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Di- is for Directed:
First-Order Directed Type Theory via Dinaturality

ANDREA LARETTO, FOSCO LOREGIAN, and NICCOLO VELTRI, TalTech, Estonia

We show how dinaturality plays a central role in the interpretation of directed type theory where types are
given by (1-)categories and directed equality by hom-functors. We introduce a first-order directed type theory
where types are semantically interpreted as categories, terms as functors, predicates as dipresheaves, and
proof-relevant entailments as dinatural transformation. This type theory is equipped with an elimination
principle for directed equality, motivated by dinaturality, which closely resembles the J-rule used in Martin-
Lof type theory. This directed J-rule comes with a simple syntactic restriction which recovers all theorems
about symmetric equality, except for symmetry. Dinaturality is used to prove properties about transitivity
(composition), congruence (functoriality), and transport (coYoneda) in exactly the same way as in Martin-Lof
type theory, and allows us to obtain an internal “naturality for free”. We then argue that the quantifiers of
directed type theory should be ends and coends, which dinaturality allows us to capture formally. Our type
theory provides a formal treatment to (co)end calculus and Yoneda reductions, which we use to give distinctly
logical proofs to the (co)Yoneda lemma, the adjointness property of Kan extensions via (co)ends, exponential
objects of presheaves, and the Fubini rule for quantifier exchange. Our main theorems are formalized in Agda.
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1 Introduction

Homotopy type theory [7, 78, 81] revolutionized the way we think about types. One of the funda-
mental insights that inspired this revolution was first given in a seminal paper by Hofmann and
Streicher [42], with a remarkably simple idea: rather than viewing types just as sets of inhabitants,
they give an interpretation of Martin-Lof type theory where types are taken to be groupoids, i.e.,
categories in which every morphism is an isomorphism. The inhabitants of a type become the
objects of a groupoid, and the morphisms in a groupoid represent the equalities between inhabitants,
of which there can be more than a unique one. The reason why morphisms need to be invertible is
because of the inherently symmetric nature of equality: given a proof of equality e : x = y, there is
always a proof of the equality ¢’ : y = x.

A natural question follows: why not categories, rather than groupoids? Can there be a type theory
where types are interpreted as categories, where morphisms need not be invertible? Such a system
should take the name of directed type theory [2, 4, 34, 51, 61, 84], where the directed aspect comes
precisely from this asymmetric interpretation of “equality”.
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2 Laretto, Loregian, Veltri

Types C | Categories C
Functions f : C — D | Functors F: C —» D
Relations R : C X D — Bool | Profunctors P : C°? x D — Set
Predicates P : C — Bool | Presheaves P : C°P — Set
Points of a type | Objects of a category
Equalities e : a =¢ b | Morphisms e : hom¢(a, b)
Equality types =¢: C X C — Type | Hom functors homc : C°? X C — Set
Universal quantifiers | Ends fx o P(xx)

Existential quantifiers | Coends / e P(x, x)

Fig. 1. The directed generalization of logical concepts.

Directed type theory has been a hot topic of type-theoretical research for the past decade [4,
19, 35, 59, 60, 62, 64, 83]. This quest for the directed generalization has a specific application in
mind: in the same way that HoTT can be used to study homotopy theory in a type-theoretical way,
directed type theory promises the study of category theory in a type-theoretical way.

Category theory has proven to be a fundamental topic in the semantics of programming lan-
guages [23, 46, 57, 76], where it shines as the common framework that ties together logic, proofs,
and types in the Curry-Howard-Lambek correspondence [17, 37, 43]. The unifying role of category
theory stretches even beyond computer science, in algebraic topology [53], universal algebra [47],
quantum mechanics [39], and physics [8].

This compelling series of applications comes at a cost: category theory can be overwhelming
for newcomers, with overly abstract results and seemingly complicated ideas (e.g., the Yoneda
lemma [15], Kan extensions [40]). Even worse, these abstractions come baggaged with a plethora
of naturality and functoriality side conditions that need to be checked [60].

Directed type theory promises to reinterpret category theory itself under a logical perspective,
taking the Curry-Howard-Lambek correspondence to the next level: what once were abstract yet
overarching results in category theory become simple type-theoretical statements, which one can
then prove in a system that takes care of naturality and functoriality bureaucracy for free.

One of the ultimate goals of directed type theory is to capture this multitude of directed phe-
nomena under a single, unified type-theoretical framework: since morphisms of a category can
be viewed just as (directed) equalities, one can use directed type theory as a tool to represent and
reason about programs, processes, rewrites, transitions [1], concurrency via directed spaces [28, 61],
types and terms of type theories (e.g., via “directed higher inductive types” [44, 83]), all internally
to the same type theory.

What is currently missing from the current conception of directed type theory is a direct
description of what such a system should look like in the elementary case of 1-categories. Taking
inspiration from the simplicity of the groupoid model in Hofmann and Streicher’s approach,

We introduce a first-order directed type theory with simple, straightforward semantics in 1-categories:
proving theorems about directed equality follows the same exact steps of Martin-Lof type theory,
and non-trivial theorems in category theory can be captured in a concise and distinctly logical way.

How should type-theoretical ideas change under the view of directed type theory? Category
theorists have long known what the most natural path for the directed generalization should
be [49]: functions between types should be functors (i.e., functions which respect directed equalities),
relations are naturally interpreted as profunctors [16], and (co)presheaves can be thought of as
generalized predicates [9]. We summarize the main ideas of the directed generalization in Figure 1.
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Di- is for Directed: First-Order Directed Type Theory via Dinaturality 3

Under this directed lens, familiar type-theoretical statements of equality become elementary
definitions in category theory: we give a few simple examples in Figure 2 in the canonical setting
of first-order logic, which is closely connected to the formal system later explored in this paper.

X=y AN y=z Fox=2z Transitivity of equality
home (x,y) X hom¢(y, z) = homc(x,z) | Composition in a category
x=y + f(x)=f(y) Congruence / functions respect equality
home (x,y) — homp (F(x), F(y)) Action on morphisms of functors
x=yAP(x) + P(y) Substitution / transport along equality
homc(x,y) X P(x) — P(y) Action on morphisms of copresheaves

Fig. 2. Elementary statements for symmetric equality and their directed counterparts.

However, directed type theory is not so straightforward. We list some fundamental challenges:

Challenge 1. How to change rules for equality. One can use their favorite proof assistant or
logical system to prove the theorems in Figure 2: in the case of symmetric equality, typically this is
done using an introduction rule (refl=) and an elimination rule (/=) called J-rule [41], shown in
Figure 3 again for first-order logic. The introduction rule simply states that equality is reflexive.
The elimination rule J intuitively says that, if we assume an equality e : a = b and we want to
prove a predicate P(a, b) for some variables a, b : C, it is sufficient to consider the case “on the
diagonal” P(x, x), where a and b are identified with the same x. These two rules allow all of the
above statements about symmetric equality to be derived almost “for free” just by contracting
away equalities. However, (/=) allows for symmetry of equality to be derived, simply by picking
P(a,b) := b = a. This is incompatible with the directed case, as not every morphism has an inverse.

The fundamental question then becomes: how can we tweak the rules of equality to disallow
symmetry, and yet be able to derive “for free” the above theorems also in the case of directed equality?

(refl=) [x:C] O(x,x)+  h:P(x,x)

[a:C,b:Cla=0b, ®(a,b)+ J(h): P(ab) =)

[x:C]DFrefl: x=x

Fig. 3. Introduction and elimination rules for symmetric equality in first-order logic.
(ref) [x:C] ®(x,%) - h:P(Xx)
[a:C°, b:C] hom(a b), ®(a,b) + J(h) : P(ab)

[x : C] @ F refl : home (X, x)
Fig. 4. Introduction and elimination rules for directed equality in first-order dinatural directed type theory.

Challenge 2. Polarity problems. Another issue arises in the first example of Figure 2: since
types are now categories, with each type C there should be a type C°P (the opposite category) of
the opposite “polarity”, where the inhabitants are the same but all directed equalities are reversed.
The type of directed equalities homc (x, y) then is asymmetric, and receives a “negative” argument
x:C° and a “positive” one y: C, and provides the set (i.e., a category with only trivial directed
equalities) of morphisms between objects x, y of C.

The problem is that in the statement for transitivity of directed equality (i.e. composition)
the variable y appears both on the right side of homc¢(x, y), with type C, and at the same time
on the left side of homc(y, z), with seemingly different type C°P! The same problem arises in
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4 Laretto, Loregian, Veltri

(refl), since x is used on both sides of hom, and in (J) because in P(x, x) the same x needs to
be used with both polarities. One solution first considered by North [61] and later revisited by
Altenkirch and Neumann [4] is to revert back to the undirected case of groupoids. This solution
may feel unsatisfactory, since one does not intuitively expect groupoids to appear in the semantics
of a type theory where types are categories. How do we solve these polarity problems without having
to resort to groupoids?

Challenge 3. Directed quantifiers. Another fundamental yet unexplored question is what the
quantifiers of directed type theory should be in the I-categorical case. Because of the above polarity
issues, this is not a trivial question: should the variable y in the statement of transitivity be bound
as a variable of type y : C or y : C°P? A natural expectation is that quantifiers should be able to
bind both occurrences of y at once.

This paper proposes a simple solution that addresses
all of the above challenges for directed type theory: dinaturality [26].

The intuition behind dinaturality and dinatural transformations is that the same variable is
allowed to appear both positively and negatively at the same time, irrespectively of polarity.

Not only do we deal with the variance problems without ever having to mention groupoids, but
dinaturality also tells us what a directed J rule should look like, which we illustrate in Figure 4 next
to the symmetric case. Curiously, this rule is reminiscent of the elimination rule for equality of
standard Martin-Lof type theory, but it comes equipped with a precise syntactic restriction that
does not allow symmetry of directed equality to be derived.

What about quantifiers? Dinaturality comes again to the rescue, hinting at a possible answer:
intimately connected to the notion of dinatural transformation are the notions of end and coend [52].
Ends and coends, respectively denoted as fx ¢ P(x.x) and / e P(x, x) for some functor P : C°P x
C — Set, are to be thought of as a sort of universal and existential quantifiers on P, respectively. Just
like a quantifier, the integral sign of (co)ends binds positive and negative occurrences of variables,
indicated as x : C and x : C°P.

The main application of (co)ends is that they allow non-trivial statements in category theory to
be formulated in a concise way [52]: for example, one can use ends to characterize the set of natural
transformations as the end Nat(F,G) = fx chomp (F(x), G(x)); note the resemblance between
this end and the universal quantification used in the usual definition of natural transformation.
With this, we can rephrase the well-known Yoneda lemma [50] as a simple isomorphism, shown in
Figure 5a next to its logical “decategorified” interpretation. A similar statement holds for the case of
existential quantifiers and coends, shown in Figure 5b, which often takes the slogan of “presheaves
are colimits of representables” [50] or “coYoneda lemma” [20, 52].

P(a) = [, homc(aX) = P(x) o F@ = S5 home (X, a) x P(x)

Pla) ©V¥(x:C). a=cx = P(x) Pla) ©3(x:C). x=ca AP(x)
Fig. 5. Yoneda and coYoneda lemma using (co)ends and their corresponding logical statements.

The first-order formula behind the (co)Yoneda lemma can be proven using any formal system:
our directed type theory is the first elementary treatment of a formal system for the directed case,
where one can modularly use rules for quantifiers and equality as done in logic, e.g., with suitable
introduction/elimination rules specific to directed equality and (co)ends. To give a taste of how
closely our approach follows that of a standard logical proof, we show in Figure 6 a proof of the
Yoneda lemma in our type theory next to its “decategorified” proof in first-order logic.
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Di- is for Directed: First-Order Directed Type Theory via Dinaturality 5

[a:C] ®(a) F Y(x:C).a=c x = P(x) ") [a:C] ®(a) + fx:c hom¢(a,x) = P(x) (end)

[a:C,x:C] ®(a) Fa=c x = P(x) - [a:C,x:C] ®(a) + homc(a, %) = P(x) :
[a:C,x:C] a=c x A®(a) F P(x) _ [a:C,x:C] homc(a,x) X ®(a) + P(x) (eXp
[z: C] @(2) + P(2) [z:C] ®(z)  P(2) /)

Fig. 6. A proof of the Yoneda lemma in first-order logic, and its proof in dinatural directed type theory.

(Co)end calculus. It is common knowledge among category theorists that there is a formal aspect
to the manipulation of ends and coends, outlined in [52], that allows such non-trivial theorems to
be proven using simple “mechanical” rules. This “(co)end calculus” has proven to be particularly
useful in theoretical computer science, for example in the context of profunctor optics [15, 20] and
their string diagrams [14, 74], strong monads and functional programming [5, 6, 40, 80], quantum
circuits [38], and logic [31, 68, 70]. Our work gives a logical interpretation to (co)end calculus by
reconceptualizing it just as a first-order instance of directed type theory, which is what motivates
our focus on a non-dependent presentation of directed type theory.

Dinaturality. Dinaturality is not a novel concept: dinatural transformations are a generalization
of natural transformations for functors F, G : C°? x C — D with mixed-variances [26].

Serendipitously, the “di” in dinatural stands for diagonal: a dinatural is a family of maps «a, :
F(x,x) — G(x,x) which is required to be given only on the diagonal of F,G by equating the
contravariant and covariant variables with the same value x : C. Such family of maps is required to
satisfy a certain equational property, which generalizes the usual square of natural transformations.

Famously, however, dinatural transformations do not always compose: a well-known sufficient
condition for the composability of dinaturals is the absence of loops in a suitably associated
graph [27, 55]. This loop-freeness similarly arises in linear logic with the Danos-Regnier criterion
[11-13, 36], and more in general in logic where composition corresponds to cut elimination [32, 66].

There is a particularly deep connection between dinaturality and parametricity in programming
languages [67, 69, 72, 82] and realizable models for System F [10, 29] where all dinaturals compose.
Dinaturality has remained somewhat of an understudied subject, partly because this lack of general
compositionality has proven to be particularly hard to explain in full generality [75]: an in-depth
review on dinaturality and its importance for computer science can be found in [75], [76, Sec. 3].

1.1 Contribution

In this work, we connect for the first time dinatural transformations to directed type theory, showing
how they turn out to be the key technical notion needed to capture directed type theory in an
elementary and straightforward way.

Our general approach to directed type theory is to take the simplicity of the groupoid model of
Hofmann and Streicher [42] and generalize it to the directed case with a first-order (yet expressive)
system aimed at capturing two specific aspects of directed type theory: first, the ability to construct
and prove properties about theorems of directed equality by following precisely the same steps as
in Martin-Lof type theory; second, the ability to exploit the power of (co)ends-as-quantifiers [52]
to give simple and concise logical proofs of well-known theorems in category theory.

We summarize the main contributions and technical aspects of this paper:

(1) Setting. We introduce a first-order (non-dependent) directed type theory where types are
semantically interpreted as (small) 1-categories, terms as functors, predicates as dipresheaves
(i.e. functors C°P x C — Set), directed equality predicates as hom-functors, and proof-relevant
entailments as dinatural transformations which are not required to compose in the usual sense.
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Laretto, Loregian, Veltri

First-order type theory. Our directed type theory builds on the well-known canonical setting of
first-order logic, with judgments structured in a similar way [43, 4.1]: we have simply-typed
types and terms, on which we build a proof-relevant logic with predicates, entailments, and
equality of entailments. This last aspect is typically absent in usual accounts of first-order logic,
but it is crucial in our presentation because it is precisely the point in which we use dinaturality.
Our system is a type theory in the sense of Jacobs [43, p. 9, (iii)]: proofs have an explicit
computational content, e.g., the proof of transitivity of directed equality is a bona-fide family of
functions that can be used to compose equality witnesses (i.e., morphisms) in the type theory.

Directed equality elimination. In our 1-categorical setting, the rules for directed equality are
straightforward: the directed equality introduction rule is essentially the same as the usual refl,
which we validate using identities in hom-sets. We identify a directed equality elimination rule
which is again syntactically reminiscent of the J-rule, but equipped with a syntactic restriction
that does not allow for symmetry to be derived. This syntactic restriction is not ad-hoc, but it is
justified by a precise semantic fact: the connection between dinaturality and ordinary naturality.
In short, the syntactic requirement to contract a directed equality in context homc (x, y) for
x : C°P,y : C is that both x and y must appear only covariantly (i.e., with the “correct polarity”)
in the conclusion and only contravariantly (i.e., with the “wrong polarity”) in the assumptions
in context. The non-derivability of symmetry, aside from the syntactic restriction of J, follows
by soundness and the existence of a countermodel.

Directed theorems. The rules for directed equality allow us to recover in Section 3 the same
type-theoretic definitions about symmetric equality derivable in standard Martin-Lof type
theory, except for symmetry: e.g., transitivity of directed equality (composition in a category),
congruences of terms along directed equalities (the action of a functor on morphisms), transport
along directed equalities (i.e., the coYoneda lemma).

Directed properties. In our type theory one can also prove properties of these maps using a
dependent version of directed J specific to the judgment of equality of entailments: for example,
one can show that the composition of directed equalities is automatically associative and unital
on both sides (one of the two sides is definitionally unital on the equality that is being contracted).
The semantic notion of dinaturality is not used to construct such maps (functoriality suffices),
but to validate this dependent directed J rule. With this rule one can internally prove that
functoriality and naturality follow “for free”, again, by a simple directed equality contraction.

Polarity. Our type theory is equipped with a precise notion of polarity and variance which
is used to implement the syntactic restriction behind the J rule. Even in our non-dependent
case the treatment of variables is non-trivial, since dinaturality requires a precise definition of
variance/polarity that differs from the approaches described in other works [4, 34, 61, 63].

Category theory, logically. Our type theory allows us to give direct, concise, and distinctly logical
proofs of well-known (yet non-trivial) theorems in category theory by using hom as a directed
equality: e.g., the (co)Yoneda lemma, Kan extensions computed via (co)ends are adjoint to
precomposition, presheaves form a closed category, hom-functors preserve (co)limits, and the
Fubini rules; each of these follows by modularly using the logical properties of each connective.

(Co)end calculus. The approach used to prove these theorems is to combine the perspective of
hom as directed equality with the ideas of “(co)end calculus” [52], viewing (co)ends as the directed
quantifiers of directed type theory. (Co)end calculus as treated in [52] uses various semantic
properties of (co)ends, which are however selected ad-hoc and not modularly organized in a
precise set of rules: our type theory gives a formal treatment to these techniques, approaching
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Di- is for Directed: First-Order Directed Type Theory via Dinaturality 7

proofs in a different and more logical fashion. The choice of a first-order (hence non-dependent)
type theory is to capture (co)end calculus, which is typically first-order in practical applications.

(9) Yoneda technique. Our proofs are logical, yet mirror the way that (co)end calculus is used in
practice (e.g., [15, 40, 74]), i.e., via a “Yoneda-like” series of natural isomorphisms of sets: to
prove that two objects A, B: C are isomorphic, one assumes a generic object ® and then applies
a series of isomorphisms of sets natural in @ to establish that C(®, A) = C(®, B), from which
A = B follows by the fully faithfulness of the Yoneda embedding [15, 50]. The same technique
can be used to show adjunctions, and that functors are naturally isomorphic.

(10) Adjoint-form rules. In typical syntactic presentations of type theory, rules for connectives are
formulated to make cut admissible [41, 77]. In our case, we cannot have in the semantics that
all entailments (i.e. dinaturals) compose, and therefore our rules must be stated in such a
way that cut is not admissible. In his seminal paper [48], Lawvere introduced the categorical
understanding of logic by viewing quantifiers/connectives as adjoints: we formulate (some of)
the rules of our type theory with dinaturals precisely in Lawvere’s “adjoint-form” (e.g. [43,
4.1.7, 4.1.8]), i.e., as natural bijections between entailments. In standard accounts of logic this
adjoint-form is equivalent to the usual intro/elim. rules for connectives, but only in the presence
of cut; the key observation is that, despite the absence of a general cut rule, the rules for
quantifiers/connectives in adjoint-form can be validated in our semantics with dinaturals.

(11) (Co)ends-as-quantifiers. The rules for ends and coends are reminiscent of the quantifiers-as-
adjoints paradigm by Lawvere [48], which we captured as “right and left adjoint” operations
to weakening [43, 1.9.1]. This adjointness relation should be only interpreted suggestively,
since (co)ends are functorial operations for naturals but in general not dinaturals [52, 1.1.7].
Our approach has the advantage that several properties of quantifiers, e.g., that they can be
exchanged and permuted, follow automatically from certain structural properties of contexts.
For example, in first-order logic the formulas Vx.Vy.P & Vy.Vx.P & V(x,y).P are logically
equivalent for any predicate P: this is indeed also verified for ends (and coends with existentials),
and takes the name of “Fubini rule” [53, IX.8], [52, 1.3.1], which we prove in Example 6.4. More
details on (co)ends and their calculus can be found in [53, IX.5-6], [52, Ch. 1].

(12) Dinaturality. Dinatural transformations do not compose in general [75]: this lack of general
composition turns out not to be a problem in practice, since they do compose in all examples of
interest. In such cases, dinaturals compose essentially because they compose with other natural
transformations [26], and we capture this in our system by providing two restricted cut rules.

Because of the lack of general compositionality, we do not consider a categorical semantics of our
type theory using standard categorical models, e.g., fibrations [43] or categories with families [18],
since they all ask for full composition, which cannot be guaranteed in our semantics. Hence, our
approach is to simply consider the main rules described in Figure 11 (which have restricted rules
for composition of entailments) and prove soundness w.r.t. the category model with dinaturals.

We formalize the soundness theorems given in this paper about dinaturality using the Agda proof
assistant and the agda-categories library. Whenever present, the symbol ({’f) next to theorems
links to the formal proof, for which we report here just the core idea. The full formalization is
accessible at https://github.com/iwilare/dinaturality.

1.2 Related work

Directed type theory has been approached in several (mutually incompatible) ways, with different
methodological choices regarding semantics and rules for directed equality, but without ever
investigating the connection to dinaturality.
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8 Laretto, Loregian, Veltri

Directed type theory with groupoids. North [61], Altenrkirch and Neumann [4] describe a
dependent directed type theory with semantics in the category of (small) categories Cat, but using
groupoidal structure to deal with the problem of variance in both introduction and elimination
rules for directed equality. This line of research has been recently expanded in [19, 62] by extending
judgments with variance annotations.

We focus on non-dependent semantics, and avoid groupoids by tackling the variance issue

with dinatural transformations; using dinaturality and (co)ends-as-quantifiers allow us to capture
naturality for free and characterize natural transformations inside of the type theory.
Directed type theory, judgmental models. Another approach to modeling directed equality is
at the judgmental level. This line of research started with Licata and Harper [51] who introduced a
directed type theory with a model in Cat. Since directed equality is treated judgmentally, there
are no rules governing its behavior in terms of elimination and introduction principles, although
variances are similarly used in context as in our approach. Ahrens et al. [2] similarly identify a
type theory with judgmental directed equalities and semantics in comprehension bicategories, and
extensively compare previous works on both judgmental and propositional directed type theories.
Logics for category theory. New and Licata [60] give a sound and complete presentation for
the internal language of (hyperdoctrines of) certain virtual equipments. These models capture
enriched, internal, and fibered categories, and have an intrinsically directed flavor. In these contexts,
the type theory can give synthetic proofs of Fubini, Yoneda, and Kan extensions as adjoints. This
generality however comes at the cost of a non-standard syntactic structure of the logic, especially
when compared to standard Martin-L6f type theory. Directed equality elimination takes the shape
of the (horizontal) identity laws axiomatized in virtual equipments [24], which in the Prof model
is essentially the coYoneda lemma. Their quantifiers are given by tensors and (left/right) internal
homs, which in Prof correspond to certain restricted (co)ends which always come combined with
the tensors and internal homs of Set.

Our work is similar in spirit in that we provide a formal setting for proving category theoretical
theorems using logical methods; we only focus on the elementary 1-categorical model of categories
and do not yet capture enriched and internal settings. However, we treat (co)ends as quantifiers
directly, viewing them as operations which act on the variables of the context, without the need for
them to include any conjunction or implication. Our rules for directed equality are more direct and
reminiscent of standard Martin-Lof type theory, and specifically focus on the semantic justification
of dinaturality. Since we consider less general models, our contexts do not have any linear nor
ordered restriction and the same variable can appear multiple times both in equalities and contexts:
for example, this allows us to write down the statement of symmetry (without being able to prove
it), and to consider profunctors of arbitrary variables, as typically needed in (co)end calculus.
Geometric models of directed type theory. Riehl and Shulman [73] introduce a simplicial type
theory for synthetic (oo, 1)-categories. A directed interval type is axiomatized in a style reminiscent
of cubical type theory [22], which allows a form of (dependent) Yoneda lemma to be derived
using such identity type. This type theory has been implemented in practice in the Rzk proof
assistant [45]. On this line of research, Weaver and Licata [84] present a bicubical type theory with
a directed interval and investigate a directed analog of the univalence axiom; the same objectives
were recently advanced in Gratzer et al. [34, 35] with triangulated type theory and modalities.

In comparison with the above works, we do not explore the geometrical interpretation of
directedness and focus on “algebraic” 1-categorical semantics; moreover, our treatment of directed
equality is done intrinsically with elimination rules as in Martin-Lof type theory rather than with
synthetic intervals, with semantics directly provided by hom-functors.

Coend calculus, formally. Caccamo and Winskel [25] give a formal system in which one can
work with coends and establish non-trivial theorems with a few syntactical rules. The flavor is
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explicitly that of an axiomatic system, and does not take inspiration from type-theoretic rules: for
instance, presheaves are postulated to be equivalent under the swapping of quantifiers (Fubini), so
this principle is not derived from structural rules as typically done in a logical presentation.

1.3 Structure of the paper

We start in Section 2 by describing syntax and judgmental structure of the type theory, and give
examples of directed type theory in Section 3. We recall notions about dinaturals in Section 4,
which we then use for the semantics in Section 5. We then apply our type theory to give logical
proofs of theorems in category theory in Section 6, concluding in Section 7 with future works.

2 Syntax
We introduce the main syntactic judgments of our proof-relevant first-order directed type theory,
for which we describe the main ideas and notation in Sections 2.1 and 2.2.

Our type theory is structured in a similar way to first-order logic [43, 4.1], with judgments for
types and terms (i.e., sorts and function symbols), and predicates indexed by a term context.

We will omit several uninteresting equality judgments for contexts, terms, propositional contexts,
as well as usual congruence and equivalence rules. We list here the main judgments of our type
theory alongside a brief description of their semantics to aid intuition, with details in Section 5.

o | C type |types C, D are interpreted in the semantics as small categories. Types can
have —°P, and include the terminal T, product C x D, and functor categories [C, D].

. judgmental equality of types, interpreted as isomorphisms of categories;
we use this to simplify (C°P)°P = C and propagate the op inside types.

° contexts I', A are finite lists of categories, interpreted as products in Cats;
. variable in context, which captures the de Bruijn indices of variables

Figure 8: in context I'; for us variable names are irrelevant, and we always identify variables
with these judgments. Semantically, these are the projections out of [I'].

. terms F, G as functors [I'] — [C], which are similar to terms in STLC;

e | [T'] P prop | predicates P, Q as dipresheaves, i.e., functors [P]:[T']° x [T] — Set;

Figure 9: 1 ¢ | [T'] ® propctx | propositional contexts ®, &’ are finite lists of predicates, which
we interpret via the pointwise product of dipresheaves in Set;

Figure 7:

e [[T'] ®+ a: P|entailments a, §, y are interpreted semantically as dinatural trans-

formations [®] —= [P]; we axiomatize composition/cut only with natural trans-

Figure 11: . .. -
formations, not requiring general composition;

. ‘ [T]®+a=p:P ‘ equality of entailments, i.e. equality of dinaturals in Set.

For predicates we consider the following logical connectives, which we denote syntactically with
the same symbol later used in the semantics:
e conjunction — X —, interpreted as the pointwise product of dipresheaves in Set;
e polarized implication — = —, by postcomposing dipresheaves with homg,; : Set°P X Set — Set;
e propositional directed equality homc is interpreted by hom-functors : C°P x C — Set;
e universal and existential quantifiers /x o P(xx), f x:CP(Tc, x) are given by ends and coends.
The judgments for types, terms, propositions and entailments are given in Figures 7 to 9 and 11.
Our directed type theory is equipped with an equational theory for entailments, which we
describe the key features of in Section 2.2 without spelling it out in detail. The most important
cases are given in Figure 11 for directed equality, Figure 15 for cuts, Figure 16 for adjoint rules.
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10 Laretto, Loregian, Veltri

c Ce¥p Ctype Ctype Dtype Ctype Dtype
t
Ctype C°P type C x D type [C,D] type T type

(C®)°P=C (CxD)®=C®xD® [C,D| =[C®,DP] To% =T

Fig. 7. Syntax of first-order dinatural directed type theory — types and judgmental equality.

Ictx Ctype T ctx

[] ctx T, C ctx TP ctx

7 C=C Tr=r
=] [®=[] LO®=T®C® ~[c-rc

- I's>x:C

ILx:Cax:C TLy:D>x:C
I's>x:C r'+t:C fe3r Trt:dom(f)
: F'rx:C T o CoP T+ f(¢): cod(f)
F'ts:C Trt:D TrHp:CxD TrHp:CxD
rv!:T Tk (s,t):CxD IF'rm(p):C Trm(p):D

I'ts:[C,D] T+t:C T,x:Crt(x):D

IF'rts-t:D I+ Ax.t(x): [C,D]
Ix:Crf(x):D Trt:C Ix:Cr f(x):D
't (Ax.f(x))-t=f[x—t]:D T,x:Cr (Ax.f(x))-x=f(x):D
I'rp:CxD I'et:T Trs:C Trt:D Trs:C Trt:D
Tr{(m(p),m(p)=p:CxD Trt=1:T Ttm{st))=s:C Trm(st))=t:D
T'rt:C IT'ts:C T+rt:D TP, x:Crt:D

Tr(P)P=¢t:D TPF(s£)% = (sP,1tP) : CP XD T (Ax.t(x))°P = Ax.t°P(x) : [C°P, D°P]
Fig. 8. Syntax of first-order dinatural directed type theory — contexts, variables, terms and their equality.

[T] Pprop  [I'] Qprop [T°P] Pprop [I']Q prop

I'| P pro
[T'] P prop [T] P x O prop [T] P = O prop [T] T prop
P Trs:CP TPT+t:C PeZp TP°TFs:neg(P)®® T T +t:pos(P)
[T] homc (s, t) prop [T] P(s | t) prop

[T,x:C] P(x,x) prop [I,x:C]P(x,x) prop
(T] fx:c P(x,x) prop  [I] fx:c P(x, x) prop

® propctx P prop

Fig. 9. Syntax of first-order dinatural directed type theory — predicates and propositional contexts.
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‘Fax:AcovinP

I'sx:AcovinP T>x:AcovinQ T°>5x:A®covinP T >x:AcovinQ
I'sx:AcovinPxQ I'sx:AcovinP=Q
I'°P T >x:A%° unusedins : C°? T°, T >Xx:A% unusedint:C
I' > x:Acovin homg(s,t)
P, T 5 X : A°’ unused ins : neg(P)°®?  T°P,T 5 x:A° unused int : pos(P)
I'sx:AcovinP(s|t)
TP 5 x : A°? cov in P°P
I'>x:AcontrainP
I'sx:C x+#y

’I‘ax:AcontrainP‘

’Fax:Aunusedint:C‘

I'sy:Cunusedinx:C
I'sx:Aunusedint: dom(f) I's>x:Aunusedint:C
I > x:Aunusedin f(t) : cod(f) T°P 3 x:A° unused int° : CP

Fig. 10. Syntax of first-order dinatural directed type theory — syntactic conditions for covariant/contravariant
variables in predicates. Full rules in Figure 14.

[T]®Fa:Q T
TP e UL S ey

I[P THF:C [x:CT]o(,x)Fa:Q(x,x) ) [T]P,P, o+ a:Q
— — (idx) (contr)
[T] ®(F(x,%), F(x,x)) + F*(a) : Q(F(x,x), F(x,x)) [T] P,® + contrp(a) : Q
[T]®+PxQ [x:T] A(x, x), ®(x, x) + B(x,x)
(prod) (exp)
[[]®rP, [[]®FQ [x: T] O(X, x) - A% (x,%) = B(%, x)
. - a:C —
[a:C,T] @+ P, a)_ gy T ( [““pG@ a)),@ L0 e
[T1@+ [ P@a) [a:C.T| P(@a).®r O
T unused in P I unused in P
[a:A% b:A] ®(a,b) ra  :P(a,b) [z:A] @(E,f) Fy :P(z,2)
[z:A] k: P(zZ, z),d)(f, z) +ylk] :Q(f, z) (cut-din) [a:A°P,b:A] k:P(a,b),®(a,b) + a[k]:Q(a,b) (cut-nat)
[z:A] @(2,2) +Fy[a]:0(z,2) [z:A] ©(Z,2) + a[y]:0(z 2)
(reﬂ) [Z : C, F] (D(E, Z) b h P(E, Z)

[x: C.TT @ - reflc : homc (, x) [a:C% b:C,Ie: home(ab),®(5,a)+ J(h)[e] : Pa,b)

[Mlera=4:P| Licrk oGt JWhefic]=h pGa o P

[z:C,T] ®(z,2) + alreflc] = p[reflc] : P(z,z)
[a:C b:CT]e:home(ab),®(ba)r ale] = Ble] : P(a, b)

(J-eq)

Fig. 11. Syntax of first-order dinatural directed type theory — entailments and judgmental equality.
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12 Laretto, Loregian, Veltri

The rules for entailments implicitly use the notion of variance for variables, described in Re-
mark 2.2. Variance is captured formally in Figures 10 and 13 by the following judgments, all of
which presuppose I' 3 x : A for a variable x of type A in context I':

Figure 13: {o ’ I'>x:Aunusedint:C ‘for x:A does not syntactically appear in a term ¢.

e [ I'>x:AcovinP ‘ states that x:A is covariant in the predicate [T'] P.

Figure 10:
e |[I'>x:AcontrainP ‘ states that x: A is contravariant in the predicate [T'] P.

To make the type theory non-trivial, our judgments are implicitly parameterized by a standard
notion of signature ¥ := (Xp, X1, Xp, 24), i.e., sets of base type symbols, term symbols, predicate
symbols, and base entailments respectively. Base predicates P(s | t) for P € Xp are equipped with
two terms, a negative one s : neg(P)°P and a positive one ¢ : pos(P) typed in the same context I'°P, T
This choice is motivated by the fact that hom is similarly equipped with two sides. The judgments
for equality of types are not extended by the signature. We omit the details of this extension.

2.1 Polarity and variance

The main idea behind dinatural transformations is that variables in a predicate are allowed to be
used irrespectively of the op in their type (or lack thereof). To give a taste for our type theory, we
show what the statement and proof of transitivity of directed equality look like in our system:

(var)

: C, :C : h Z, - h z,
[z c:C] g : hom(z,¢) + g : hom(z,c) 0

[a:C%,b:C,c:C]f:hom(ab), g:hom(b,c)F J(g) : hom(a,c)

Whenever a variable b : C is used with the “wrong polarity” we denote such use with b:C% asin
the above example. In order to make this intuition precise, we formally introduce the concepts of
position, polarity, and variance and their notation in the type theory. Variance is ultimately used to
implement the syntactic restriction of directed equality elimination (J).

We use the term polarity of a type to refer to the fact that types always come in pairs: whenever
C is a type, its opposite C°P is also a type. Polarity is a relative notion: we say the type C°P is the
negative of C irrespectively of the fact that C itself might have an outermost syntactic op.
Polarity is used in the syntax of the type theory in the following way:

e The op operation is also present in contexts, i.e., for a I' ctx there is a negative context T'°P
which is definitionally equal to the context obtained by adding op to each type.

e In the formation rule for [T'] homc(s, ) in Figure 9, the term s is given return type C°P.

o In the formation rule for [T'] P = Q in Figure 9, the predicate P is given type in I'°P.

The other crucial idea of our system is the above-mentioned fact that variables can appear at the
same time irrespectively of their polarity. This is implemented by the following ideas:

e There are two cases where variables can appear in a predicate, namely the base cases
[T] homc(s, t) and [T'] P(s | t), where the two terms s, ¢ can use the variables from T'.

o The key idea is that both s, ¢ are not given type in T', but in the context concatenation P, T

e Intuitively, this allows for variables to be used in s, ¢ also in the “wrong way” (with respect
to the original polarity of the context I' in which P is given type).

We give a specific name to the terms of this shape in concatenated contexts I'°P, T, since they also
play a crucial role in reindexing.

Definition 2.1. A diterm is a term of the form I'°?,T' - ¢ : C for some context I'.

We now capture the above intuitive ideas behind polarity and variance with precise terminology.
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Di- is for Directed: First-Order Directed Type Theory via Dinaturality 13

Definition 2.2 (Positions in a predicate). The name position refers to a point in which a variable
x:C can appear in a predicate, e.g., there are four possible positions x, y, z, w for variables to appear
in the predicate homc (x, y) X P(z, F(w)).

Definition 2.3 (Variant use of a variable). For any predicate [I'] P and a position of type C°P in P,
we say that a variable I' 3 x : C (with no op) is used contravariantly in that position iff the variable
used in that position is taken from the left side I'°P (in the context concatenation I'°P, '), i.e., with
type x : C°P. Accordingly, we will always denote variables taken from such left side of the context
with an overbar x. Similarly, given a position of type C in P we say that a variable I' 3 x : C is
used covariantly in that position iff it is taken from the right side I (i.e. in the usual way), which we
denote without any overbar.

The notation x is suggestive of the fact that x : C°? and x : C will be identified with the same
value when using dinatural transformations in the semantics of entailments.

Example 2.4 (Derivation of a predicate). We provide an example derivation of a predicate in context
combining the previously introduced ideas of co/contravariant variables, for aterm x : C + F(x) : D.

x:C,y:D,x:CP,y:DP +x:C
x:C,y:D,x:CP,y:DP + y:D°? x:C,y:D,x:C,4y:DP + F(x) : D i Fx:C
[x:C°P,y:D°P] homp (y, F(x)) prop [x:C,y:D] P(x) prop
[x:C,y:D] homp(y, F(x)) = P(x) prop

Definition 2.5 (Variance of a variable). Variables can occur in multiple positions at the same time:
we say that a variable I' 5 x : C is covariant in a predicate [I'] P iff it is always used covariantly in
the positions of P, i.e., it is always picked from the right side I" of the context I'°P,T" and is hence
always used “correctly” with respect to I'. Similarly, a variable T’ 3 x : C is said to be contravariant
in a predicate [T'] P when it is always used contravariantly in the positions of P, i.e., it is always
picked from the left side T'°P of the context I'°P, T and is hence always used “in the wrong way”
with respect to I'. A variable is said to be natural when it is either covariant or contravariant, i.e., it
is consistently used with the same variance. A variable is said to be dinatural or mixed-variance iff
it is neither covariant nor contravariant, i.e., it occurs at least once covariantly and at least once
contravariantly in a predicate.

Example 2.6 (Variance). In the predicate [x:C°,y:C] homc(x,y), both x and y are covariant.
In [x:C,y:C, z:C] homc(X,y) X homc(y, z) the variable x is contravariant, y is dinatural, and z
is covariant. In [x:C°P, z: C°P] homc(X,z) = homc(z,X), x is contravariant and z is covariant.
Finally, for a term C°P + F : D (i.e., a “contravariant functor”), x is covariant in [x:C] homp (F(x), x).

The above definitions capture the way that natural and dinatural usage of variables is referred
to in practice. Formally, variance of variables in predicates is captured using the judgments in
Figures 10 and 13. The actual implementation of variance is slightly different from the description
above, but they are equivalent: the judgment I' 3 x : A cov in P is derivable, i.e., the variable x is
covariant, when its contravariant counterpart x is not syntactically used anywhere in the predicate.
This last aspect is itself captured by a straightforward judgment, described in Figure 10, which
underapproximates syntactic unusedness of variables in terms. The well-formedness of these
judgments occasionally relies on the fact that I' 5 x : A implies that I'°? 5 x : A°?, and similarly
TP, T 3 x:Aand I'P,T 3 X : A° in the intuitive way.
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14 Laretto, Loregian, Veltri

Example 2.7 (Variance, formally). We give an example of a formal derivation for covariance using
the predicate in Figure 10, assuming for simplicity that the predicate P does not have any variables:

[x:C,y:D,x:C°,y:D°°] 5y :Dunusediny [---] 27 :D unused in F(x)
[x:C°P,y:D°P] 5 y : D cov in homp(y, F(x))
[x:C,y:D] 3y :D covinhomp(y, F(x)) = P

REMARK (NOTATION FOR VARIANCE IN PREDICATES). We indicate with [x : C,y,D,T'] P(X,x,73,y)
the fact that a predicate P can depend on x, y both co- and contravariantly; we will often omit in P the
(unrestricted) presence of variables coming from a context I'. When either variance is omitted, e.g., as
in P(x, ), the predicate must depend only on x and 7y, i.e., x is covariant and y is contravariant in P.
Variance for entire contexts is intuitively denoted as [y : T'| P(y), i.e., all variables in T are covariant.

Formally, these restrictions are captured using the predicates for variance of Definition 2.5. We use
this convention in the rules for entailments of Figure 11.

There are many choices for the system of variances presented so far: the one presented here is a
simple setup that closely matches the intuition for contravariance typically used in mathematics,
denoting variables as contravariant precisely when one expects it as shown in Example 2.4.

Mnemonically, positions have polarity, and variables have variance. Covariant variables are
“compliant” and they are used as they are told, while contravariant variables are “contrarian” and
always reject well-typing laws.

For any predicate [I'] P, there is an associated opposite predicate [T°P] P°P, defined by induction
on the derivation of P, obtained intuitively by inverting the variance of variables in each position:
i.e., whenever x was used in some position, x is used instead, and vice versa. This operation is used
in the rule for polarized implication (exp), described in Section 2.2, and to define contravariance in
Figure 10. Note that this operation on predicates is defined metatheoretically: types and terms are
the only two judgments for which there is a —°P in the syntax.

We start by first defining a metatheoretical operation on diterms that simply swaps contexts:

Definition 2.8 (Context swap of a term). Given a diterm I'P, T + ¢ : C, we indicate with I', TP
tswap . C the context swap of t, which is the term derivation obtained in the intuitive way
by swapping the left and right side of its context; for example, (X : D, x : D I x : D)™V =
(x:D,x:D° +x:D),and (x : C°P,x : C + F(x) : D)™™ = (x : C,x : C°P + F(x) : D) for some
term X : C°P,x : C + F(x) : D. Crucially, the return type of the term does not change, which would
be the case with the t°P operation internal to the syntax. Effectively this operation only rearranges
the de Bruijn indices of variables, which is what the judgments for variance in Figure 10 use to
detect co/contravariance.

Definition 2.9 (Opposite predicate). Given a predicate [I'] P, there is a predicate in context I'°P
called the opposite of P defined by (metatheoretical) induction on derivations of predicates:
= : {[I'] = prop} — {[T°P] — prop}
(MP:=71
(P = Q)% = PP = Q%
(P x Q)°P := P°P x Q°P
(P(S | t))op = P(sctxswap | tctxswap)
(homc (S, t))op = homc (sctxswap’ tctxswap)

[ rn) = 1 i
([ or0)” = o P

, Vol. 1, No. 1, Article . Publication date: October 2018.



687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735

Di- is for Directed: First-Order Directed Type Theory via Dinaturality 15

This operation can similarly be defined by inverting the polarity of a single variable: given a
predicate [x : C,T'| P(x,x) we denote with [x : CP,T'] P*7°P(x,X) the predicate obtained by
inverting the polarity of each position in P where x is used. A similar definition can be extended
on propositional contexts ®. All these operations on predicates are clearly involutive.

Example 2.10. Taking the predicate of Example 2.4 and applying the predicate inversion operation
(homp (y, F(x)))° produces the following derivation:

x:CP,y:D?,x:C,y:Drx:C
x:CP,y:DP,x:C,y:D+7y:D° x:C°,35:D,x:C,y:D+ F(x) : D
[x:C,y:D] homp(y, F(x)) prop

The judgment for contravariance I' 3 x : A contra in P in Figure 10 is defined in terms of the
covariant one and the notion of opposite predicate P°P. Note that the well-formedness of this
judgment relies on the fact that I' 3 x : C implies I'°P 3 x : C°P.

Example 2.11 (Contravariance, formally). We give an example of a formal derivation for con-
travariance, following Example 2.7:

[x:C°,y:D°,x:C,y:D] 5% : C? unused inx : D
[(--]12Xx:C%P°unusediny [x:C°,3:D,x:C,y:D] > x : C°? unused in F(x) : D
[x:C,y:D] 3 x : C cov in homp (7, F(x))
[x:C°P,y:D°P] 3 x : C°P cov in homp(y, F(x)) = P
[x:C,y:D] > x : C contra in homp(y, F(x)) = P

2.2 Rules

We now describe and give intuition for the main rules for entailments of our type theory in Figure 10.
REMARK (NOTATION FOR ENTAILMENTS). We use type-theoretic notation for entailments,
[x:Cy:D,..]a:P(xx7y..).b:0(x,x7y,..),... Falab,..] : R(x,x,73,y,...)

where we give names to each assumption in the list ® := P, Q, .... We overload square brackets a[a, b, ...]
both to indicate the assumptions and to denote composition of entailments in (cut-din) and (cut-nat).

Some of our rules are formulated in “adjoint-form” (e.g. [43, 4.1.7, 4.1.8]), i.e., as natural bijections
between entailments. We use double lines in Figure 11 to indicate such isomorphisms of entailments,
using judgmental equality of entailments to ensure that one direction is the inverse of the other.
Naturality coincides with the fact that these isomorphisms commute with (both) the cut rules in
the equational theory whenever possible: we use this in Section 6 for the Yoneda technique. We
give a spelled-out example of adjoint-form in Figure 16 for the (end) rule, describing precisely the
naturality requirement for the rules in such form.

o Structural rules. The rules (var), (wk), (contr) capture the usual structural rules for assumptions,
weakening, and contraction.

e Products. The rule (prod) for conjunction P X Q is standard: reading the rule top-to-bottom,
given a proof [I'] ® + P X Q one can extract a proof [I'| ® + P. Similarly, given two entailments
with type P and Q in the same context one obtains an entailment with type P X Q.

o Polarized implication. Implication (exp) is similarly captured via the adjoint formulation, with
a catch regarding polarity: the key idea is that a predicate P(x, x) can be curried from one side to
the other of the entailment by reversing the variance of all its variables, i.e., using P°P. Contrary
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16 Laretto, Loregian, Veltri

to naturals and presheaves [50], dinaturals can be curried directly via the (exp) rule by currying
each component of « in Set. A similar idea is described in [10, 32] as twisted exponential.

e (Co)ends. The rules (end), (coend) capture the directed quantifiers of our type theory, i.e.,
(co)ends. These are also characterized in “adjoint-form”, following precisely the same formulation
of [43, 4.1.8]. Note that ® is given type in I', and we do not make this weakening explicit.

e Reindexing. Following the doctrinal presentation of logic (see [43, 71] for standard accounts),
variables in entailments can be substituted with terms using the rule (idx): in particular, entail-
ments can be substituted with diterms, i.e., terms that are allowed to access the whole concatena-
tion of contexts I'°P,T'. The fact that F is a diterm is not a mere technical point, and it is used in
Remark 3.2 and theorem 3.14 to derive certain non-trivial structural rules related to variance.

e Cut naturals-dinaturals. We present two restricted cut rules (cut-din), (cut-nat) that allow
entailments to be composed together. Associativity and identities for these is captured in Figure 15,
along with a coherence condition that makes the two cuts agree whenever both entailments are
naturals. The occurrences E,E in @ in (cut-nat) are needed to make sure that, in the semantics, «
is natural in a, b when the domain is just P, i.e., by using (exp) to move ® and invert the variance
of a,b. Similarly, P must also not syntactically depend on I to ensure naturality in g, b, but both
® and Q can depend on I' without any restriction; we elaborate on this in the semantics of cuts
in Section 5, which we use to state the naturality requirement for, e.g., ends in Figure 16.

o Directed equality elimination. The operational meaning behind (J) is the following: having
identified two covariant positions a:C° and b:C in the predicate P, if there is a directed equality
homc (a, b) in context then it is enough to prove that P holds “on the diagonal”, where the two
positions have been collapsed with the same dinatural variable z : C; moreover, a, b can be
collapsed together in the context ® only if they appear contravariantly, i.e., as a and b.

e Dependent hom elimination. A dependent version of directed J, rule (J-eq), is needed to
prove equational properties of maps definable with (J); this is done by allowing hom(a, b) to
be contracted inside equality judgments. Intuitively, given entailments a[e] and f[e] with an
equality in context e : homc (g, b) which can be contracted using (J), we can deduce that « and
B are equal everywhere as soon as they are equal on e = reflc , for every z : C.

3 Directed equality a la Martin-Lof

We show how the rules for directed equality can be used to obtain the same terms definable
with symmetric equality in Martin-Lof type theory, and proving properties about them follows
precisely the steps of the usual proofs, i.e., by equality contraction and computation rules [41, 78].
All examples in this section satisfy the constraints for (cut-nat), (cut-din) to be applied.

We start by showing transitivity of directed equality, i.e., categories have composition maps.

Example 3.1 (Composition in a category). The following derivation constructs the composition
map for C, which is covariant in a : C°?, ¢ : C and dinatural in b : C:

(var)

)

[z:C,c:C] g : hom(z,c) + g : hom(z, c)
[a:C% b:C,c:C]f:hom(ab), g:hom(b,c)F J(g) : hom(a,c)

We contracted the first equality f : hom(a, b). Rule (J) can be applied since a, b appear only
contravariantly in context (a does not appear) and covariantly in the conclusion (b does not).
We now prove that comp|[f,g] := J(g), denoted as “f ; g, is unital on identities (i.e., reflc) and
associative. Since we chose to contract f, the computation rule ensures unitality on the left:

(J-comp)

[z:C,c:C] g:hom(zc) + refl, ;g =g : hom(z, c)
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Di- is for Directed: First-Order Directed Type Theory via Dinaturality 17

On the other hand, to show that composition is right-unital we use dependent directed equality
induction (J-eq), where now it is enough to just consider the case in which a = z = w and f = refl,,,

(J-comp)
(J-eq)

[w:C] .+ refl,, ; refl,, = refl,, : hom(w, w)
[a:C%,z:C] f:hom(a,z) + f;refl, = f : hom(a, z)

which follows by the computation rule for comp since refl,, is on the left. Similarly, to show
associativity we just need to consider the case a = b = z and f = refl,,

(J-comp)

[z:C,c:C,d:C] g :hom(z,c), h : hom(c,d) + refl,; (g;h) = (refl,;g) ; h : hom(z, d) (J-eq)
-eq

[a:C,b:C,c:C,d:C]f:hom(E,b),g:hom(E,c),h:hom(E,d) Ffi(g;h)=(f;9);h:hom(ad)

where in the top sequent both entailments are equal to g ; h by the computation rules of comp.

Example 3.2 (Functorial action on morphisms). For any term/functor C + F : D, the functorial
action on morphisms of F corresponds with the fact that any term F respects directed equality, i.e.,
directed equality is a congruence:

(idx)+(refl)
W)

[z:C] « + F*(reflc) : homp (F°P(2), F(z))
[x:C,y:C]f:homc(x,y) v J(F*(reflc)) : homp (F°P(X), F(y))

and thus we define mapg[f] := J(F*(reflc)), using (idx) with F in the top sequent.
The computation rule states that F maps identities to identities:

" — (J-comp)
[z : C] T + mapg[reflc] = F*(reflc) : homp (F°P (), F(x))

The following shows functoriality for free; both top sides reduce to map[g] using (J-comp):

(J-comp)
(J-eq)

[z:C,c:C] g :hom(z,c) r mapg[refl; ; g] = reflg(;) ; mapp[g] : hom(z, d)
[a:C,b:C,c:C] f:hom(ab),g: hom(b, ¢) + mapg(f;g] = mapg[f]; mapg[g] : hom(a, d)

Example 3.3 (Transport). Transporting points of predicates along directed equalities [78, 2.3.1] is
the functorial action of copresheaves P : C— Set, i.e., predicates [x : C] P prop, for x only positive:

(var)
)

[z:C]k:P(z)rk:P(z)
[a:Cb:C] f:hom(ab) k:P(a)r J(k):P(b)

The computation rule simply states that transporting a point of P(a) along the identity morphism
with subst[f, k] := J(k) is the same as giving the point itself, i.e., subst[reflc, k] = k.

Example 3.4 (Pair of rewrites). Pairs of directed equalities induce directed equalities between
pairs. The other direction (i.e., “directed injectivity of pairs”) follows from congruence of directed
equality with the projections 7y, 7, and then using the judgmental equality of terms.

(idx)+(refl)
)
U)

[z:C,2’ : D] « F homcxp((Z,2), (z, 2))
[@":C°P,b" : D,z :C] g:homp(b,b’) + homexp((Z, ), (z,b))
[a, @’ : C°P,b,b" : D] f : homc(a,a’),g : homp (b, b’) + homexp((a,b), (a’, b))
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18 Laretto, Loregian, Veltri

Example 3.5 (Higher-dimensional rewriting). The following shows that a directed equality between
functors induces a natural transformation [52, 1.4.1] (omitting the resulting term for simplicity):
(idx)+(refl)

(end)

[H:[C,D],x:C]-+rhomp(H- X H - x)
[H:[C.D]]++ [ . homp(H X H-x)

[F:[C,D]°®,G: [C,D]] e:hom|cp|(F,G) + fx:C homp(F - x,G - x)
The opposite direction is not derivable in general, since in the case where C, D are discrete categories
(i-e., sets), it corresponds to function extensionality.
Example 3.6 (Existence of singletons). The following derivation asserts that singleton subsets are
inhabited [78, Remark 1.12.1], i.e., there is a proof for the first-order logic formula Vx.3y.x = y:
(var)

[x:CoP] k: fy:c home (x,y) + k : fy:C homc(x,y)

(coend)
[x:C°, y:C] f:homc(x,y) + coend™ ! (k)[f] : fy:C homc¢(x,y)
(cut-nat)

[x:C] «+ coend ! (k)[refly] : /y:C homc (X, y)

[1++ end(coend ™ (k) [refl,]) : [ [* homc(%.y)

This derivation is actually an isomorphism in the model, i.e., singletons are contractible. This
follows from dependent directed equality contraction, which we show in detail in Example B.1.

(end)

The following theorems show that in our type theory both naturality and dinaturality follow
“for free” from dependent directed equality contraction. Cuts are allowed in both cases because of
the natural appearance of variables in subst.

Example 3.7 (Internal naturality for entailments). For any [x : C] P(x) + @ : Q(x), an internal
version of naturality for entailments holds via (J-comp):

[z:C]k: P(z) + afsubstp[refl,, k]] = substg[refl,, a[k]] : O(2)
[a:C%,b:C]f:homc(a,b),k:P(a) + a[substp[f, k]] = substo[f, a[k]] : O(D)

Example 3.8 (Internal dinaturality for entailments). For any [x : C] P(x,x) + a : Q(X,x), an
internal version of (di)naturality for entailments, as in Definition 4.2, holds via (J-comp):

(J-comp)

(J-comp)
(J-eq)

[z:Clk: P(zz) + substo[(refl,, refl;), [a[substp[(refl,, refl;), k]]]]
= substg [(refl,, refl,), [a[substp[(refl;, refl;), k]11] : Q(Z, 2)

- (J-eq)
[a:C%,b:C]f:homc(a,b),k:P(b,a)k substo[(refly, f), [a[substp[(f, refl,), k]]]]
= substg [(f, refly), [a[substp[(refly, £), k]1]1] : Q(a, b)
We elucidate more in detail why the above sequence of cuts is valid in Appendix H.

We show in Examples B.2 to B.4 how natural transformations between terms can be captured
using ends [52, 1.4.1]. We show the identity natural, composition of naturals, and internal naturality.

3.1 On the adjoint formulation

We elaborate how the adjoint formulation, i.e., the fact that rules are formulated as bijections of
entailments, differs from the standard type-theoretical presentation of connectives in the style of
natural deduction or sequent calculus [56, 5.1.6]. Since in both of these systems cut is either derivable
or admissible, we cannot recover the usual rules for introduction/elimination for quantifiers and
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implication, since in the semantics this would enable us to compose any two entailments/dinatural
transformations. We give an example of introduction/elimination-like rules derivable from the
adjoint formulation for (co)ends in Example 3.9.

Example 3.9 (Rules for (co)ends with terms). The following derivations capture an elimination
rule for ends and, dually, an introduction rule for coends using a concrete diterm I'°P,T + F : C:

x:C
[F]Cbl—a:/ P(x, x) [F]k:/ P(x,x),®oFa:Q
x:C -1 -1
(end™1) (coend™")
[x:C,T]®Fend ! (a):P(xX,x) . [x:C,T] k:P(x,x),®+rcoend !(a): Q
idx) idx)

[[] ®F F*(end™!(a)) : P(F,F) [T] k : P(F,F),® + F*(coend ' ()) : Q

We can recover the the projection and injection maps of (co)ends (i.e., the “(co)units” of the adjoint
formulation) by picking Q := /x:C P(x,x),®:= /xzc P(x,x),®" and a := (var) as follows:

[T] k- /»c P(x,x),® + F*(end™'(k)) : P(F,F) [T]k :P(F,F),®+ F*(coend™'(k)) : /X:C P(x,x)

The crucial aspect is that we cannot derive the above introduction/elimination rules where,
instead, the end appears on the left, or the coend on the right: these would be the remaining rules
for the quantifiers of sequent calculus, and hence full cut would be admissible. In particular we only
recover Vg and Jr, but not V; and g, using the terminology of [56, 5.1.8]. We formally prove the
non-admissibility of an unrestricted cut rule in Theorem 5.3.

In standard accounts of logic, the adjoint-form is equivalent to the usual introduction and
elimination rules for connectives, but only in the presence of cut [43, 4.1.8]. Hence, in our setting
we can recover the usual rules only in contexts that are sufficiently natural to allow for cuts to be
applied. We give an example of this situation in Example 3.10 to derive introduction/elimination-
like rules for existentials in the style of natural deduction [56, 5.1.6], and derive in Example 3.11
transitivity of implication (which directly translates to an elimination rule).

Example 3.10 (Natural deduction-style rules for coends). The following derivations capture rules
where coends are on the right of the turnstile: an elimination rule, an introduction rule with a
concrete term A + F : C (not a diterm), and an introduction rule with two variables x : C°P,y : C:

[T.d:Al ©d) F [““PRxd)  [T.d:A] (d) + Q(F(d).d) [T,x:Cy:C] B(x,) - R(x.y)

[[,z:C,d:A] P(z,2,d),®(d) + Q(d) o 2C
I,d:Al®d)+r [ ,d Il ®(x,y) R(z,
e iale@ro@ MA@ o (M ety) r [TRER)
Note that the variables of A are always used naturally, and P, Q, R do not depend on I'. F cannot be
a diterm since Q(F (x, x)) would make the top entailment dinatural in the variables of A. We report
complete derivations for these rules in Appendix C.

Example 3.11 (Transitivity of implication). Implication is transitive in natural contexts, with [T'] ®:

[a:C]PFa:P(a) = Qa) . [a:C]®F pB:Q(a) = R(a)

@ rop @ 0@ | [aClo@.er op(h): Ria)
[a:C]P(a), @+ a;p=exp™(B)exp~'(a)] : R(a)

Polarized implication is in general not transitive, since, as we will see in Section 5, entailments are
interpreted as dinaturals which do not compose in general; we show how in Theorem D.4 one can
use implication and ends to internalize the set of all entailments/dinaturals.

(exp™)

(cut-nat)
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3.2 Aspects of directed type theory

We investigate in this section other proof-theoretical aspects of our directed type theory: in
particular we show why symmetry is not immediately derivable and how all rules for directed
equality can be equivalently characterized as a single isomorphism.

REMARK (SYNTACTIC FAILURE OF SYMMETRY FOR DIRECTED EQUALITY). The restrictions in (J)
illustrate why one cannot derive that directed equality is symmetric, i.e., obtain a general map

[a:C% b:C]e:homc(a,b) +sym : home(b, a).

The equality e : homc (a, b) cannot be contracted because a appears in the conclusion contravariantly
(similarly with b), whereas (]) requires that the conclusion only has covariant occurrences of the
variables being contracted.

The remark above merely illustrates why it is not derivable from the syntactic restriction. We show
in Theorem 5.2 that the existence of a countermodel implies that it is not admissible in general.

As in the symmetric case, the rule for directed equality elimination is actually an isomorphism,
and asking (J) to be an isomorphism fully characterizes all the rules of directed equality [43, 3.2.3]
(in the presence of the structural rules (cut-nat) and (var)):

THEOREM 3.12 (DIRECTED J As 1somorpHISM). ({f) Rule () is an isomorphism, and the inverse
map is given by J~1(h) = h[reflc] using (cut-nat) and (refl). Moreover, (J-eq) is logically equivalent
to the rule J(J'(«)) = « in the equational theory for every a.

ProoF. The computation rule states precisely that J~!(J(a)) = a. To show J(J~!(a)) = a, we in-
stantiate (J-eq) with « := J(f[reflc]) and use (J-comp) in the hypothesis, i.e., J(B[reflc]) [reflc] =
Blreflc], to obtain J(B[reflc]) = B as desired. We show that J(J~!(a)) = « implies (J-eq): the
hypothesis in (J-eq) states exactly J™*(«) = J~1(f), hence « = B by applying J on both sides. O

THEOREM 3.13 (J~! < refl). Rule (refl) is logically equivalent to (J71).

Proor. Clearly (refl) implies (/') by definition. Rule (refl) follows from (J~!) in Theorem 3.12 by
picking P(a, b) := hom(a, b) and using the projection (var) to return the hypothesis e : homc(a, b)
as the bottom side map h, obtaining reflc := J~!(e). We leave the proof that the computation rule
J(h)[reflc] = h holds in Appendix E. o

The following derivations illustrate how dinaturality, intuitively, allows us to “ignore” polarity
in the contexts of predicates, i.e., one can equivalently consider a contravariant variable of type C
as a covariant variable of type C°P, and viceversa.

THEOREM 3.14 (op OF ENTAILMENTS). The following rule is derivable:

[x:CT] ®(x,x) Fa: P(x,x)

[x : C,T] &~ (x,X) F ¥ : P~ (x, %)

Proor. Follows by reindexing (idx) with the “negative projection” ditermx : C,x : C°P + x : C.
The predicate obtained by substituting this term in P coincides (metatheoretically) with P*~°P.
This reindexing is involutive in the sense that (a*~°)*~° = ¢ in the equational theory. |

In particular, the above derivation allows us to derive different versions of (J) which adopt one
or the other convention: for example (/) could be stated by requiring a : C (rather than C°P) but
then ask for contravariance of a in the conclusion and covariance in ®. The formulation chosen
in (J) with a : C°P, b : C is simpler to state in terms of “correct” and “incorrect” appearances and
emphasizes how the two variables play different asymmetric roles.
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The following derivation shows how dinaturality allows us to capture a sort of “mixed-variance
reindexing” C — C°P x C, since even variables with different polarities can be identified together.

THEOREM 3.15 (DINATURAL COLLAPSE). The following rule is derivable:
[x:CPy:CT] O(X, x5y Fa:P(x,x7y)
[z:CT] ®(2,2,2,2z) + a©¥7% : P(2,2,%,2)

Proor. Follows by reindexing (idx) with the “identity”ditermx : C?,x : C+ (x,x) : C’xC. O

The dinatural collapse operation can be used to “downgrade” natural transformations to dinatural
transformations, which no longer compose; since we check for naturality syntactically, this allows
for a situation in which two (dinatural) entailments do not compose in the syntax despite composing
in the semantics (since the map being constructed remains unaltered).

REMARK (COLLAPSE LOSES COMPOSITIONALITY). We illustrate how dinatural collapse can make an
entailment no longer composable. Recall the composition map complf, g] := J(g) from Example 3.1:
then, the following entailments are not composable in the syntax, since both comp®% and refl are
dinatural in z; however, comp|refl,, k] is a valid application of (cut-nat):

[a:C°,b,c: C] home(a,b), home(b,c) F comp : home(a, c)

a,b—z

[z: C] @+ refl : hom¢(Z, z)

[z, ¢ : C] home(z, z), home(z, ¢) F comp : hom¢ (z, ¢)

Note that one can apply comp to a constant dinatural [] « + « : homc (A, A) that selects some
endomorphism for a concrete constant [ | + A : C, since @ would be natural in the empty context.

We elucidate using (exp) why the exponential object in the category of presheaves and natural
transformations is non-trivial [50, 6.3.20], and is not the pointwise hom in Set.

REMARK (EXPONENTIALS FOR NATURALS). Given an entailment which is fully covariant in x (i.e., a
natural transformation) for predicates [x : C] F(x), G(x), H(x), by directly applying (exp),
[x:C] F(x) X G(x) + H(x)
— (exp)
[x:C] G(x) + F(x) = H(x)
one has a natural transformation on top, but the bottom family of arrows is dinatural in x.

We show in Example 6.2 how (exp) and the rules for directed equality can be used to give a
logical proof that the usual definition of exponential for presheaves is indeed the correct one.

4 Dinaturality

We recall some preliminary facts about dinatural transformations and (co)ends in order to present
the semantics of our type theory. We will often abbreviate the term dinatural transformations
simply as “dinaturals”, and ordinary natural transformations as “naturals”.

Definition 4.1 (Dipresheaves and difunctors). Consider the (strict) comonad —° : Cat — Cat
defined by C +— C°PxC, where the counit is given by projecting and comultiplication by duplicating
and swapping. A dipresheaf is simply a functor C° — Set, i.e. a functor C°P X C — Set.

We always denote composition diagrammatically, i.e., f;g:a - cfor f:a —> b,g: b — c.

Definition 4.2 (Dinatural transformation [26]). Given functors F,G : C°? x C — D, a dinatural
transformation o : F = G is a family of arrows a, : F(x,x) — G(x, x) indexed by objects x : C
such that Va, b : C, and f : a — b the following equation between arrows F(b,a) — G(a, b) holds:

F(idp, ) s ap ; G(f,idp) = F(f,ida) 5 aq ;s G(idp, f).
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LEMMA 4.3 (DINATURALS GENERALIZE NATURALS [26]). A natural transformation a : F — G for
F,G : C — D equivalently corresponds with a dinatural a : (m ; F) = (71, ;G) : C°?* x C — D.

The pointwise composition of two dinatural transformations is not necessarily dinatural (see [30,
55]), but dinaturals always compose with naturals on both the left and right side:

LEMMA 4.4 (DINATURALS COMPOSE WITH NATURALS [26]). Given a dinatural transformation
Y : F =5 G and natural transformationsa : F* — F,f: G — G’ for F,F',G,G" : C°? X C — Set,
themapa;y;f: F —> G’ defined by (a;y; f)x = Qxx ; Yx ; Pxx IS dinatural.

Non-compositionality of dinaturals is an intrinsic property of directed proof-relevant type theory,
since in the groupoidal case they all compose (in the proof-irrelevant case, where Set is replaced by
the preorder I := {0 — 1}, dinaturals compose trivially since there is no hexagon to check):

THEOREM 4.5 (DINATURALS IN GROUPOIDS COMPOSE). ({*f) Given a groupoid C and a category D
for functors F,G,H : C°? x C — D, any two dinaturals o : F = G, f : G = H compose.

The fundamental idea behind all rules for directed equality is given by the following elementary
result, which connects dinatural transformations in Set with a corresponding natural one:

THEOREM 4.6 (DINATURALS AND hom-NaTuRaLs). ({f) ForanyP,Q : C° x C — Set, there is
a bijection between set of dinatural transformations P — Q and certain natural transformations
between functors C°P x C — Set, as follows:

ay : P(x,x) = Q(x, x)

Yab : hom(a, b) — P°P(b,a) = Q(a, b)

Proor. We describe the maps in both directions:
() Given a dinatural « : P = Q and a morphism f : hom(a, b), the map P(b,a) — Q(a,b)
corresponds precisely with the sides of the equation given in Definition 4.2 for dinaturality,
which is obtained by applying the functorial action of P and Q.
() Take a = b and precompose with id, € hom(a, a).
The fact that this is an isomorphism follows from the (di)naturality of both sets of maps. Note the
similarity between the above argument and the proof of the Yoneda lemma, where the two central
ideas are precisely applying the functorial action and instantiating at id, with the isomorphism
following from (di)naturality. O

We now recall definitions for the semantics of (co)ends, later used to give semantics to quantifiers.

Definition 4.7 ((Co)wedges for P [52, 1.1.4]). Given P : C°? x C — D, a wedge for P is a pair
object/dinatural (X : D, a : Kx = P), where Kx is the constant functor in X. A wedge morphism
(X,a) = (Y,&')isan f: X — Y of D such that Ve : C,a. = f; a/. A cowedge is a wedge in D°P,
denoting the categories of (co)wedges as Wedge(P), Cowedge(P).

Definition 4.8 ((Co)ends [52, 1.1.6]). Given a functor P : C°? x C — D, the end of P is defined to be
the terminal object of Wedge(P), whose object in D is denoted as fx:C P(x, x). Dually, the coend of P

is the initial object of Cowedge(P), denoted similarly as f P P(x, x). The integral symbol acts as a
binder, in the sense that “ fc c P(c,c)” and ¢ fx c P(x,x)” are (a-)equivalent; moreover, P can depend
on many parameters, e.g., if P : (AP x A) x (B°? x B) — D then A:B P(a,a,bb): A% x A — D.
(Co)ends exist when D is (co)complete [52].
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5 Semantics

We now describe the categorical semantics of our directed type theory: the main idea behind
categorical semantics is that we define functions that associate a certain mathematical object to
each derivation tree, inductively. Whenever present, the symbol ({*f) links to the Agda formalization
of the semantic interpretation of each rule.

The semantics for types, contexts, variables, terms, predicates and propositional contexts is given
in Figure 12. The equality judgments associated to these are interpreted in a straightforward way,
which we omit from this presentation; such equalities are only used to take care of involutions and
the equational theory of terms, for which we therefore give a strict semantics: equality of types
and contexts is interpreted as isomorphisms of categories, term equality is strict isomorphism of
functors. Equality of predicates is similarly trivial since it only inherits congruence rules from the
previous equality judgments.

The main rules of our type theory are those of entailments, for which we describe in detail the
intuition behind the semantics of each rule and its soundness in dinatural transformations.

[-]°:AT > =: C} > [[TL[C]] [-]:{[T] - prop} — [[T] x [I]. Set]

[-]:{-type} - Cat [[,x:C3x:C]’:=m, Il =AY, Y- Tset
%Copﬂ | - HOP [D] [fy:D5y:Clo=m:[y]° [Px0Q] = ([P]. [Q]) ; Xset
CxD]:=[C]x[D ) ) [P= Q] = {[P], [Q]) s =set
ficon=tielol) [0 O = ILED funcn) = (sl i) home
[Tl =T [[topj] =[] [ /";Ecp(i 0] =2y ";Ecp(i YY)
[[]: {-ctx} = Cat  [(s,0)] := {[s]. []) [/ PEO]= A7y [ PZx.7.y)
) = [7(p)] = [p] s m
[TeP] == [r]°P [ (p)] = [p] ; 72 [-] : {- propctx} — [[T]°P X [T, Set]
IT.C] = [T] % [C] [s - t] = ([s]. [£]) ; eval [] =2y Tse

[Ax.t(x)] := A(t) [, P := ([@]. [P} : Xset

Fig. 12. Semantics for the main judgments of directed dinatural type theory.

THEOREM 5.1 (SOUNDNESS IN DINATURAL TRANSFORMATIONS). ({*f) Each rule in Figure 11 is
validated using the semantics in categories, functors, dipresheaves, dinatural transformations. Inference
rules are interpreted by functions between sets of dinaturals; these are isomorphisms when double-lines
appear. Moreover, every function is natural in all the dipresheaves (both predicates and propositional
contexts) that appear in the rule.

We unpack this theorem by validating and describing the intuition behind each rule, using semantic
brackets [—] to indicate the semantic object denoted by each constructor.

o Structural rules. ({"/) Rule (var) is interpreted as the dinatural which projects away the predicate
P. Moreover, (wk) and (contr) state that dinaturals always compose on the left with, respectively,
the projections and the diagonal map in Set.

e Products. ({f) Dinaturals validate the interpretation of conjunction in (prod) via the pointwise
product of dipresheaves in Set; the bottom sequent indicates the product of sets of dinaturals.

e Polarized implication. ({*/) Contrary to naturals and presheaves [50], dinaturals can be
curried directly via the (exp) rule by currying each component of & in Set. In the semantics, the
metatheoretical operation Example 2.10 corresponds to swapping arguments in a dipresheaf.

e Reindexing with functors as terms. ({7f) Dinaturals can always be “reindexed” by plugging
functors in each index of the component, preserving dinaturality.
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e Cuts naturals-dinaturals. ({f) The two restricted cut rules (cut-din), (cut-nat) correspond
precisely to Lemma 4.4. Intuitively, both rules are stated in such a way that the dipresheaf P (in
the middle of the composition) only contains natural occurrences of variables. The use of I" in
®, Q is unproblematic since one can suitably take the (co)end over T to “hide” these variables and
compose naturals together. Associativity, unitality and coherence in Figure 15 are immediate.
The dinatural-into-natural rule (cut-nat) essentially corresponds to vertical composition in Prof
as a virtual equipment [24, 60]: in this type theory, however, contravariant occurrences a,bare
allowed to appear in the same predicate P(a, b), but in the double-categorical setting they must be
splitas P(...,a), Q(a, b), R(E, ...). Note that composing a natural with a dinatural yields a dinatural,
hence the resulting map is always collapsed via Theorem 3.2, e.g., in (cut-nat-id;), (cut-din-id,).

e Directed equality introduction. ({*f) The rule (refl) states reflexivity of directed equality, and
is validated semantically by a, (k) := id,. Dinaturality holds since Vf : a — b, f ;idy = id, ; f.

¢ Directed equality elimination. ({*f) This rule and its syntactic restriction comes precisely
from Theorem 4.6: in the bottom side of the isomorphism, the dipresheaf P is curried on the left
of the turnside but inverting the polarity of a, b. This is precisely the propositional context of (/).
Hence, the restriction behind (/) comes from the naturality of the bottom map. Explicitly, given
a dinatural h, the dinatural J(h) is defined as follows for indices a : [C], b : [C°P], x : [T]:

](h)abx = Ae, k-([[q)]](idbs e, idy, idx) 5 hbx 5 [P]](e, idbs idy, 'dx))(k)

The computation rule clearly holds when a = b = z and e = id,, without the need for dinaturality.
e Dependent hom elimination. ({f) As shown in Theorem 3.12, the fact that J is an isomorphism
characterizes directed equality. In particular, dependent equality elimination is the J(J~!(a)) = &
direction, which uses naturality in the proof just like the Yoneda lemma [50, 4.2].
e (Co)ends. ({?f) The rules for (co)ends (end) and (coend) express an adjoint-like (up to the

L . AlC .
non-composition of dinaturals) correspondence / el Talc)

functor ﬂ;[c] : [C?, Set] — [A® x C°,Set] and the functors /A[C],/A[C] : [A® x C°,Set] —
[C?, Set] sending dipresheaves to their (co)end in A. Semantically, these are simply the bijective
correspondences between (co)wedges and morphisms (out of) into (co)ends, but parameterized
by an additional context of variables I'. Quantifiers in categorical logic typically have to satisfy
additional requirements in order to faithfully model logical operations: the Beck-Chevalley
condition [43, 1.9.4] states that “quantifiers commute with substitution”, and the Frobenius
condition [43, 1.9.12] logically corresponds to having an additional context ® in rules for colimit-
like connectives [43, 3.4.4], as in (coend). We show these technical conditions in Theorem F.1.

4 /A[C] between the weakening

THEOREM 5.2 (SYMMETRY IS NOT ADMISSIBLE). The statement of symmetry of directed equality in
Remark 3.2 is not admissible in the type theory.

Proor. Add to the signature the category I := {0 — 1} with a unique non-invertible morphism.
By soundness, the lack of symmetry in I implies that symmetry cannot be derived in general. O

The set of all dinaturals can be characterized as an end Dinat(P, Q) = /x:c P(x,x) = Q(x, x);
we prove this in Theorem D.4. We internalize this idea to show that full cut cannot be derived:

THEOREM 5.3 (No FULL cUT). A cut rule where ®, P, Q are fully unrestricted is not admissible.

Proor. Assuming full cut, the adjoint formulation is equivalent to the rules of natural deduction
of first-order logic, which allows one to derive the following map in the empty context:

[1 [PxX) = Q0Fx), [0xX) = REx)F [ P(x,%) = R(Xx)

by soundness of the semantics, this corresponds to composing all dinatural transformations. O
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6 Coend calculus via dinaturality

We show how the rules for directed equality and (co)ends can be used to give concise proofs with
a distinctly logical flavor to several central theorems of category theory. The technique we use
mirrors the way (co)end calculus is applied in practical settings (e.g., [15, 40, 74]) via a “Yoneda-like”
series of natural isomorphisms of sets: to prove that two objects A, B:C are isomorphic, one can
assume to have a generic object ¢ and then apply a series of isomorphisms of sets natural in ® to
establish that C(®, A) = C(®, B), from which A = B follows by the fully faithfulness of the Yoneda
embedding [15, 50]. The same technique can be used to show that functors are naturally isomorphic,
as well as adjunctions, e.g., Examples 6.2 and 6.3. We now show our main examples, with additional
derivations of (co)end calulus in Appendix D, which use Yoneda with ® on the right side instead.

REMARK (YONEDA TECHNIQUE AND NATURALITY). ({*f) All rules given in previous sections are
natural in each of the dipresheaves involved. In the following series of examples no proof ever involves a
“dinatural isomorphism”, since it would not be possible to state the final isomorphism with cuts; natural
isomorphisms between sets of dinaturals are only used as intermediate steps. We show in Appendix G
a spelled-out example of this Yoneda technique in the equational theory by explicitly constructing the
isomorphisms and using naturality of the adjoint-form rules (i.e., they commute with cuts).

Example 6.1 ((co)Yoneda lemma). For any predicate/copresheaf [x : C] P(x) prop, and a predi-
cate/copresheaf [x : C] ®(x) propctx acting as generic context, the following derivations capture
the Yoneda lemma [52, Thm. 1] (using the characterization of naturals as an end) and coYoneda
lemma [53, II.7, Theorem 1] (i.e., presheaves are isomorphic to a weighted colimit of representables)
[a:C] ®(a) + | ~ homc(a,X) = P(x) )

fee (end)  [a:C] [™° homc(X, a) X P(x) F ®(a)
[a:C,x:C] ®(a) + homc(a,x) = P(x) (coend)
— (exp) [a:C,x:C] homc(X,a) X P(x) + ®(a)
[a:C,x:C] homc¢(a,x),®(a) + P(x)

[z:C] ®(z) + P(z) [z:C] P(2) + ®(2)

Example 6.2 (Presheaves are cartesian closed). For any [C] A, B, @, the following derivation shows
that the internal hom in the category of presheaves and naturals [50, 6.3.20] defined by (A =
B)(x) := Nat(hom(x, —) X A, B) is indeed the correct one. We show here the tensor/hom adjunction:

[x: C] ®(x) + (A = B)(x) := Nat(homc(x,—) X A, B)
= [,c home(x.9) x A() = B(y)

d
[x:Cy:C] ®(x) F homc(x,y) X A(y) = B(y) (end)
[x:C,y:C] A(y) X homc(x,y) X (x) + B(y) P
coend)
[y : C] A(y) X ( 17 home (%, y) x <I>(x)) F B(y)
(coYoneda)

[y : C] A(y) x @(y) + B(y)
We precompose with the (coYoneda) isomorphism given in Example 6.1 (which is a natural isomor-
phism). Note that (J) cannot be applied immediately since y appears positively in context in A(y),
whereas it should be negative to identify it with x. The above derivation is a simple application of
our rules via dinaturality, but it is unclear how it can be captured using the proarrow equipment
approach of [60, 85] as an abstract property of Prof, due to the repetition of variables y, 7.

Example 6.3 (Pointwise formula for right Kan extensions). Using our rules, we give a logical proof
that the functor Rang : [C, Set] — [D, Set] sending (co)presheaves to their Kan extensions along
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F : C — D computed via ends [52, 2.3.6] is right adjoint to precomposition (F ; —) : [D, Set] —
[C, Set]. We again precompose with the (coYoneda) isomorphism, which we reindex implicitly with
F. Note the similarity between this derivation and the argument given in [71, 5.6.6] to compute
adjoints in a general doctrine. For any [x : C] P(x), [y : D] ®(y), a functor/term F : C — D:

[y : D] ®(y) + (RanpP)(y) := [, . homp(y, F(X)) = P(x)
[x:C,y:D] ®(y) + homp(y, F(x)) = P(x) (
[x:C,y: D] homp(y, F(x)) X ®(y) + P(x)

(end)

exp)

coend)

[x:C] [ homp(7, F(x)) X ®(y) + P(x)

[y : C] ®(F(x)) + P(x)
Example 6.4 (Fubini rule for ends). For convenience we only show the case for ends. For [ | ® propctx
in the empty context (i.e., just an object [®] : Set) and [C, D] P prop the following are all equivalent
thanks to the fact that certain structural properties of contexts hold by cartesianness of Cat.

(coYoneda)

(structural property)

[1or [c [ PEXT.Y) [p:CxD] @+ P(p,p)
(end) (end)
[x:Cl®r [ PExTy) [y:D] @+ [ PFxTy)
Y (end) (end)
[x:C,y:D] @r P(X,x,3,y) [Ter [p fcPEXTY)
(structural property) (end)

:D,x:C]®FP(X,x, 7 T
[y:D,x:C] @+ P(x,x,1.y) 1@+ [ cpPExTY)

Example 6.5 (= resp. limits). Ends are limits [52], and functors — = — : Set®® xSet — Set preserve
them (ends/limits in Set®P, i.e., coends/colimits in Set). For [] ® propctx, [] Q prop, [C] P prop:

[10+0= [ P(Xx) oo 1o+ ([ PFEx) =0 o)
[10.9F [ P(Fx) o) [1 ([ PEx).®FQ coond)
[x:C] Q,®F P(x,x) — (exp) [x:C] P(x,x),®+ Q o)
[x:C]®+Q = P(x,x) (end) [x:C]®+P(xX) =Q fend)
[1o+ [ . (Q=PFx) [1&+ [ P(xT) =Q

7 Conclusions and future work

In this paper we showed how dinaturality is the key notion to give a simple and natural description
to a first-order directed type theory where types are interpreted as (1-)categories and directed
equality as hom-functors. Our type theory is powerful enough to express theorems about directed
equality in a straightforward way, and to give a distinctly logical interpretation to well-known
theorems in category theory by reinterpreting them under the light of directed type theory.
Dinaturality. The compositionality problem of dinatural transformations is a long-standing and
famously difficult problem [75], which both the category theory and computer science communities
have relatively left unexplored since their introduction in the 1970s [26, 27]. Our work gives a
concrete motivation to further investigate this more than 50-years old mystery by connecting it to
directed type theory. We conjecture that this connection could possibly hint to a deeper directed
homotopical reason [28, 33] for why dinaturals fail to compose. Strong dinaturals [58, 65] are one
possible approach to deal with non-compositionality, but they lack in expressivity, e.g., they are not
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closed in general [79]. Following Theorem 4.5, this non-compositionality is intrinsic to the directed
proof-relevant setting, i.e., non-groupoidal categories. We leave investigating the relation between
dinaturality and geometric models of (oo, 1)-categories in the spirit of [34, 73, 84] for future work.

Type dependency. Our treatment of directed equality via dinaturality is a first step towards
understanding the precise interplay of polarity, directedness and variance in fully dependent
Martin-Lof type theory, especially with respect to how polarity of variables is influenced by their
appearance in types, which we conjecture to be particularly non-trivial.

Initiality. The syntactic system presented in this paper could be axiomatized into a suitable
initial object in a category of models that captures the behavior of variables in dinaturals and
naturals (e.g., as in [75]): one possible approach could be to abstractly consider two classes of maps
(dinaturals, naturals) and requiring such maps to interact as in Lemma 4.4.

Doctrines. All of our results can be specialized in the category of posets Pos rather than Cat,
where dinaturals compose trivially and our work provides a “logic of posets”, captured via a
bona fide doctrine, at the cost of trivializing (co)ends with (co)products. This posetal case could
be axiomatized in the style of the doctrinal approach [43, 54], with a notion of directed doctrine
capturing the roles played by variance, the —°P involution, and (di)naturality. This would allow our
syntactic rules to be organized in a well-known structure, with a suitable initiality result.

Internalizing Yoneda. The Yoneda technique for isomorphisms follows from “manually” using
naturality of isomorphisms in the equational theory. One could also get this naturality for free
by making the theory second-order with a universe of propositions Set and adding a directed
univalence statement homs (A, B) & A = B (as in [4, 34, 84]): this would allow for implication to
be represented as a directed equality, contractible with (J), and “synthetically” reproduce the same
argument as in Example 3.8 by quantifying over all predicates involved.

Higher (co)end calculus. There are other conceptual examples of coend calculus which have
not yet been interpreted in terms of directed equality: for instance, one should be able to express that
composition maps exist for all categories C : Cat, where this quantification can be expressed via a
suitable pseudo-end in Cat [52, 7.1]; similarly, the category of elements of a functor, reminiscent

of a 3-type, can be given as the pseudo-coend EI(F) = fC:C ¢/C x F(c), where ¢/C is the coslice
category and F(c) is seen as a discrete category [52, 4.2.2]. These examples could be captured by
considering the category of small categories Cat as a suitable universe of types [41].

Enrichment. We do not rely on specific properties of Set (viewed as the base of enrichment
of Cat), other than cartesian closedness to have propositional implication/conjunction and the
existence of (co)limits to express (co)ends. We conjecture that our analysis of dinaturals can be
developed in more generality by taking enriched categories (over a sufficiently structured base of
enrichment) as types, rather than simply categories (enriched over Set).

Implementation. We remark how an implementation of the metatheory of our type-theoretical
system in a proof assistant is non-trivial, since one has to push —°P down into connectives and ensure
that (X°P)°? = X everywhere in the syntax: in types, contexts, terms, predicates, propositional
contexts. This could be tackled in practice by using QITs [3] and the --rewriting feature of
Agda [21] to simplify op whenever necessary. Another solution would be to have —°P only at the
level of base types, and then derive —°P as a metatheoretical operation on full types; this has the
disadvantage that —°P is not a primitve type former that one can explicitly manipulate in the syntax.
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A Additional judgments for first-order dinatural directed type theory

The rules to formally capture the variance of variables in predicates is given in Figure 14, with the
accompanying definition of unused variables in terms in Figure 13.

We show in Figure 15 the full rules in the equational theory regarding cuts. In Figure 16 we
explicitly illustrate what a bidirectional rule in “adjoint-form” looks like, by explicitly listing the
two directions, the isomorphisms and the naturality conditions.

'sx:C x+#y

FBx:Aunusedint:C‘

I'sy:Cunusedinx:C I'>x:Aunusedin!: T
I'>x:Aunusedint: dom(f) I'sx:Aunusedint:C
I' > x:Aunusedin f(t) : cod(f) T 3x:A° unused int°P :C
I'sx:Aunusedins:C TI'>x:Aunusedint:D
I's>x:Aunusedin(s,t):CxD
I'sx:Aunusedinp:CxD T 3x:Aunusedinp:CxD

I'>x:Aunusedinm(p):C T 3x:Aunusedinm(p):D
I'>x:Aunusedins:[C,D] T >x:Aunusedint:C [x:Cri(x):D

I'sx:Aunusedins-t:D I' > x: Aunused inAx.t(x) : [C,D]

Fig. 13. Syntax of first-order dinatural directed type theory — syntactically unused variables in terms.

I'sx:Acoving

I'sx:AcovinP T>x:AcovinQ T°>3x:A®covinP T >x:AcovinQ

I'sx:AcovinPxQ I'sx:AcovinP = Q
ILy:C>x:Acoving ILy:C>x:Acoving

I'sx:AcovinT Tax:Acovin/y:C(p(y,y) FBX:Acovinfy:c(p@,y)
I'P T >x:A%° unusedins : C°? T° T >Xx:A% unusedint:C

I' > x:Acovin homg(s,t)

P, T 5 x: A’ unused ins : neg(P)°®®  T°P,T 5 x: A% unused int : pos(P)

I'>x:AcovinP(s|t)

A=A" ¢p=¢° T>3x:Acoving

I'sx:A coving’

Fax:Acontrain(p‘

I'°P 5 x : A° contra in ¢°?

I'>x:Acontraing

Fig. 14. Syntax of first-order dinatural directed type theory — syntactic conditions for covariant/contravariant
variables in predicates.
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[a:A°Pb: A x:

‘[F]Cbl—azﬂ:P‘

I unused in P and Q
®(a,b,x,x) ra  :P(ab)

(assoc-nat-din-nat)

r]
[z:A,x:T)k: P(z,2),0(z,2x,x) Fylk] : Q(z 2)
[a: AP, b:Ax:T]k:Q(ab),®b,axx)F k] : R(a,bX,x)
[z:Ax:T] @(z,z,%,x) b (BlyDlal = Blylal] : R(Z, 2%, x)

T unused in P, A unused in ®
[a:A]l k:P(a),®+ alk]:Q(a)
[a:A] r:Q(a),®+ B[r] : R(a)

- (cut-coherence)
[a:A] k:P(a),®F Bla]vtmat = Bla]cutdin . Q(a)

T unused in P
[z:Ax:T]k:P(z2),®(zzx,x)k:P(zz)

[a: A%, b:Ax:T] P(ab),®baxx)ra:Q(ab)

[a: AP b : A,

(cut-nat-id;)
[z:Ax:T] P(Z2),®(Zz7%x)+ alk] = a®’™%: Q(Z, 2)

T unused in Q
[z:A,x:T] ®Z,z,%x)Fa:Q(zz2)
:T] k:P(ab),®(b,a,xx)+k:P(ab)

ot

(cut-nat-id,)

[z:A,x:T] ®(z,z,%,x) F k[a] =a: Q(Z, z)

I unused in P

[a: AP, b:A,x:T]k:P(ab),®(ab,x,x)+Fk:P(ab)

[z :

[z:A,x:T] P(z,2),0(z,2,%,x) F a: Q(z,2)
[z:A,x:T] P(z,2),0(z,z,%,x) + alk] = a : Q(z, z)
T unused in Q
[a: AP b:Ax:T] ®(a,bx,x)Fa:Q(ab)
Ax:Tlk:0(z2),0(zzx,x) Fk:0Q(z2)

(cut-din-id;)

Fig. 15. Syntax of

t-din-id,
[Z DA X r] ‘I‘(E’ Z,)_C,X) F k[a] = aﬂ,br—»z . Q(E, Z) (Cu In-i )

first-order directed type theory — Equational rules for cuts: associativity for natural-

dinatural-natural cuts, coherence for cuts between naturals, left and right identities for cut.
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[x:CT]®Fa:P(x x) (end) [l ®Fra: [  P(Xx)

[[] @+ end(a) : [, P(x.x) [x:CT] ®Fend ' (a): P(%x)

(end™1)

\[r]m(x:ﬁ:P\

[x:C,T]®F a: P(x, x) [l ®ra: [ P(xx)
[x:CT]®+end !(end(a)) = a: P(x, x) [T] @+ end(end () = a: /x:C P(x, x)

[z:AT] D(z,2) - f:0(z,2)
[a:A%,b:Ax:CT]k:0Q(ab),®@b)ra:P(X xab)
(end-nat;)
[x:C,z:AT] ®(z,2) + end()[f] = end(x[f]) : /x:C P(x,x,z,2)
[a:A°P,b:AT] D(a,b) F f:Q(ab)
[x:C,z: AT k:0Q(z2),®(z2) +a:P(xx,22) ]
(end-diny)
[x:C,z:AT] ®(z,z) F end(a)[f] = end(a[f]) : fx:c P(x,x,2,2)
[%1:C,x5:C,a: A, b:A] P(x1,x2,a,b) + B : P'(x1, X2, a,b)
[x:C,z: Al ®(z,2) F a: P(x,x,%,2) )
(end-din,)

[z:A] ®(z,2) + endp(f)[end(a)] = end(f[a]) : ./x:C P'(X,x,z,2)
[%1:CP,x2:C,z:A] Q(x1,%2,2,2) F B : P/ (x1, %2, 2, 2)
[x:C,a: AP, b: Al ®(a,b) + a:Q(x,x,a,b)

end-nat,
[a:A°P,b: Al ®(a,b) + endp(f)[end(a)] = end(f[a]) : /x:c P'(x,x,a,b) ( )

Fig. 16. Syntax of first-order directed type theory — Explicit description of a rule in “adjoint-form”, e.g., for
ends: rules, isomorphisms, and naturality in ®, P for (end). Naturality in P uses functoriality in Figure 17.

[a:CPb:CT]k:P(ab)r alk]:P(ab)

[x:CT]p: /‘C P(%,x) + endp(a) := end(a[end ™! (p)])

=end(a)[end ' (p)] : /-c P(x,x)

Fig. 17. Functoriality of ends for naturals by precomposing with the counit of (end).
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1667 B Directed type theory, other derivations

1668 Example B.1 (Contractibility of singletons). Recall the derivation for existence of singletons:

1669

1670 y:C
1671 [] -+ end(coend ™' (k)[refl,]) : / / homc¢(x,y)
x:CoP

1672 y:C
1673 'We now show that singletons are actually contractible: assuming another element k : homc¢(x,y),
122 we show that it is equal to the the one given in the first derivation (after removing the universal
1o Quantifier). Note that the right-hand side must cut away the hypothesis k by precomposing with
1o;; the constant dinatural !. In the bottom of the derivation we use the fact that the isomorphisms for
L7 coends are natural with respect to the cut rules of our type theory. In the top of the derivation
oo We omit for simplicity an application of associativity of cuts and uniqueness of ! which is used to
Lesp  Yemove the application of J -1
1681 (refl)
1682 [z:C]«F coend™ (k)[refl,] = coend ™ (k)[refl,] : - -- ) )
1683 n - (!-unique)+(assoc-nat-din-nat)
16sa  [2:Clercoend™ (k)[refl;] = coend™" (k) [refl ]J['][refl;] : --- (J-eq)
1685 [x: C°,y:C] k : homc(x, y) + coend™ (k) = coend ™ (k) [refl, ][] : - -- )
1686 - s (*-unique)
Les7 - =coend” " (k)[refly][coend™ " ()] : --- (coend-natural)
1688 [x : C%,y : C] k : homc(x,y) + coend™*(s) = coend ™! (coend ™" (k) [refl][!]) : - - -
1689 (coend)

y:C y:C
1690 [x:COP] k: / home (x, y) + k = coend ™! (k) [refl, ][!] : / homc(x,y)
1691
1692 Example B.2 (Internal naturality for natural transformations). We show that naturality for natural

1693 transformations between terms, expressed as ends [52, 1.4.1], holds internally by directed equality
1694  elimination. Given terms C + F, G : D, we use the counit of (end) to extract the family of hom-sets.
1605 We first explicitly show the rules used to construct the two sides of a naturality square:

1696 [a:C°,b:C]f:homc(a,b),n: fxc homp F(X),G(x) 1 : /xc hom(F(x), G(x)) 41
1697 - - -
1698 [a:C% b:C,x:C]f:homc(ab),ny:..+end '(n): hom(F(xX),G(x)) i) end )
idx
1699 [a:C%,b:C]f:homc(a,b),n: ..+ A*(end *(n)) : hom(F(a),G(a))
1700 (cut-nat)

o1 La:CPb:C]f:home(ab),n:..F comp[A*(end_l(ry)),congG [f1] : hom(F(a),G(b))

1702 where A" is the reindexing functor which collapses a, x to a single variable a, and (cut-nat) is used
1703 to apply comp on cong for G. This composition can be done since both cong and comp have the
1704 correct naturality shape that allows for (cut-nat) to be applied.

1705 The other derivation is obtained similarly:

1706

1707 [a:C%,b:C]f:homc(ab)n: /x.C homp F(X),G(x) + 1 : /x.c hom(F(x), G(x)) !

1708 . . end™")
1709 [a:C% b:C,x:C]f:homc(ab),ny:..+end '(n) : hom(F(x),G(x)) (idx)

1710 [a:C%,b:C]f:homc(a,b),n: .. A*(end™ (n)) : hom(F(b), G(b))

1711 (cut-nat)
2 [a:C%,b:C]f:homc(a,b),n: ... - comp[congg[f],A*(end”'(n))] : hom(F(a), G(b))

1713 We show that the two maps constructed, corresponding to the two sides of a naturality square,
1714 are equal using directed equality elimination; let K := A*(end ™! (n)):

1715
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1716
2; [z:C] ..+ K = K : hom(F(Z), G(2))
— (J-comp)
1719 [z:C]... - complrefl;, K] = comp[K, refl.] : hom(F(z), G(z)) (J-comp)
1320 [z : C] ...  comp[congg[refl.], K] = comp[K, cong [refl,]] : hom(F(Z), G(z)) p(] )
1721 _eq

1722 [a:C°P,b:C] f:homc(a,b),... - comp[congp[f],K] = comp[K, cong;[f]] : hom(F(a), G(b))

1723 where the equations used follow by the computation rules for cong and left and right unitality of
1724 comp. Note that (J-eq) can be used since a, b appear precisely with the correct types that allow for
1725 (J]) to be applied to contract the equality.

1726 This naturality can then be used to prove a suitable internal Yoneda lemma for the hom of

1727 categories by following the standard argument, e.g., given in [50].
1728

1729 Example B.3 (Identity natural transformation). We show the existence of the identity natural
1730 transformation for terms, given a functor C - F : D:

1731 . — (refl)+(idx)

1732 [x: C]«++ F*(refly) : homp(F(x), F(x)) end)

1733 [1++end™" () : [ homp(F(¥),F(x))

1734

1735 Example B.4 (Composition of natural transformations). We show that natural transformations
173 between terms, expressed as an end [52, 1.4.1], can be composed. Take functors C + F,G, H : D;
1757 first, consider the following elementary derivations:

12: [11: /x:C homc (F(x), G(x)),r : /x:c homc(G(x),H(x)) + 1 : /x:c homc (F(x), G(x)) end-1)

a0 [x:Cl: [ homc(F(%),G(x)),r : [. . homc(G(¥), H(x)) - end™ () : homc (F(%), G(x))

1741

1742 [11: /x:C homc (F(x), G(x)),r : /x:C home (G(X),H(x)) + 1 : /x:C homc (F(x), G(x))
74 [x:C]I: fx:C homc (F(x), G(x)),r : fx:C homc (G (%), H(x)) F end™!(r) : homc (G (%), H(x))

1744

(end™1)

Then, we take the statement for transitivity of directed equality, and reindex a with F(a), b with
14 G(b), and ¢ with H(c):

1747 (])

1748 [a:D°,b:D,c:D] f:homp(ab), g: homD(E, ¢) + comp : homp(a,c)
1749 [a:C%,b:C,c:C] f:homp(F(a),G(b)), g: hom(G(B),H(c)) + comp’[f, g] : homp(F(a), H(c))

1750

1745

(idx)

Now we can perform the composition of this map with the entailments above, which can be done

1751
175, because comp is individually natural in a, b, and b, c. Composing [ into comp contracts a, b to the
1753 same variable z, while still allowing the other map to be later composed in the equality with z, c.
175,  Finally, we reintroduce the end quantifier.
1755

(cut-nat)
1756 [z:C%,¢c:C|L:..,r: .., g :hom(G(Z),H(c))  comp’[end~(I),g] : homp(F(z), H(c)) (cut-nat)

cut-na

1757 [w:Cll:...,r:...,- comp’[end”'(I),end™'(r)] : homp (F(w), H(w))
1758 (end)
1759 [11:..,r:...,+end(comp’[end*(]),end "} (r)]) : homp (F(w), H(w))

w:C
179" Associativity of the map above follows from associativity of comp as in the standard case.
1761
1762 Example B.5 (Directed equality in opposite categories). We do not ask that predicates [x : C,y :
1763 C°P] homcer (x, y) and [x : C,y : C°P] homc(y, x) are definitionally equal in the equational theory
1764
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(although this would arguably be a desirable choice), but we can prove by directed equality induction
that they are isomorphic:

—— (refl)
[z:C,T] @ + refl, : home (Z, z)

[x:C,y:CPT] f : homcor (x,y), @ F J(refl,)[f] : homc(y, x)

Rule (J) can be applied since x, y appear covariantly in the conclusion. The inverse direction is
identical:

— (refl)
[z:C,T] ® + refl, : homcor (z,7)

[x:C,y:CPT] f:home(y,x),®+ J(refl,)[f] : homcor (y, x)

In one direction, they compose (since they are both naturals) to the identity by directed equality
induction:

)

(J-comp)

[z:C,T] @+ J(refl,)[J(refl,)[refl,]] = J(refl,)[refl,] = refl, : homcor (2, Z) (-eq)
-eq

[x:C,y:CPT] f: homc(y,x), ® + J(refl,) [J(refl)[f]] = f : homcer (y, x)

The other direction is analogous.

C Other rules derivable from the adjoint formulation

The following series of examples captures natural deduction-style rules for coends, where coends
are on the right side of the turnstile.

Example C.1 (Elimination for coends). The following derivation captures an elimination rule for
coends, where [T, d:A] ®(d) propctx, Q(d) prop, [x:CP,y:C,d:A] P(x,y,d) prop, with variables
in A always being used naturally:

[T,z:C,d:A] P(z,2,d),2(y,y,d) + Q(d) .
(coend™")

[T,d:A] [*C PG 2d), 07y, d) F Q) (coend )+
) (end)

(cut-nat)

[[,d:A] &(d) + [“C P(%.x,d)

. T — (coend™1) . - T —
[d:A] f O(y,y.d) + / P(x,x,d) [d:A] P(Z, z, d),f O(y,y.d) + /y:r o.y.d

[d:4] [T o@y.d v [MOFy.d)
[T,d:A] @(d) + Q(d)

(coend)+(end 1)

Example C.2 (Introduction for coends with a term). The following derivation captures an intro-
duction rule for coends with a generic term A + F : C (not a diterm), for [T, d : A] ®(d) propctx,
[x:C,d:A] Q(x,d) prop:

(coend-unit)

[x:C.d: Al Q(x,d)  [7CQ(x,d) 0
1ax
[T,d: Al &(d) - Q(F(d),d)  [d:A] Q(F(d),d) - [ Q(x,d)
[T,d: A] &(d) + [*CQ(x,d)

In particular, we picked (coend-unit) with Q depending on just a single variable and reindexed
with F, which ignores the negative context. Note that variables in A are always used naturally.

Example C.3 (Introduction for coends with a dinatural variable). The following derivation cap-
tures an introduction rule for coends with a dinatural variable x, for [x : C°?’,y : C,I,d :
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A] ®(x,y,d) propctx, [x : CP,y : C,d : A] Q(x,y,d) prop:

(coend-unit)

[T,x:C%y:Cl®(x,0.d) F Q(x,y.d) [d:A] QG zd) F [*CQ(E2d)
[T &+ [* 0z 2d)

In particular, we picked (coend-unit) with Q depending naturally on x, y, z. Note that variables in
A are always used naturally.

(cut-din)

D (Co)end calculus, other derivations
We report here additional examples of derivations for (co)end calculus using our rules.

Example D.1 (Pointwise fomula for left Kan extensions). Dually to Example 6.3, we give a logical
proof that the functor Lang : [C, Set] — [D, Set] sending (co)presheaves to their left Kan extensions
along F : C — D computed via coends [52, 2.3.6] is left adjoint to precomposition (F;—) : [D, Set] —
[C, Set]. For any [x : C] P(x) prop, a functor/term C - F : D and a generic [y : D] ¢(y) prop:

[y : D] (LangP)(x) ==
:C —
S homc (F(X),y) X P(x) + ¢(y)

(coen
[x : Cy : D] homc (F(%),y) X P(x) F ¢(y) (exp)
[x: Cy: D] P(x) + homc(F(x),y) = ¢(y)
(end)
[x:C] P(x) + fy:D homp (F(x),y) = ¢(y)
(Yoneda)

[x : C] P(x) + ¢(F(x))

Example D.2 (Right rifts in profunctors). We give a logical proof that composition (on both sides)
in Prof has a right adjoint [52, 5.2.5 and Exercise 5.2]. This makes Prof a bicategory where right
extensions and right lifts exist. For simplicity we only treat precomposition, although postcompo-
sition is completely analogous. For any composable profunctors [x : C°P,y : A] P(x,y) prop,[x :
A%y : D] Q(x,y) prop and a generic [x : C°P,y : D] ¢(x,y) prop:

[x:C,z: D] (P;-)(Q)(x,2) =
S P y) x Q@ 2) + p(x,2)
[x:C%y:Az:D] P(x,y) X Q(y,2) + ¢(x,2)
[x:CPy:Az:D] O(y,2) F P(x,7) = ¢(x,2)
[y:Az:D] Q@2+ [ PET) = o(x2)
[y:A®,z:D] Q(y,2) - [ P(X.y) = ¢(x,2)
= Riftp(¢) (v, 2)

where the last (end) can be applied since x : C does not appear on the left.

(coend)

(exp)

(end)

(op)

Example D.3 (Composition of profunctors is associative). Using our approach relying on contextual
operations we easily show that composition of profunctors, defined via a coend [52], is associative
and essentially follows from associativity of products. For composable profunctors [x : A°P,y :
B] P(x,y) prop, [x : B°?,y : C] Q(x,y) prop, [x : C°P,y : D] R(x,y) prop, and a generic [x : AP,y :
D] ¢(x.y) prop:
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1863
1864 bB c:C - — —
e [a:Ad:D] ["®P(,b)x (/ 0(h,¢) X RS, d)) k0@ d)
1866 - - (coend)
1867 [a:Ab:B,d:D]P(ab)x (/C Q(b,c) X R(c, d)) F¢(a,d)
1868 — (coend)
1869 [a:Ab:B,c:C,d:D] P(ab) x (Q(b,c) XR(c,d)) + ¢(a,d)
1870 — (structural property)
1871 [a:Ab:B,c:C,d:D] (P(a,b) xQ(b,c)) XR(c,d) + ¢p(a,d)
coend)
1872 B _ — _
. [a:Ac:Cd:D] ([ P(@b)x Qb)) x REd) F p(ad)
1874 Py — (coend)
1575 l[a:Ad:D] [© (j B p@b) x 0(b, c)) X R(d) F ¢(@d)
jZZj THEOREM D.4 (DINATURALS AS AN END). The set of dinaturals Dinat(P, Q) := {P —> Q} between
L8 dipresheaves P,Q : C°P x C — Set can be characterized in terms of the following end [26, Thm. 1],

s Dinat(P,Q) = [ P(x,X) = Q(xX,x).

1880 Proor. We give a simple derivation that characterizes all the points (i.e., dinaturals from the
1881 point in the empty term context) of the end above using our syntax:

e Dinat(P, Q) := [x : C] P(%,x) F O(%, x)

1883 (exp)

1884 [x:C]eF P(x,%x) = Q(x,x)

1885 (end)
1886 [1-F [.c P(x,X) = QO(x,x)

1887 Since dinaturals generalize naturals, a similar derivation justifies the well-known description of
1388 natural transformations as ends shown in Section 1 for F, G : C — Set,

1889 Nat(F,G) = [ . F(¥) = G(x).
1890 *
O
1891
1892 E  Computation rule via ]!
893
1894 We spell out the proof of the computation rule for the definition of J~! given in Theorem 3.13.
1895 TueoreM E.1 (J~! & refl). Rule (refl) is logically equivalent to (J~); in particular, assuming

1896 naturality of J71, if one defines reflc := J~1(e) then the computation rule J(h)[reflc] = h holds in
1897 the equational theory.

1898
1500 ProoF. We start by spelling out naturality of J~! in P, which is assumed: explicitly, naturality
oy States that the following two derivations are equal in the equational theory for any « and f

1001 (simplifying the context as much as possible for readability):

1002 [a:C%,b:C]e:homec(ab),®(b,a)+ a: P(ab)

1903 [z2:C]l ®(Z,2) v J X (ale]) : P(Z 2) [z:C] k:P(a,b),®(a, 5) F Blk] : Q(a,b)
o 2:Clo(z,2) r fU @] : 0z 2)

1906 and

1997 [a:C,b:C]e:homc(ab),®(b,a)rFa:P(ab) [z:Clk:P(ab),®@b)r flk]:Q(ab)

izz [z:C] e:home(a,b),®(b,a) + fla] : P(Z2)

1910 [2:C]l ®(Z,2) - J7'(Bla]) : Q(Z,2)

1911
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ie, B[J Y (@)] = J~Y(B[a]). In our particular case we take P(a,b) := hom(a,b) and « := e the
projection with (var) and § := J(h), from which we obtain that J(k)[reflc] = J(h)[J ()] =
JY(J(h)[e]) = J71(J(h)) = h by the assumption that J~1(J(h)) = h and the fact that (var) is the
identity for cut. O

F Frobenius and Beck-Chevalley conditions for (co)ends

THEOREM F.1 (BECK-CHEVALLEY AND FROBENIUS CONDITION FOR (CO)ENDS). (Co)ends satisfy a
Beck-Chevalley condition, in the sense that for all F : C° — D there is a strict isomorphism

Jaoy 3 = (idae X P)5 [y
in the (large) functor category [[A°® x D°, Set] [D°, Set]], where
Sater JA L (A0 x Coset] — [C°, Set]

are the functors sending dipresheaves to their (co)end in A and F* : [D°, Set] — [C®, Set] is precom-
position with F°.
Moreover, a Frobenius condition for coends is satisfied, in the sense that there is an isomorphism

AlC], . . A C
S g (P x @) = o () x [
natural in® : A° X C°® — Set, P : C° — Set, where — X —:[C, Set] X [C, Set] — [C, Set] for any C
is the product of (di)presheaves.

Proor. Beck-Chevalley is immediate. For Frobenius, our logical rules can be used to apply
exactly the argument given in [43, 1.9.12(i)], detailed in Theorem F.2. )

THEOREM F.2 (FROBENIUS CONDITION FOR COENDS). ForanyI" : A° X C® — Set and a generic
K : C° — Set, the following series of derivations gives a logical proof of the Frobenius condition given
in Theorem F.1, which we prove by following exactly the argument given in [43, 1.9.12(i)] in the case of
fibrations with exponentials. In particular, we show that the Frobenius formulation of (co)ends follows
from the non-Frobenius one combined with polarized exponentials. Note that we use the same Yoneda
technique described in Remark 6.

(] [P x o x) - o
[x : AT] P,®(x,x) F ¢
[x :AT] @G, x) FP= ¢

(coend-without-frobenius)

(exp)

(coend-without-frobenius)

r] M eExrp=g

(exp)

1P, Moz kg

THEOREM F.3 ((coend-without-frobenius) = (coend)). The rule (coend) can be directly justified
using (coend-without-frobenius), as follows:

r] (/‘“A 0@, a)),<1> ko

(exp)

1] [“ 0@ a)F ®(x,5) = ¢
[y:C,T] Q(a,a) F ®(x,x) = ¢
[T1Q(a,a),®+¢

(coend-without-frobenius)

(exp)
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G Yoneda technique

We show how the Yoneda technique described in Remark 6 can be used to prove a derivation of
(co)end calculus. We show the case of Yoneda Example 6.1.

[a:C] ®(a) + fx:C hom¢ (a,x) = P(x)

(end)
[a:C,x:C] ®(a) + homc(a,x) = P(x)

[a:C,x:C] homc(a x) X ®(a) + P(x)
[z:C] ®(z) + P(2)
Explicitly, the two entailments witnessing the isomorphism are obtained by picking ® to be the
context with a single formula and the (var) case at the top of the derivation, i.e.,
(var)
[z:Clk:P(z)+k:P(2)
[a:C,x:C] k : P(a),homc(a,x) + J(k) : P(x)
[a:C,x:C] k: P(a) + exp(J(k)) : homc(a,X) = P(x)
[a:C] k : P(a) + end(exp(J(k))) : /x:C hom¢(a,x) = P(x)

xp)

)

(exp)
(end)

and
(var)

[a:C] k : /x:C homc(a,x) = P(x) + k : ./x:C homc(a,x) = P(x)
[a:C,x:C] k:---Fhomc(a,Xx) = P(x)
[a:C,x:C] k:--- ,homc(a, x) + P(x)
[z:C]k: /x:C homc(z,X) = P(x) + J~'(exp~!(end*(k))) : P(z)

These two entailments can clearly be composed since they are both natural transformations.
They compose to the identity in both directions by using the same approach when proving fully
faithfulness of the Yoneda embedding [50], i.e., using naturality of each rule in ® to make them
commute with cuts and then using the fact that all rules are invertible:

(end™1)

(exp™!)

-1

[a:C] k: P(a) + J ' (exp~(end ™' (k))) [k > end(exp(J(k)))]
= J ' (exp~*(end ™! (k)) [k = end(exp(J (k)))])
= J ' (exp~*(end ™! (k) [k > end(exp(J (K)))]))
= J ' (exp~*(end ™! (k[k — end(exp(J (K)))])))
= J ' (exp~*(end ™! (end(exp(J(k))))))
=J ' (exp~ ! (exp(J (K))))
=J7'(J(k)
=k :P(a)

Note that we are propagating the cut along the hypothesis k in context (this is only ambiguous
in the rule (exp) since there are two hypotheses, where we leave f : hom(a, b) untouched).
The other direction is obtained analogously.

H Composite in Example 3.8

Given a dinatural transformation

[z:Clk:P(z,2)Fa:Q(z2)

, Vol. 1, No. 1, Article . Publication date: October 2018.



2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058

42 Laretto, Loregian, Veltri

we illustrate how the composite
[a:Cb:C]f:homc(a,b)k: P(b,a) + substg [ (f, refly), [a[substp[(refly, £), k]]]] : O(a, b)

in Example 3.8 is indeed allowed by the cut rules of our type theory, i.e., that dinaturals compose.
The well-formedness of Example 3.7 follows similarly since it is a special case of the one below. We
construct one of the two sides of the equation, with the other one following similarly.

The key idea is that subst is essentially a natural transformation when saturated in the function
f (even partially). The subst of a predicate [a : C°P,b : C] Q(z,b) depending on two variables
corresponds to the following entailment:

[@’,b:C%,a,b" :C]f:homc(d’,a),g: homc(b,b'),k: Q(a, b) F substp[f,g,k] : P(a’,b")

After precomposing f with refl and renaming variables via Theorem 3.14 note that the resulting
map is natural in z, b after currying the equality g to the right.

[b,z:C%®,b": C] g : homc(b,b’), k : P(z,b) + substp[refl,, g,k] : P(z,b")

This map can be precomposed with a by picking b to be part of the variables of I' in the rule (cut-din).
The intuition for this, described in Section 5 for the semantics of cut, is that one can take the (co)end
over b and obtain the above family as natural in z and b’, without b appearing, which then can be
composed with « in the expression a[substp[(refly, f), k]]. The remaining part of the term is then
obtained by using (cut-nat) to compose with substg in an analogous way.
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