as a suitable universe of types [41].

Enrichment. We do not rely on specific properties of Set (viewed as the base of enrichment
of Cat), other than cartesian closedness to have propositional implication/conjunction and the
existence of (co)limits to express (co)ends. We conjecture that our analysis of dinaturals can be
developed in more generality by taking enriched categories (over a sufficiently structured base of
enrichment) as types, rather than simply categories (enriched over Set).

Implementation. We remark how an implementation of the metatheory of our type-theoretical
system in a proof assistant is non-trivial, since one has to push —°P down into connectives and ensure
that (X°P)°? = X everywhere in the syntax: in types, contexts, terms, predicates, propositional
contexts. This could be tackled in practice by using QITs [3] and the --rewriting feature of
Agda [21] to simplify op whenever necessary. Another solution would be to have —°P only at the
level of base types, and then derive —°P as a metatheoretical operation on full types; this has the
disadvantage that —°P is not a primitve type former that one can explicitly manipulate in the syntax.

Acknowledgments

The authors thank the reviewers for their detailed suggestions and Pawel Sobocinski for invaluable
feedback on the presentation of this work. Loregian was supported by the Estonian Research
Council grant PRG1210. Veltri was supported by the Estonian Research Council grant PSG749.

, Vol. 1, No. 1, Article . Publication date: October 2018.

1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372

28 Laretto, Loregian, Veltri
References
[1] Benedikt Ahrens, Paige Randall North, and Niels van der Weide. 2022. Semantics for two-dimensional type theory.

[15]

[16]
[17]
[18]

[19]

[20]
[21]

[22]

[23]

In Proceedings of the 37th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS °22). Association for
Computing Machinery, New York, NY, USA, 1-14. doi:10.1145/3531130.3533334

Benedikt Ahrens, Paige Randall North, and Niels van der Weide. 2023. Bicategorical type theory: semantics and syntax.
Mathematical Structures in Computer Science (Oct. 2023), 1-45. doi:10.1017/50960129523000312

Thorsten Altenkirch and Ambrus Kaposi. 2016. Type theory in type theory using quotient inductive types. In
Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’16).
Association for Computing Machinery, New York, NY, USA, 18-29. doi:10.1145/2837614.2837638

Thorsten Altenkirch and Jacob Neumann. 2024. Synthetic 1-Categories in Directed Type Theory.
arXiv:2410.19520 [math] doi:10.48550/arXiv.2410.19520 arXiv:2410.19520.

Kazuyuki Asada. 2010. Arrows are strong monads. In Proceedings of the third ACM SIGPLAN workshop on Mathematically
structured functional programming (MSFP ’10). Association for Computing Machinery, New York, NY, USA, 33-42.
doi:10.1145/1863597.1863607

Kazuyuki Asada and Ichiro Hasuo. 2010. Categorifying Computations into Components via Arrows as Profunctors.
Electronic Notes in Theoretical Computer Science 264, 2 (Aug. 2010), 25-45. doi:10.1016/j.entcs.2010.07.012

Steve Awodey and Michael A. Warren. 2009. Homotopy theoretic models of identity types. Mathematical Proceedings
of the Cambridge Philosophical Society 146, 1 (2009), 45-55. doi:10.1017/S0305004108001783

J. Baez and M. Stay. 2010. Physics, Topology, Logic and Computation: A Rosetta Stone. In New Structures for Physics.
Springer, 95-172. arXiv:0903.0340 [quant-ph] doi:10.48550/arxiv.0903.0340

Edwin S. Bainbridge. 1976. Feedback and generalized logic. Information and Control 31, 1 (May 1976), 75-96.
d0i:10.1016/S0019-9958(76)90390-9

Edwin S. Bainbridge, Peter J. Freyd, Andre Scedrov, and Philip J. Scott. 1990. Functorial polymorphism. Theoretical
Computer Science 70, 1 (Jan. 1990), 35-64. doi:10.1016/0304-3975(90)90151-7

Richard Blute. 1993. Linear logic, coherence and dinaturality. Theoretical Computer Science 115, 1 (July 1993), 3-41.
doi:10.1016/0304-3975(93)90053-V

R. F. Blute and P. J. Scott. 1996. Linear Lauchli semantics. Annals of Pure and Applied Logic 77, 2 (Jan. 1996), 101-142.
doi:10.1016/0168-0072(95)00017-8

R.F. Blute and P. J. Scott. 1998. The Shuffle Hopf Algebra and Noncommutative Full Completeness. Journal of Symbolic
Logic 63, 4 (1998), 1413-1436. doi:10.2307/2586659

Guillaume Boisseau. 2020. String Diagrams for Optics. In 5th International Conference on Formal Structures for
Computation and Deduction (FSCD 2020) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 167), Zena M.
Ariola (Ed.). Schloss Dagstuhl-Leibniz-Zentrum fiir Informatik, Dagstuhl, Germany, 17:1-17:18. doi:10.4230/LIPIcs.
FSCD.2020.17

Guillaume Boisseau and Jeremy Gibbons. 2018. What you needa know about Yoneda: profunctor optics and the
Yoneda lemma (functional pearl). Proceedings of the ACM on Programming Languages 2, ICFP (July 2018), 84:1-84:27.
doi:10.1145/3236779

Francis Borceux. 1994. Handbook of Categorical Algebra: Volume 1: Basic Category Theory. Encyclopedia of Mathematics
and its Applications, Vol. 1. Cambridge University Press, Cambridge. doi:10.1017/CB09780511525858

Claudia Casadio and Philip J. Scott (Eds.). 2021. Joachim Lambek: The Interplay of Mathematics, Logic, and Linguistics.
Springer Verlag, Cham.

Simon Castellan, Pierre Clairambault, and Peter Dybjer. 2020. Categories with Families: Unityped, Simply Typed, and
Dependently Typed. Technical Report. arXiv:1904.00827 doi:10.48550/arXiv.1904.00827 arXiv:1904.00827 [cs] type:
article.

Fernando Chu, Eléonore Mangel, and Paige Randall North. 2024. A directed type theory for 1-categories. In 30th
International Conference on Types for Proofs and Programs TYPES 2024-Abstracts. 205. https://types2024.itu.dk/abstracts.
pdf#page=215

Bryce Clarke, Derek Elkins, Jeremy Gibbons, Fosco Loregian, Bartosz Milewski, Emily Pillmore, and Mario Roman.
2022. Profunctor Optics, a Categorical Update. arXiv:2001.07488 [cs.PL] doi:10.48550/arxiv.2001.07488

Jesper Cocks, Nicolas Tabareau, and Théo Winterhalter. 2021. The taming of the rew: a type theory with computational
assumptions. Proceedings of the ACM on Programming Languages 5, POPL (Jan. 2021), 60:1-60:29. doi:10.1145/3434341
Cyril Cohen, Thierry Coquand, Simon Huber, and Anders Mértberg. 2015. Cubical Type Theory: A Constructive
Interpretation of the Univalence Axiom. In 21st International Conference on Types for Proofs and Programs (TYPES
2015) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 69), Tarmo Uustalu (Ed.). Schloss Dagstuhl -
Leibniz-Zentrum fiir Informatik, Dagstuhl, Germany, 5:1-5:34. do0i:10.4230/LIPIcs. TYPES.2015.5

Roy L. Crole. 1994. Categories for Types. Cambridge University Press, Cambridge. doi:10.1017/CB0O9781139172707

, Vol. 1, No. 1, Article . Publication date: October 2018.

https://doi.org/10.1145/3531130.3533334
https://doi.org/10.1017/S0960129523000312
https://doi.org/10.1145/2837614.2837638
https://arxiv.org/abs/2410.19520
https://doi.org/10.48550/arXiv.2410.19520
https://doi.org/10.1145/1863597.1863607
https://doi.org/10.1016/j.entcs.2010.07.012
https://doi.org/10.1017/S0305004108001783
https://arxiv.org/abs/0903.0340
https://doi.org/10.48550/arxiv.0903.0340
https://doi.org/10.1016/S0019-9958(76)90390-9
https://doi.org/10.1016/0304-3975(90)90151-7
https://doi.org/10.1016/0304-3975(93)90053-V
https://doi.org/10.1016/0168-0072(95)00017-8
https://doi.org/10.2307/2586659
https://doi.org/10.4230/LIPIcs.FSCD.2020.17
https://doi.org/10.4230/LIPIcs.FSCD.2020.17
https://doi.org/10.1145/3236779
https://doi.org/10.1017/CBO9780511525858
https://arxiv.org/abs/1904.00827
https://doi.org/10.48550/arXiv.1904.00827
https://types2024.itu.dk/abstracts.pdf#page=215
https://types2024.itu.dk/abstracts.pdf#page=215
https://arxiv.org/abs/2001.07488
https://doi.org/10.48550/arxiv.2001.07488
https://doi.org/10.1145/3434341
https://doi.org/10.4230/LIPIcs.TYPES.2015.5
https://doi.org/10.1017/CBO9781139172707

1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421

Di- is for Directed: First-Order Directed Type Theory via Dinaturality 29

[24]

[25]

[26]

[27]
[28]
[29]
[30]
[31]
[32]
[33]
[34]
[35]
[36]
[37]
[38]

[39]

[40]

[41]

[42]

[43]

[44]
[45

—

[46]

[47
[48

—

G.S.H. Cruttwell and Michael Shulman. 2010. A unified framework for generalized multicategories. Theory Appl.
Categ. 24 (2010), 580-655. arXiv:0907.2460 doi:10.48550/arxiv.0907.2460

Mario Caccamo and Glynn Winskel. 2001. A Higher-Order Calculus for Categories. In Theorem Proving in Higher Order
Logics (Lecture Notes in Computer Science), Richard J. Boulton and Paul B. Jackson (Eds.). Springer, Berlin, Heidelberg,
136-153. doi:10.1007/3-540-44755-5_11

Eduardo Dubuc and Ross Street. 1970. Dinatural transformations. In Reports of the Midwest Category Seminar IV
(Lecture Notes in Mathematics), S. MacLane, H. Applegate, M. Barr, B. Day, E. Dubuc, Phreilambud, A. Pultr, R. Street,
M. Tierney, and S. Swierczkowski (Eds.). Springer, Berlin, Heidelberg, 126-137. doi:10.1007/BFb0060443

Samuel Eilenberg and G. M Kelly. 1966. A generalization of the functorial calculus. Journal of Algebra 3, 3 (May 1966),
366-375. doi:10.1016/0021-8693(66)90006-8

Lisbeth Fajstrup, Eric Goubault, Emmanuel Haucourt, Samuel Mimram, and Martin Raussen. 2016. Directed Algebraic
Topology and Concurrency. Springer International Publishing. doi:10.1007/978-3-319-15398-8

Peter J. Freyd, E. P. Robinson, and G. Rosolini. 1992. Dinaturality for free. In Applications of Categories in Computer
Science: Proceedings of the London Mathematical Society Symposium, Durham 1991, A. M. Pitts, M. P. Fourman, and P. T.
Johnstone (Eds.). Cambridge University Press, Cambridge, 107-118. doi:10.1017/CB09780511525902.007

Peter J. Freyd, Edmund P. Robinson, and Giuseppe Rosolini. 1992. Functorial Parametricity. In Proceedings of the
Seventh Annual Symposium on Logic in Computer Science (LICS *92), Santa Cruz, California, USA, June 22-25, 1992. IEEE
Computer Society, 444-452. doi:10.1109/LICS.1992.185555

Zeinab Galal. 2020. A Profunctorial Scott Semantics. In 5th International Conference on Formal Structures for Computation
and Deduction (FSCD 2020) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 167), Zena M. Ariola (Ed.).
Schloss Dagstuhl-Leibniz-Zentrum fiir Informatik, Dagstuhl, Germany, 16:1-16:18. doi:10.4230/LIPIcs.FSCD.2020.16
Jean-Yves Girard, Andre Scedrov, and Philip J. Scott. 1992. Normal Forms and Cut-Free Proofs as Natural Trans-
formations. In Logic from Computer Science, Yiannis N. Moschovakis (Ed.). Springer, New York, NY, 217-241.
d0i:10.1007/978-1-4612-2822-6_8

Marco Grandis. 2009. Directed Algebraic Topology: Models of Non-Reversible Worlds. Cambridge University Press.
Daniel Gratzer, Jonathan Weinberger, and Ulrik Buchholtz. 2024. Directed univalence in simplicial homotopy type
theory. doi:10.48550/arXiv.2407.09146

Daniel Gratzer, Jonathan Weinberger, and Ulrik Buchholtz. 2025. The Yoneda embedding in simplicial type theory.
doi:10.48550/arXiv.2501.13229

Stefano Guerrini. 2004. Proof Nets and the A-Calculus. Cambridge University Press, 65-118.

Robert Harper. 2016. Practical Foundations for Programming Languages (2nd ed.). Cambridge University Press, USA.
James Hefford and Cole Comfort. 2023. Coend Optics for Quantum Combs. Electronic Proceedings in Theoretical
Computer Science 380 (Aug. 2023), 63-76. arXiv:2205.09027 [quant-ph] doi:10.4204/EPTCS.380.4

Chris Heunen and Jamie Vicary. 2019. Categories for Quantum Theory: An Introduction. Oxford University
Press. arXiv:https://academic.oup.com/book/43710/book-pdf/50991591/9780191060069_web.pdf doi:10.1093/0s0/
9780198739623.001.0001

Ralf Hinze. 2012. Kan Extensions for Program Optimisation Or: Art and Dan Explain an Old Trick. In Mathematics of
Program Construction (Lecture Notes in Computer Science), Jeremy Gibbons and Pablo Nogueira (Eds.). Springer, Berlin,
Heidelberg, 324-362. doi:10.1007/978-3-642-31113-0_16

Martin Hofmann. 1997. Syntax and Semantics of Dependent Types. In Semantics and Logics of Computation, Andrew M.
Pitts and Peter Dybjer (Eds.). Cambridge University Press, Cambridge, 79-130. doi:10.1017/CB09780511526619.004
Martin Hofmann and Thomas Streicher. 1998. The groupoid interpretation of type theory. In Twenty-five years of
constructive type theory (Venice, 1995), Giovanni Sambin and Jan M Smith (Eds.). Oxford Logic Guides, Vol. 36. Oxford
Univ. Press, New York, 83-111. doi:10.1093/050/9780198501275.003.0008

Bart P. F. Jacobs. 1999. Categorical Logic and Type Theory. Studies in Logic and the Foundations of Mathematics,
Vol. 141. North-Holland.

Alex Kavvos. 2019. A Quantum of Direction. (2019). https://seis.bristol.ac.uk/~tz20861/papers/meio.pdf

Nikolai Kudasov, Emily Riehl, and Jonathan Weinberger. 2024. Formalizing the co-Categorical Yoneda Lemma. In
Proceedings of the 13th ACM SIGPLAN International Conference on Certified Programs and Proofs (London, UK, 2024)
(CPP 2024). Association for Computing Machinery, New York, NY, USA, 274-290. doi:10.1145/3636501.3636945
Joachim Lambek and Philip J. Scott. 1986. Introduction to Higher-Order Categorical Logic. Cambridge Stud-
ies in Advanced Mathematics, Vol. 7. Cambridge University Press. 5https://www.cambridge.org/ee/
academic/subjects/mathematics/logic-categories-and-sets/introduction-higher-order-categorical-logic, https:
//www.cambridge.org/ee/academic/subjects/mathematics/logic-categories-and-sets

F. William Lawvere. 1963. Functorial Semantics of Algebraic Theories. Ph. D. Dissertation. Columbia University.

F. William Lawvere. 1969. Adjointness in Foundations. Dialectica 23, 3/4 (1969), 281-296. https://www.jstor.org/
stable/42969800

, Vol. 1, No. 1, Article . Publication date: October 2018.

https://arxiv.org/abs/0907.2460
https://doi.org/10.48550/arxiv.0907.2460
https://doi.org/10.1007/3-540-44755-5_11
https://doi.org/10.1007/BFb0060443
https://doi.org/10.1016/0021-8693(66)90006-8
https://doi.org/10.1007/978-3-319-15398-8
https://doi.org/10.1017/CBO9780511525902.007
https://doi.org/10.1109/LICS.1992.185555
https://doi.org/10.4230/LIPIcs.FSCD.2020.16
https://doi.org/10.1007/978-1-4612-2822-6_8
https://doi.org/10.48550/arXiv.2407.09146
https://doi.org/10.48550/arXiv.2501.13229
https://arxiv.org/abs/2205.09027
https://doi.org/10.4204/EPTCS.380.4
https://arxiv.org/abs/https://academic.oup.com/book/43710/book-pdf/50991591/9780191060069_web.pdf
https://doi.org/10.1093/oso/9780198739623.001.0001
https://doi.org/10.1093/oso/9780198739623.001.0001
https://doi.org/10.1007/978-3-642-31113-0_16
https://doi.org/10.1017/CBO9780511526619.004
https://doi.org/10.1093/oso/9780198501275.003.0008
https://seis.bristol.ac.uk/~tz20861/papers/meio.pdf
https://doi.org/10.1145/3636501.3636945
5https://www.cambridge.org/ee/academic/subjects/mathematics/logic-categories-and-sets/introduction-higher-order-categorical-logic, https://www.cambridge.org/ee/academic/subjects/mathematics/logic-categories-and-sets
5https://www.cambridge.org/ee/academic/subjects/mathematics/logic-categories-and-sets/introduction-higher-order-categorical-logic, https://www.cambridge.org/ee/academic/subjects/mathematics/logic-categories-and-sets
5https://www.cambridge.org/ee/academic/subjects/mathematics/logic-categories-and-sets/introduction-higher-order-categorical-logic, https://www.cambridge.org/ee/academic/subjects/mathematics/logic-categories-and-sets
https://www.jstor.org/stable/42969800
https://www.jstor.org/stable/42969800

1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470

30

[49]

[50]
[51]

[52]
[53]

[54]
[55]

[56]
[57]

[58]
[59]
[60]
[61]

[62]
[63]

[64]
[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]
[73]
[74]

[75]

Laretto, Loregian, Veltri

F. William Lawvere. 1970. Equality in hyperdoctrines and comprehension schema as an adjoint functor. In Applications
of Categorical Algebra, A. Heller (Ed.). American Mathematical Society, Providence, R.I., 1-14.

Tom Leinster. 2014. Basic Category Theory. Cambridge University Press, Cambridge. doi:10.1017/CB0O9781107360068
Daniel R. Licata and Robert Harper. 2011. 2-Dimensional Directed Type Theory. Electronic Notes in Theoretical
Computer Science 276 (Sept. 2011), 263-289. doi:10.1016/j.entcs.2011.09.026

Fosco Loregian. 2021. (Co)end Calculus. Cambridge University Press, Cambridge. doi:10.1017/9781108778657
Saunders Mac Lane. 1998. Categories for the Working Mathematician (2nd ed.). Graduate Texts in Mathematics, Vol. 5.
Springer-Verlag New York. xii+314 pages. doi:10.1007/978-1-4757-4721-8

Maria Emilia Maietti and Giuseppe Rosolini. 2015. Unifying Exact Completions. Applied Categorical Structures 23, 1
(Feb. 2015), 43-52. doi:10.1007/s10485-013-9360-5

Guy McCusker and Alessio Santamaria. 2021. Composing dinatural transformations: Towards a calculus of substitution.
Journal of Pure and Applied Algebra 225, 10 (Oct. 2021), 106689. doi:10.1016/j.jpaa.2021.106689

Samuel Mimram. 2020. Program = Proof. Independently Published. https://books.google.ee/books?id=nzZzzgEACAA]
Eugenio Moggi. 1991. Notions of computation and monads. Information and Computation 93, 1 (1991), 55 — 92.
Selections from 1989 IEEE Symposium on Logic in Computer Science.

Jacob Neumann. 2023. Paranatural Category Theory. Technical Report. arXiv:2307.09289 doi:10.48550/arXiv.2307.09289
arXiv:2307.09289.

Jacob Neumann. 2025. A Generalized Algebraic Theory of Directed Equality. Ph.D. Dissertation.

Max S. New and Daniel R. Licata. 2023. A Formal Logic for Formal Category Theory. In Foundations of Software
Science and Computation Structures (Lecture Notes in Computer Science), Orna Kupferman and Pawel Sobocinski (Eds.).
Springer Nature Switzerland, 113-134. doi:10.1007/978-3-031-30829-1_6

Paige Randall North. 2019. Towards a Directed Homotopy Type Theory. Electronic Notes in Theoretical Computer
Science 347 (Nov. 2019), 223-239. do0i:10.1016/j.entcs.2019.09.012

Paige Randall North and Fernando Chu. 2025. Dependent two-sided fibrations for directed type theory. (2025).
Andreas Nuyts. 2015. Towards a Directed Homotopy Type Theory based on 4 Kinds of Variance. Master’s thesis. KU
Leuven.

Andreas Nuyts. 2023. Higher Pro-arrows: Towards a Model for Naturality Pretype Theory. (2023).

Robert Paré and Leopoldo Roman. 1998. Dinatural numbers. Journal of Pure and Applied Algebra 128, 1 (June 1998),
33-92. doi:10.1016/S0022-4049(97)00036-4

Zoran Petri¢. 2003. G-dinaturality. Annals of Pure and Applied Logic 122, 1 (Aug. 2003), 131-173. do0i:10.1016/S0168-
0072(03)00003-4

Paolo Pistone. 2017. On Dinaturality, Typability and beta-eta-Stable Models. In 2nd International Conference on Formal
Structures for Computation and Deduction (FSCD 2017) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 84),
Dale Miller (Ed.). Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl, Germany, 29:1-29:17. doi:10.4230/
LIPIcs.FSCD.2017.29

Paolo Pistone. 2018. Proof nets, coends and the Yoneda isomorphism. In Proceedings Joint International Workshop on
Linearity & Trends in Linear Logic and Applications, Linearity-TLLA@FLoC 2018, Oxford, UK, 7-8 July 2018 (EPTCS,
Vol. 292), Thomas Ehrhard, Maribel Fernandez, Valeria de Paiva, and Lorenzo Tortora de Falco (Eds.). 148-167.
d0i:10.4204/EPTCS.292.9

Paolo Pistone. 2019. On completeness and parametricity in the realizability semantics of System F. Logical Methods in
Computer Science Volume 15, Issue 4 (Oct. 2019). doi:10.23638/LMCS-15(4:6)2019

Paolo Pistone and Luca Tranchini. 2021. The Yoneda Reduction of Polymorphic Types. In 29th EACSL Annual Conference
on Computer Science Logic (CSL 2021) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 183), Christel Baier
and Jean Goubault-Larrecq (Eds.). Schloss Dagstuhl-Leibniz-Zentrum fiir Informatik, Dagstuhl, Germany, 35:1-35:22.
d0i:10.4230/LIPIcs.CSL.2021.35

Andrew M. Pitts. 1995. Categorical logic. In Handbook of Logic in Computer Science: Volume 5: Logic and Algebraic
Methods, S. Abramsky, D. M. Gabbay, and T. S. E. Maibaum (Eds.). Oxford University Press, 39-123. doi:10.1093/0so/
9780198537816.003.0002

Gordon Plotkin and Martin Abadi. 1993. A logic for parametric polymorphism. In Typed Lambda Calculi and Applications,
Marc Bezem and Jan Friso Groote (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 361-375.

Emily Riehl and Michael Shulman. 2017. A type theory for synthetic co-categories. Higher structures 1, 1 (2017).
arXiv:1705.07442.

Mario Roman. 2020. Open Diagrams via Coend Calculus. In Electronic Proceedings in Theoretical Computer Science,
Vol. 333. 65-78. arXiv:2004.04526v4 doi:10.4204/EPTCS.333.5

Alessio Santamaria. 2019. Towards a Godement calculus for dinatural transformations. Ph. D. Dissertation. University
of Bath. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.787523

, Vol. 1, No. 1, Article . Publication date: October 2018.

https://doi.org/10.1017/CBO9781107360068
https://doi.org/10.1016/j.entcs.2011.09.026
https://doi.org/10.1017/9781108778657
https://doi.org/10.1007/978-1-4757-4721-8
https://doi.org/10.1007/s10485-013-9360-5
https://doi.org/10.1016/j.jpaa.2021.106689
https://books.google.ee/books?id=nzZzzgEACAAJ
https://arxiv.org/abs/2307.09289
https://doi.org/10.48550/arXiv.2307.09289
https://doi.org/10.1007/978-3-031-30829-1_6
https://doi.org/10.1016/j.entcs.2019.09.012
https://doi.org/10.1016/S0022-4049(97)00036-4
https://doi.org/10.1016/S0168-0072(03)00003-4
https://doi.org/10.1016/S0168-0072(03)00003-4
https://doi.org/10.4230/LIPIcs.FSCD.2017.29
https://doi.org/10.4230/LIPIcs.FSCD.2017.29
https://doi.org/10.4204/EPTCS.292.9
https://doi.org/10.23638/LMCS-15(4:6)2019
https://doi.org/10.4230/LIPIcs.CSL.2021.35
https://doi.org/10.1093/oso/9780198537816.003.0002
https://doi.org/10.1093/oso/9780198537816.003.0002
https://arxiv.org/abs/2004.04526v4
https://doi.org/10.4204/EPTCS.333.5
https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.787523

1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519

Di- is for Directed: First-Order Directed Type Theory via Dinaturality 31

[76]

[77]
[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

P. J. Scott. 2000. Some aspects of categories in computer science. Handbook of Algebra, Vol. 2. North-Holland, 3-77.
d0i:10.1016/S1570-7954(00)80027-3

Michael Shulman. 2016. Categorical Logic from a Categorical Point of View. https://github.com/mikeshulman/catlog

The Univalent Foundations Program. 2013. Homotopy Type Theory: Univalent Foundations of Mathematics. https:
//homotopytypetheory.org/book, Institute for Advanced Study.

Tarmo Uustalu. 2010. A Note on Strong Dinaturality, Initial Algebras and Uniform Parameterized Fixpoint Operators.
In 7th Workshop on Fixed Points in Computer Science, FICS 2010, Brno, Czech Republic, August 21-22, 2010, Luigi
Santocanale (Ed.). Laboratoire d’Informatique Fondamentale de Marseille, 77-82. https://hal.archives-ouvertes.fr/hal-
00512377/document#page=78

Tarmo Uustalu, Niccolo Veltri, and Noam Zeilberger. 2020. Eilenberg-Kelly Reloaded. Electronic Notes in Theoretical
Computer Science 352 (Oct. 2020), 233-256. doi:10.1016/j.entcs.2020.09.012

Benno van den Berg and Richard Garner. 2010. Types are weak w-groupoids. Proceedings of the London Mathematical
Society 102, 2 (Oct. 2010), 370-394. arXiv:https://academic.oup.com/plms/article-pdf/102/2/370/4487337/pdq026.pdf
d0i:10.1112/plms/pdq026

Janis Voigtlander. 2020. Free Theorems Simply, via Dinaturality. In Declarative Programming and Knowledge Manage-
ment, Petra Hofstedt, Salvador Abreu, Ulrich John, Herbert Kuchen, and Dietmar Seipel (Eds.). Springer International
Publishing, Cham, 247-267. doi:10.1007/978-3-030-46714-2_16

Matthew Weaver. 2024. Bicubical Directed Type Theory. Ph.D. Dissertation. https://dataspace.princeton.edu/handle/
88435/dsp017575dg778

Matthew Z. Weaver and Daniel R. Licata. 2020. A Constructive Model of Directed Univalence in Bicubical Sets.
In Proceedings of the 35th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS "20). Association for
Computing Machinery, New York, NY, USA, 915-928. doi:10.1145/3373718.3394794

R.J. Wood. 1982. Abstract proarrows I. Cahiers de topologie et géometrie différentielle categoriques 23, 3 (1982), 279-290.

, Vol. 1, No. 1, Article . Publication date: October 2018.

https://doi.org/10.1016/S1570-7954(00)80027-3
https://github.com/mikeshulman/catlog
https://homotopytypetheory.org/book
https://homotopytypetheory.org/book
https://hal.archives-ouvertes.fr/hal-00512377/document#page=78
https://hal.archives-ouvertes.fr/hal-00512377/document#page=78
https://doi.org/10.1016/j.entcs.2020.09.012
https://arxiv.org/abs/https://academic.oup.com/plms/article-pdf/102/2/370/4487337/pdq026.pdf
https://doi.org/10.1112/plms/pdq026
https://doi.org/10.1007/978-3-030-46714-2_16
https://dataspace.princeton.edu/handle/88435/dsp017s75dg778
https://dataspace.princeton.edu/handle/88435/dsp017s75dg778
https://doi.org/10.1145/3373718.3394794

1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568

32 Laretto, Loregian, Veltri

A Additional judgments for first-order dinatural directed type theory

The rules to formally capture the variance of variables in predicates is given in Figure 14, with the
accompanying definition of unused variables in terms in Figure 13.

We show in Figure 15 the full rules in the equational theory regarding cuts. In Figure 16 we
explicitly illustrate what a bidirectional rule in “adjoint-form” looks like, by explicitly listing the
two directions, the isomorphisms and the naturality conditions.

'sx:C x+#y

FBx:Aunusedint:C‘

I'sy:Cunusedinx:C I'>x:Aunusedin!: T
I'>x:Aunusedint: dom(f) I'sx:Aunusedint:C
I' > x:Aunusedin f(t) : cod(f) T 3x:A° unused int°P :C
I'sx:Aunusedins:C TI'>x:Aunusedint:D
I's>x:Aunusedin(s,t):CxD
I'sx:Aunusedinp:CxD T 3x:Aunusedinp:CxD

I'>x:Aunusedinm(p):C T 3x:Aunusedinm(p):D
I'>x:Aunusedins:[C,D] T >x:Aunusedint:C [x:Cri(x):D

I'sx:Aunusedins-t:D I' > x: Aunused inAx.t(x) : [C,D]

Fig. 13. Syntax of first-order dinatural directed type theory — syntactically unused variables in terms.

I'sx:Acoving

I'sx:AcovinP T>x:AcovinQ T°>3x:A®covinP T >x:AcovinQ

I'sx:AcovinPxQ I'sx:AcovinP = Q
ILy:C>x:Acoving ILy:C>x:Acoving

I'sx:AcovinT Tax:Acovin/y:C(p(y,y) FBX:Acovinfy:c(p@,y)
I'P T >x:A%° unusedins : C°? T° T >Xx:A% unusedint:C

I' > x:Acovin homg(s,t)

P, T 5 x: A’ unused ins : neg(P)°®® T°P,T 5 x: A% unused int : pos(P)

I'>x:AcovinP(s|t)

A=A" ¢p=¢° T>3x:Acoving

I'sx:A coving’

Fax:Acontrain(p‘

I'°P 5 x : A° contra in ¢°?

I'>x:Acontraing

Fig. 14. Syntax of first-order dinatural directed type theory — syntactic conditions for covariant/contravariant
variables in predicates.

, Vol. 1, No. 1, Article . Publication date: October 2018.

1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617

Di- is for Directed: First-Order Directed Type Theory via Dinaturality 33

[a:A°Pb: A x:

‘[F]Cbl—azﬂ:P‘

I unused in P and Q
®(a,b,x,x) ra :P(ab)

(assoc-nat-din-nat)

r]
[z:A,x:T)k: P(z,2),0(z,2x,x) Fylk] : Q(z 2)
[a: AP, b:Ax:T]k:Q(ab),®b,axx)F k] : R(a,bX,x)
[z:Ax:T] @(z,z,%,x) b (BlyDlal = Blylal] : R(Z, 2%, x)

T unused in P, A unused in ®
[a:A]l k:P(a),®+ alk]:Q(a)
[a:A] r:Q(a),®+ B[r] : R(a)

- (cut-coherence)
[a:A] k:P(a),®F Bla]vtmat = Bla]cutdin . Q(a)

T unused in P
[z:Ax:T]k:P(z2),®(zzx,x)k:P(zz)

[a: A%, b:Ax:T] P(ab),®baxx)ra:Q(ab)

[a: AP b : A,

(cut-nat-id;)
[z:Ax:T] P(Z2),®(Zz7%x)+ alk] = a®’™%: Q(Z, 2)

T unused in Q
[z:A,x:T] ®Z,z,%x)Fa:Q(zz2)
:T] k:P(ab),®(b,a,xx)+k:P(ab)

ot

(cut-nat-id,)

[z:A,x:T] ®(z,z,%,x) F k[a] =a: Q(Z, z)

I unused in P

[a: AP, b:A,x:T]k:P(ab),®(ab,x,x)+Fk:P(ab)

[z :

[z:A,x:T] P(z,2),0(z,2,%,x) F a: Q(z,2)
[z:A,x:T] P(z,2),0(z,z,%,x) + alk] = a : Q(z, z)
T unused in Q
[a: AP b:Ax:T] ®(a,bx,x)Fa:Q(ab)
Ax:Tlk:0(z2),0(zzx,x) Fk:0Q(z2)

(cut-din-id;)

Fig. 15. Syntax of

t-din-id,
[Z DA X r] ‘I‘(E’ Z,)_C,X) F k[a] = aﬂ,br—»z . Q(E, Z) (Cu In-i)

first-order directed type theory — Equational rules for cuts: associativity for natural-

dinatural-natural cuts, coherence for cuts between naturals, left and right identities for cut.

, Vol. 1, No. 1, Article . Publication date: October 2018.

1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666

34 Laretto, Loregian, Veltri

[x:CT]®Fa:P(x x) (end) [l ®Fra: [P(Xx)

[[] @+ end(a) : [, P(x.x) [x:CT] ®Fend ' (a): P(%x)

(end™1)

\[r]m(x:ﬁ:P\

[x:C,T]®F a: P(x, x) [l ®ra: [P(xx)
[x:CT]®+end !(end(a)) = a: P(x, x) [T] @+ end(end () = a: /x:C P(x, x)

[z:AT] D(z,2) - f:0(z,2)
[a:A%,b:Ax:CT]k:0Q(ab),®@b)ra:P(X xab)
(end-nat;)
[x:C,z:AT] ®(z,2) + end()[f] = end(x[f]) : /x:C P(x,x,z,2)
[a:A°P,b:AT] D(a,b) F f:Q(ab)
[x:C,z: AT k:0Q(z2),®(z2) +a:P(xx,22)]
(end-diny)
[x:C,z:AT] ®(z,z) F end(a)[f] = end(a[f]) : fx:c P(x,x,2,2)
[%1:C,x5:C,a: A, b:A] P(x1,x2,a,b) + B : P'(x1, X2, a,b)
[x:C,z: Al ®(z,2) F a: P(x,x,%,2))
(end-din,)

[z:A] ®(z,2) + endp(f)[end(a)] = end(f[a]) : ./x:C P'(X,x,z,2)
[%1:CP,x2:C,z:A] Q(x1,%2,2,2) F B : P/ (x1, %2, 2, 2)
[x:C,a: AP, b: Al ®(a,b) + a:Q(x,x,a,b)

end-nat,
[a:A°P,b: Al ®(a,b) + endp(f)[end(a)] = end(f[a]) : /x:c P'(x,x,a,b) ()

Fig. 16. Syntax of first-order directed type theory — Explicit description of a rule in “adjoint-form”, e.g., for
ends: rules, isomorphisms, and naturality in ®, P for (end). Naturality in P uses functoriality in Figure 17.

[a:CPb:CT]k:P(ab)r alk]:P(ab)

[x:CT]p: /‘C P(%,x) + endp(a) := end(a[end ™! (p)])

=end(a)[end ' (p)] : /-c P(x,x)

Fig. 17. Functoriality of ends for naturals by precomposing with the counit of (end).

, Vol. 1, No. 1, Article . Publication date: October 2018.

Di- is for Directed: First-Order Directed Type Theory via Dinaturality 35

1667 B Directed type theory, other derivations

1668 Example B.1 (Contractibility of singletons). Recall the derivation for existence of singletons:

1669

1670 y:C
1671 [] -+ end(coend ™' (k)[refl,]) : / / homc¢(x,y)
x:CoP

1672 y:C
1673 'We now show that singletons are actually contractible: assuming another element k : homc¢(x,y),
122 we show that it is equal to the the one given in the first derivation (after removing the universal
1o Quantifier). Note that the right-hand side must cut away the hypothesis k by precomposing with
1o;; the constant dinatural !. In the bottom of the derivation we use the fact that the isomorphisms for
L7 coends are natural with respect to the cut rules of our type theory. In the top of the derivation
oo We omit for simplicity an application of associativity of cuts and uniqueness of ! which is used to
Lesp Yemove the application of J -1
1681 (refl)
1682 [z:C]«F coend™ (k)[refl,] = coend ™ (k)[refl,] : - --))
1683 n - (!-unique)+(assoc-nat-din-nat)
16sa [2:Clercoend™ (k)[refl;] = coend™" (k) [refl]J['][refl;] : --- (J-eq)
1685 [x: C°,y:C] k : homc(x, y) + coend™ (k) = coend ™ (k) [refl,][] : - --)
1686 - s (*-unique)
Les7 - =coend” " (k)[refly][coend™ " ()] : --- (coend-natural)
1688 [x : C%,y : C] k : homc(x,y) + coend™*(s) = coend ™! (coend ™" (k) [refl][!]) : - - -
1689 (coend)

y:C y:C
1690 [x:COP] k: / home (x, y) + k = coend ™! (k) [refl,][!] : / homc(x,y)
1691
1692 Example B.2 (Internal naturality for natural transformations). We show that naturality for natural

1693 transformations between terms, expressed as ends [52, 1.4.1], holds internally by directed equality
1694 elimination. Given terms C + F, G : D, we use the counit of (end) to extract the family of hom-sets.
1605 We first explicitly show the rules used to construct the two sides of a naturality square:

1696 [a:C°,b:C]f:homc(a,b),n: fxc homp F(X),G(x) 1 : /xc hom(F(x), G(x)) 41
1697 - - -
1698 [a:C% b:C,x:C]f:homc(ab),ny:..+end '(n): hom(F(xX),G(x)) i) end)
idx
1699 [a:C%,b:C]f:homc(a,b),n: ..+ A*(end *(n)) : hom(F(a),G(a))
1700 (cut-nat)

o1 La:CPb:C]f:home(ab),n:..F comp[A*(end_l(ry)),congG [f1] : hom(F(a),G(b))

1702 where A" is the reindexing functor which collapses a, x to a single variable a, and (cut-nat) is used
1703 to apply comp on cong for G. This composition can be done since both cong and comp have the
1704 correct naturality shape that allows for (cut-nat) to be applied.

1705 The other derivation is obtained similarly:

1706

1707 [a:C%,b:C]f:homc(ab)n: /x.C homp F(X),G(x) + 1 : /x.c hom(F(x), G(x)) !

1708 . . end™")
1709 [a:C% b:C,x:C]f:homc(ab),ny:..+end '(n) : hom(F(x),G(x)) (idx)

1710 [a:C%,b:C]f:homc(a,b),n: .. A*(end™ (n)) : hom(F(b), G(b))

1711 (cut-nat)
2 [a:C%,b:C]f:homc(a,b),n: ... - comp[congg[f],A*(end”'(n))] : hom(F(a), G(b))

1713 We show that the two maps constructed, corresponding to the two sides of a naturality square,
1714 are equal using directed equality elimination; let K := A*(end ™! (n)):

1715

, Vol. 1, No. 1, Article . Publication date: October 2018.

36 Laretto, Loregian, Veltri

1716
2; [z:C] ..+ K = K : hom(F(Z), G(2))
— (J-comp)
1719 [z:C]... - complrefl;, K] = comp[K, refl.] : hom(F(z), G(z)) (J-comp)
1320 [z : C] ... comp[congg[refl.], K] = comp[K, cong [refl,]] : hom(F(Z), G(z)) p(])
1721 _eq

1722 [a:C°P,b:C] f:homc(a,b),... - comp[congp[f],K] = comp[K, cong;[f]] : hom(F(a), G(b))

1723 where the equations used follow by the computation rules for cong and left and right unitality of
1724 comp. Note that (J-eq) can be used since a, b appear precisely with the correct types that allow for
1725 (J]) to be applied to contract the equality.

1726 This naturality can then be used to prove a suitable internal Yoneda lemma for the hom of

1727 categories by following the standard argument, e.g., given in [50].
1728

1729 Example B.3 (Identity natural transformation). We show the existence of the identity natural
1730 transformation for terms, given a functor C - F : D:

1731 . — (refl)+(idx)

1732 [x: C]«++ F*(refly) : homp(F(x), F(x)) end)

1733 [1++end™" () : [homp(F(¥),F(x))

1734

1735 Example B.4 (Composition of natural transformations). We show that natural transformations
173 between terms, expressed as an end [52, 1.4.1], can be composed. Take functors C + F,G, H : D;
1757 first, consider the following elementary derivations:

12: [11: /x:C homc (F(x), G(x)),r : /x:c homc(G(x),H(x)) + 1 : /x:c homc (F(x), G(x)) end-1)

a0 [x:Cl: [homc(F(%),G(x)),r : [. . homc(G(¥), H(x)) - end™ () : homc (F(%), G(x))

1741

1742 [11: /x:C homc (F(x), G(x)),r : /x:C home (G(X),H(x)) + 1 : /x:C homc (F(x), G(x))
74 [x:C]I: fx:C homc (F(x), G(x)),r : fx:C homc (G (%), H(x)) F end™!(r) : homc (G (%), H(x))

1744

(end™1)

Then, we take the statement for transitivity of directed equality, and reindex a with F(a), b with
14 G(b), and ¢ with H(c):

1747 (])

1748 [a:D°,b:D,c:D] f:homp(ab), g: homD(E, ¢) + comp : homp(a,c)
1749 [a:C%,b:C,c:C] f:homp(F(a),G(b)), g: hom(G(B),H(c)) + comp’[f, g] : homp(F(a), H(c))

1750

1745

(idx)

Now we can perform the composition of this map with the entailments above, which can be done

1751
175, because comp is individually natural in a, b, and b, c. Composing [into comp contracts a, b to the
1753 same variable z, while still allowing the other map to be later composed in the equality with z, c.
175, Finally, we reintroduce the end quantifier.
1755

(cut-nat)
1756 [z:C%,¢c:C|L:..,r: .., g :hom(G(Z),H(c)) comp’[end~(I),g] : homp(F(z), H(c)) (cut-nat)

cut-na

1757 [w:Cll:...,r:...,- comp’[end”'(I),end™'(r)] : homp (F(w), H(w))
1758 (end)
1759 [11:..,r:...,+end(comp’[end*(]),end "} (r)]) : homp (F(w), H(w))

w:C
179" Associativity of the map above follows from associativity of comp as in the standard case.
1761
1762 Example B.5 (Directed equality in opposite categories). We do not ask that predicates [x : C,y :
1763 C°P] homcer (x, y) and [x : C,y : C°P] homc(y, x) are definitionally equal in the equational theory
1764

, Vol. 1, No. 1, Article . Publication date: October 2018.

1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813

Di- is for Directed: First-Order Directed Type Theory via Dinaturality 37

(although this would arguably be a desirable choice), but we can prove by directed equality induction
that they are isomorphic:

—— (refl)
[z:C,T] @ + refl, : home (Z, z)

[x:C,y:CPT] f : homcor (x,y), @ F J(refl,)[f] : homc(y, x)

Rule (J) can be applied since x, y appear covariantly in the conclusion. The inverse direction is
identical:

— (refl)
[z:C,T] ® + refl, : homcor (z,7)

[x:C,y:CPT] f:home(y,x),®+ J(refl,)[f] : homcor (y, x)

In one direction, they compose (since they are both naturals) to the identity by directed equality
induction:

)

(J-comp)

[z:C,T] @+ J(refl,)[J(refl,)[refl,]] = J(refl,)[refl,] = refl, : homcor (2, Z) (-eq)
-eq

[x:C,y:CPT] f: homc(y,x), ® + J(refl,) [J(refl)[f]] = f : homcer (y, x)

The other direction is analogous.

C Other rules derivable from the adjoint formulation

The following series of examples captures natural deduction-style rules for coends, where coends
are on the right side of the turnstile.

Example C.1 (Elimination for coends). The following derivation captures an elimination rule for
coends, where [T, d:A] ®(d) propctx, Q(d) prop, [x:CP,y:C,d:A] P(x,y,d) prop, with variables
in A always being used naturally:

[T,z:C,d:A] P(z,2,d),2(y,y,d) + Q(d) .
(coend™")

[T,d:A] [*C PG 2d), 07y, d) F Q) (coend)+
) (end)

(cut-nat)

[[,d:A] &(d) + [“C P(%.x,d)

. T — (coend™1) . - T —
[d:A] f O(y,y.d) + / P(x,x,d) [d:A] P(Z, z, d),f O(y,y.d) + /y:r o.y.d

[d:4] [T o@y.d v [MOFy.d)
[T,d:A] @(d) + Q(d)

(coend)+(end 1)

Example C.2 (Introduction for coends with a term). The following derivation captures an intro-
duction rule for coends with a generic term A + F : C (not a diterm), for [T, d : A] ®(d) propctx,
[x:C,d:A] Q(x,d) prop:

(coend-unit)

[x:C.d: Al Q(x,d) [7CQ(x,d) 0
1ax
[T,d: Al &(d) - Q(F(d),d) [d:A] Q(F(d),d) - [Q(x,d)
[T,d: A] &(d) + [*CQ(x,d)

In particular, we picked (coend-unit) with Q depending on just a single variable and reindexed
with F, which ignores the negative context. Note that variables in A are always used naturally.

Example C.3 (Introduction for coends with a dinatural variable). The following derivation cap-
tures an introduction rule for coends with a dinatural variable x, for [x : C°?’,y : C,I,d :

, Vol. 1, No. 1, Article . Publication date: October 2018.

1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862

38 Laretto, Loregian, Veltri

A] ®(x,y,d) propctx, [x : CP,y : C,d : A] Q(x,y,d) prop:

(coend-unit)

[T,x:C%y:Cl®(x,0.d) F Q(x,y.d) [d:A] QG zd) F [*CQ(E2d)
[T &+ [* 0z 2d)

In particular, we picked (coend-unit) with Q depending naturally on x, y, z. Note that variables in
A are always used naturally.

(cut-din)

D (Co)end calculus, other derivations
We report here additional examples of derivations for (co)end calculus using our rules.

Example D.1 (Pointwise fomula for left Kan extensions). Dually to Example 6.3, we give a logical
proof that the functor Lang : [C, Set] — [D, Set] sending (co)presheaves to their left Kan extensions
along F : C — D computed via coends [52, 2.3.6] is left adjoint to precomposition (F;—) : [D, Set] —
[C, Set]. For any [x : C] P(x) prop, a functor/term C - F : D and a generic [y : D] ¢(y) prop:

[y : D] (LangP)(x) ==
:C —
S homc (F(X),y) X P(x) + ¢(y)

(coen
[x : Cy : D] homc (F(%),y) X P(x) F ¢(y) (exp)
[x: Cy: D] P(x) + homc(F(x),y) = ¢(y)
(end)
[x:C] P(x) + fy:D homp (F(x),y) = ¢(y)
(Yoneda)

[x : C] P(x) + ¢(F(x))

Example D.2 (Right rifts in profunctors). We give a logical proof that composition (on both sides)
in Prof has a right adjoint [52, 5.2.5 and Exercise 5.2]. This makes Prof a bicategory where right
extensions and right lifts exist. For simplicity we only treat precomposition, although postcompo-
sition is completely analogous. For any composable profunctors [x : C°P,y : A] P(x,y) prop,[x :
A%y : D] Q(x,y) prop and a generic [x : C°P,y : D] ¢(x,y) prop:

[x:C,z: D] (P;-)(Q)(x,2) =
S P y) x Q@ 2) + p(x,2)
[x:C%y:Az:D] P(x,y) X Q(y,2) + ¢(x,2)
[x:CPy:Az:D] O(y,2) F P(x,7) = ¢(x,2)
[y:Az:D] Q@2+ [PET) = o(x2)
[y:A®,z:D] Q(y,2) - [P(X.y) = ¢(x,2)
= Riftp(¢) (v, 2)

where the last (end) can be applied since x : C does not appear on the left.

(coend)

(exp)

(end)

(op)

Example D.3 (Composition of profunctors is associative). Using our approach relying on contextual
operations we easily show that composition of profunctors, defined via a coend [52], is associative
and essentially follows from associativity of products. For composable profunctors [x : A°P,y :
B] P(x,y) prop, [x : B°?,y : C] Q(x,y) prop, [x : C°P,y : D] R(x,y) prop, and a generic [x : AP,y :
D] ¢(x.y) prop:

, Vol. 1, No. 1, Article . Publication date: October 2018.

Di- is for Directed: First-Order Directed Type Theory via Dinaturality 39

1863
1864 bB c:C - — —
e [a:Ad:D] ["®P(,b)x (/ 0(h,¢) X RS, d)) k0@ d)
1866 - - (coend)
1867 [a:Ab:B,d:D]P(ab)x (/C Q(b,c) X R(c, d)) F¢(a,d)
1868 — (coend)
1869 [a:Ab:B,c:C,d:D] P(ab) x (Q(b,c) XR(c,d)) + ¢(a,d)
1870 — (structural property)
1871 [a:Ab:B,c:C,d:D] (P(a,b) xQ(b,c)) XR(c,d) + ¢p(a,d)
coend)
1872 B _ — _
. [a:Ac:Cd:D] ([P(@b)x Qb)) x REd) F p(ad)
1874 Py — (coend)
1575 l[a:Ad:D] [© (j B p@b) x 0(b, c)) X R(d) F ¢(@d)
jZZj THEOREM D.4 (DINATURALS AS AN END). The set of dinaturals Dinat(P, Q) := {P —> Q} between
L8 dipresheaves P,Q : C°P x C — Set can be characterized in terms of the following end [26, Thm. 1],

s Dinat(P,Q) = [P(x,X) = Q(xX,x).

1880 Proor. We give a simple derivation that characterizes all the points (i.e., dinaturals from the
1881 point in the empty term context) of the end above using our syntax:

e Dinat(P, Q) := [x : C] P(%,x) F O(%, x)

1883 (exp)

1884 [x:C]eF P(x,%x) = Q(x,x)

1885 (end)
1886 [1-F [.c P(x,X) = QO(x,x)

1887 Since dinaturals generalize naturals, a similar derivation justifies the well-known description of
1388 natural transformations as ends shown in Section 1 for F, G : C — Set,

1889 Nat(F,G) = [. F(¥) = G(x).
1890 *
O
1891
1892 E Computation rule via]!
893
1894 We spell out the proof of the computation rule for the definition of J~! given in Theorem 3.13.
1895 TueoreM E.1 (J~! & refl). Rule (refl) is logically equivalent to (J~); in particular, assuming

1896 naturality of J71, if one defines reflc := J~1(e) then the computation rule J(h)[reflc] = h holds in
1897 the equational theory.

1898
1500 ProoF. We start by spelling out naturality of J~! in P, which is assumed: explicitly, naturality
oy States that the following two derivations are equal in the equational theory for any « and f

1001 (simplifying the context as much as possible for readability):

1002 [a:C%,b:C]e:homec(ab),®(b,a)+ a: P(ab)

1903 [z2:C]l ®(Z,2) v J X (ale]) : P(Z 2) [z:C] k:P(a,b),®(a, 5) F Blk] : Q(a,b)
o 2:Clo(z,2) r fU @] : 0z 2)

1906 and

1997 [a:C,b:C]e:homc(ab),®(b,a)rFa:P(ab) [z:Clk:P(ab),®@b)r flk]:Q(ab)

izz [z:C] e:home(a,b),®(b,a) + fla] : P(Z2)

1910 [2:C]l ®(Z,2) - J7'(Bla]) : Q(Z,2)

1911
, Vol. 1, No. 1, Article . Publication date: October 2018.

1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960

40 Laretto, Loregian, Veltri

ie, B[J Y (@)] = J~Y(B[a]). In our particular case we take P(a,b) := hom(a,b) and « := e the
projection with (var) and § := J(h), from which we obtain that J(k)[reflc] = J(h)[J ()] =
JY(J(h)[e]) = J71(J(h)) = h by the assumption that J~1(J(h)) = h and the fact that (var) is the
identity for cut. O

F Frobenius and Beck-Chevalley conditions for (co)ends

THEOREM F.1 (BECK-CHEVALLEY AND FROBENIUS CONDITION FOR (CO)ENDS). (Co)ends satisfy a
Beck-Chevalley condition, in the sense that for all F : C° — D there is a strict isomorphism

Jaoy 3 = (idae X P)5 [y
in the (large) functor category [[A°® x D°, Set] [D°, Set]], where
Sater JA L (A0 x Coset] — [C°, Set]

are the functors sending dipresheaves to their (co)end in A and F* : [D°, Set] — [C®, Set] is precom-
position with F°.
Moreover, a Frobenius condition for coends is satisfied, in the sense that there is an isomorphism

AlC], . . A C
S g (P x @) = o () x [
natural in® : A° X C°® — Set, P : C° — Set, where — X —:[C, Set] X [C, Set] — [C, Set] for any C
is the product of (di)presheaves.

Proor. Beck-Chevalley is immediate. For Frobenius, our logical rules can be used to apply
exactly the argument given in [43, 1.9.12(i)], detailed in Theorem F.2.)

THEOREM F.2 (FROBENIUS CONDITION FOR COENDS). ForanyI" : A° X C® — Set and a generic
K : C° — Set, the following series of derivations gives a logical proof of the Frobenius condition given
in Theorem F.1, which we prove by following exactly the argument given in [43, 1.9.12(i)] in the case of
fibrations with exponentials. In particular, we show that the Frobenius formulation of (co)ends follows
from the non-Frobenius one combined with polarized exponentials. Note that we use the same Yoneda
technique described in Remark 6.

(] [P x o x) - o
[x : AT] P,®(x,x) F ¢
[x :AT] @G, x) FP= ¢

(coend-without-frobenius)

(exp)

(coend-without-frobenius)

r] M eExrp=g

(exp)

1P, Moz kg

THEOREM F.3 ((coend-without-frobenius) = (coend)). The rule (coend) can be directly justified
using (coend-without-frobenius), as follows:

r] (/‘“A 0@, a)),<1> ko

(exp)

1] [“ 0@ a)F ®(x,5) = ¢
[y:C,T] Q(a,a) F ®(x,x) = ¢
[T1Q(a,a),®+¢

(coend-without-frobenius)

(exp)

, Vol. 1, No. 1, Article . Publication date: October 2018.

1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009

Di- is for Directed: First-Order Directed Type Theory via Dinaturality 41

G Yoneda technique

We show how the Yoneda technique described in Remark 6 can be used to prove a derivation of
(co)end calculus. We show the case of Yoneda Example 6.1.

[a:C] ®(a) + fx:C hom¢ (a,x) = P(x)

(end)
[a:C,x:C] ®(a) + homc(a,x) = P(x)

[a:C,x:C] homc(a x) X ®(a) + P(x)
[z:C] ®(z) + P(2)
Explicitly, the two entailments witnessing the isomorphism are obtained by picking ® to be the
context with a single formula and the (var) case at the top of the derivation, i.e.,
(var)
[z:Clk:P(z)+k:P(2)
[a:C,x:C] k : P(a),homc(a,x) + J(k) : P(x)
[a:C,x:C] k: P(a) + exp(J(k)) : homc(a,X) = P(x)
[a:C] k : P(a) + end(exp(J(k))) : /x:C hom¢(a,x) = P(x)

xp)

)

(exp)
(end)

and
(var)

[a:C] k : /x:C homc(a,x) = P(x) + k : ./x:C homc(a,x) = P(x)
[a:C,x:C] k:---Fhomc(a,Xx) = P(x)
[a:C,x:C] k:--- ,homc(a, x) + P(x)
[z:C]k: /x:C homc(z,X) = P(x) + J~'(exp~!(end*(k))) : P(z)

These two entailments can clearly be composed since they are both natural transformations.
They compose to the identity in both directions by using the same approach when proving fully
faithfulness of the Yoneda embedding [50], i.e., using naturality of each rule in ® to make them
commute with cuts and then using the fact that all rules are invertible:

(end™1)

(exp™!)

-1

[a:C] k: P(a) + J ' (exp~(end ™' (k))) [k > end(exp(J(k)))]
= J ' (exp~*(end ™! (k)) [k = end(exp(J (k)))])
= J ' (exp~*(end ™! (k) [k > end(exp(J (K)))]))
= J ' (exp~*(end ™! (k[k — end(exp(J (K)))])))
= J ' (exp~*(end ™! (end(exp(J(k))))))
=J ' (exp~ ! (exp(J (K))))
=J7'(J(k)
=k :P(a)

Note that we are propagating the cut along the hypothesis k in context (this is only ambiguous
in the rule (exp) since there are two hypotheses, where we leave f : hom(a, b) untouched).
The other direction is obtained analogously.

H Composite in Example 3.8

Given a dinatural transformation

[z:Clk:P(z,2)Fa:Q(z2)

, Vol. 1, No. 1, Article . Publication date: October 2018.

2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058

42 Laretto, Loregian, Veltri

we illustrate how the composite
[a:Cb:C]f:homc(a,b)k: P(b,a) + substg [(f, refly), [a[substp[(refly, £), k]]]] : O(a, b)

in Example 3.8 is indeed allowed by the cut rules of our type theory, i.e., that dinaturals compose.
The well-formedness of Example 3.7 follows similarly since it is a special case of the one below. We
construct one of the two sides of the equation, with the other one following similarly.

The key idea is that subst is essentially a natural transformation when saturated in the function
f (even partially). The subst of a predicate [a : C°P,b : C] Q(z,b) depending on two variables
corresponds to the following entailment:

[@’,b:C%,a,b" :C]f:homc(d’,a),g: homc(b,b'),k: Q(a, b) F substp[f,g,k] : P(a’,b")

After precomposing f with refl and renaming variables via Theorem 3.14 note that the resulting
map is natural in z, b after currying the equality g to the right.

[b,z:C%®,b": C] g : homc(b,b’), k : P(z,b) + substp[refl,, g,k] : P(z,b")

This map can be precomposed with a by picking b to be part of the variables of I' in the rule (cut-din).
The intuition for this, described in Section 5 for the semantics of cut, is that one can take the (co)end
over b and obtain the above family as natural in z and b’, without b appearing, which then can be
composed with « in the expression a[substp[(refly, f), k]]. The remaining part of the term is then
obtained by using (cut-nat) to compose with substg in an analogous way.

Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009

, Vol. 1, No. 1, Article . Publication date: October 2018.

	Abstract
	1 Introduction
	1.1 Contribution
	1.2 Related work
	1.3 Structure of the paper

	2 Syntax
	2.1 Polarity and variance
	2.2 Rules

	3 Directed equality à la Martin-Löf
	3.1 On the adjoint formulation
	3.2 Aspects of directed type theory

	4 Dinaturality
	5 Semantics
	6 Coend calculus via dinaturality
	7 Conclusions and future work
	Acknowledgments
	References
	A Additional judgments for first-order dinatural directed type theory
	B Directed type theory, other derivations
	C Other rules derivable from the adjoint formulation
	D (Co)end calculus, other derivations
	E Computation rule via J-1
	F Frobenius and Beck-Chevalley conditions for (co)ends
	G Yoneda technique
	H Composite in ex:internaldinaturality

