
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Di- is for Directed:
First-Order Directed Type Theory via Dinaturality

ANDREA LARETTO, FOSCO LOREGIAN, and NICCOLÒ VELTRI, TalTech, Estonia

We show how dinaturality plays a central role in the interpretation of directed type theory where types are

given by (1-)categories and directed equality by hom-functors. We introduce a first-order directed type theory

where types are semantically interpreted as categories, terms as functors, predicates as dipresheaves, and

proof-relevant entailments as dinatural transformation. This type theory is equipped with an elimination

principle for directed equality, motivated by dinaturality, which closely resembles the 𝐽 -rule used in Martin-

Löf type theory. This directed 𝐽 -rule comes with a simple syntactic restriction which recovers all theorems

about symmetric equality, except for symmetry. Dinaturality is used to prove properties about transitivity

(composition), congruence (functoriality), and transport (coYoneda) in exactly the same way as in Martin-Löf

type theory, and allows us to obtain an internal “naturality for free”. We then argue that the quantifiers of

directed type theory should be ends and coends, which dinaturality allows us to capture formally. Our type

theory provides a formal treatment to (co)end calculus and Yoneda reductions, which we use to give distinctly

logical proofs to the (co)Yoneda lemma, the adjointness property of Kan extensions via (co)ends, exponential

objects of presheaves, and the Fubini rule for quantifier exchange. Our main theorems are formalized in Agda.

CCS Concepts: • Theory of computation→ Type theory.

Additional Key Words and Phrases: directed type theory, coend calculus, dinaturality

ACM Reference Format:
Andrea Laretto, Fosco Loregian, and Niccolò Veltri. 2018. Di- is for Directed: First-Order Directed Type Theory

via Dinaturality. In Proceedings of Make sure to enter the correct conference title from your rights confirmation
email (Conference acronym ’XX). ACM, New York, NY, USA, 42 pages. https://doi.org/XXXXXXX.XXXXXXX

1 Introduction
Homotopy type theory [7, 78, 81] revolutionized the way we think about types. One of the funda-

mental insights that inspired this revolution was first given in a seminal paper by Hofmann and

Streicher [42], with a remarkably simple idea: rather than viewing types just as sets of inhabitants,
they give an interpretation of Martin-Löf type theory where types are taken to be groupoids, i.e.,
categories in which every morphism is an isomorphism. The inhabitants of a type become the

objects of a groupoid, and the morphisms in a groupoid represent the equalities between inhabitants,
of which there can be more than a unique one. The reason why morphisms need to be invertible is

because of the inherently symmetric nature of equality: given a proof of equality 𝑒 : 𝑥 = 𝑦, there is

always a proof of the equality 𝑒′ : 𝑦 = 𝑥 .

A natural question follows: why not categories, rather than groupoids? Can there be a type theory

where types are interpreted as categories, where morphisms need not be invertible? Such a system

should take the name of directed type theory [2, 4, 34, 51, 61, 84], where the directed aspect comes

precisely from this asymmetric interpretation of “equality”.

Authors’ Contact Information: Andrea Laretto; Fosco Loregian; Niccolò Veltri, TalTech, Estonia.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

Conference acronym ’XX, Woodstock, NY
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-XXXX-X/2018/06

https://doi.org/XXXXXXX.XXXXXXX

, Vol. 1, No. 1, Article . Publication date: October 2018.

https://orcid.org/0000-0002-6413-5794
https://orcid.org/0000-0003-3052-465X
https://orcid.org/0000-0002-7230-3436
https://doi.org/XXXXXXX.XXXXXXX
https://orcid.org/0000-0002-6413-5794
https://orcid.org/0000-0003-3052-465X
https://orcid.org/0000-0002-7230-3436
https://doi.org/XXXXXXX.XXXXXXX

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

2 Laretto, Loregian, Veltri

Types 𝐶 Categories C
Functions 𝑓 : 𝐶 → 𝐷 Functors 𝐹 : C → D

Relations 𝑅 : 𝐶 × 𝐷 → Bool Profunctors 𝑃 : Cop × D → Set
Predicates 𝑃 : 𝐶 → Bool Presheaves 𝑃 : Cop → Set

Points of a type Objects of a category

Equalities 𝑒 : 𝑎 =𝐶 𝑏 Morphisms 𝑒 : homC (𝑎, 𝑏)
Equality types =𝐶 : 𝐶 ×𝐶 → Type Hom functors homC : Cop × C → Set

Universal quantifiers Ends

∫
𝑥 :C

𝑃 (𝑥, 𝑥)
Existential quantifiers Coends

∫ 𝑥 :C
𝑃 (𝑥, 𝑥)

Fig. 1. The directed generalization of logical concepts.

Directed type theory has been a hot topic of type-theoretical research for the past decade [4,

19, 35, 59, 60, 62, 64, 83]. This quest for the directed generalization has a specific application in

mind: in the same way that HoTT can be used to study homotopy theory in a type-theoretical way,

directed type theory promises the study of category theory in a type-theoretical way.

Category theory has proven to be a fundamental topic in the semantics of programming lan-

guages [23, 46, 57, 76], where it shines as the common framework that ties together logic, proofs,

and types in the Curry-Howard-Lambek correspondence [17, 37, 43]. The unifying role of category

theory stretches even beyond computer science, in algebraic topology [53], universal algebra [47],

quantum mechanics [39], and physics [8].

This compelling series of applications comes at a cost: category theory can be overwhelming

for newcomers, with overly abstract results and seemingly complicated ideas (e.g., the Yoneda

lemma [15], Kan extensions [40]). Even worse, these abstractions come baggaged with a plethora

of naturality and functoriality side conditions that need to be checked [60].

Directed type theory promises to reinterpret category theory itself under a logical perspective,

taking the Curry-Howard-Lambek correspondence to the next level: what once were abstract yet

overarching results in category theory become simple type-theoretical statements, which one can

then prove in a system that takes care of naturality and functoriality bureaucracy for free.
One of the ultimate goals of directed type theory is to capture this multitude of directed phe-

nomena under a single, unified type-theoretical framework: since morphisms of a category can

be viewed just as (directed) equalities, one can use directed type theory as a tool to represent and

reason about programs, processes, rewrites, transitions [1], concurrency via directed spaces [28, 61],

types and terms of type theories (e.g., via “directed higher inductive types” [44, 83]), all internally
to the same type theory.

What is currently missing from the current conception of directed type theory is a direct

description of what such a system should look like in the elementary case of 1-categories. Taking

inspiration from the simplicity of the groupoid model in Hofmann and Streicher’s approach,

We introduce a first-order directed type theory with simple, straightforward semantics in 1-categories:
proving theorems about directed equality follows the same exact steps of Martin-Löf type theory,

and non-trivial theorems in category theory can be captured in a concise and distinctly logical way.

How should type-theoretical ideas change under the view of directed type theory? Category

theorists have long known what the most natural path for the directed generalization should

be [49]: functions between types should be functors (i.e., functions which respect directed equalities),
relations are naturally interpreted as profunctors [16], and (co)presheaves can be thought of as

generalized predicates [9]. We summarize the main ideas of the directed generalization in Figure 1.

, Vol. 1, No. 1, Article . Publication date: October 2018.

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Di- is for Directed: First-Order Directed Type Theory via Dinaturality 3

Under this directed lens, familiar type-theoretical statements of equality become elementary

definitions in category theory: we give a few simple examples in Figure 2 in the canonical setting

of first-order logic, which is closely connected to the formal system later explored in this paper.

𝑥 = 𝑦 ∧ 𝑦 = 𝑧 ⊢ 𝑥 = 𝑧

homC (𝑥,𝑦) × homC (𝑦, 𝑧) → homC (𝑥, 𝑧)
Transitivity of equality

Composition in a category

𝑥 = 𝑦 ⊢ 𝑓 (𝑥) = 𝑓 (𝑦)
homC (𝑥,𝑦) → homD (𝐹 (𝑥), 𝐹 (𝑦))

Congruence / functions respect equality

Action on morphisms of functors

𝑥 = 𝑦 ∧ 𝑃 (𝑥) ⊢ 𝑃 (𝑦)
homC (𝑥,𝑦) × 𝑃 (𝑥) → 𝑃 (𝑦)

Substitution / transport along equality

Action on morphisms of copresheaves

Fig. 2. Elementary statements for symmetric equality and their directed counterparts.

However, directed type theory is not so straightforward. We list some fundamental challenges:

Challenge 1. How to change rules for equality. One can use their favorite proof assistant or

logical system to prove the theorems in Figure 2: in the case of symmetric equality, typically this is

done using an introduction rule (refl=) and an elimination rule (𝐽=) called 𝐽 -rule [41], shown in

Figure 3 again for first-order logic. The introduction rule simply states that equality is reflexive.

The elimination rule 𝐽 intuitively says that, if we assume an equality 𝑒 : 𝑎 = 𝑏 and we want to

prove a predicate 𝑃 (𝑎, 𝑏) for some variables 𝑎, 𝑏 : 𝐶 , it is sufficient to consider the case “on the

diagonal” 𝑃 (𝑥, 𝑥), where 𝑎 and 𝑏 are identified with the same 𝑥 . These two rules allow all of the

above statements about symmetric equality to be derived almost “for free” just by contracting

away equalities. However, (𝐽=) allows for symmetry of equality to be derived, simply by picking

𝑃 (𝑎, 𝑏) := 𝑏 = 𝑎. This is incompatible with the directed case, as not every morphism has an inverse.

The fundamental question then becomes: how can we tweak the rules of equality to disallow
symmetry, and yet be able to derive “for free” the above theorems also in the case of directed equality?

(refl=)
[𝑥 : 𝐶] Φ ⊢ refl : 𝑥 = 𝑥

[𝑥 : 𝐶] Φ(𝑥, 𝑥) ⊢ ℎ : 𝑃 (𝑥, 𝑥)
(𝐽=)

[𝑎 : 𝐶,𝑏 : 𝐶] 𝑎 = 𝑏, Φ(𝑎, 𝑏) ⊢ 𝐽 (ℎ) : 𝑃 (𝑎, 𝑏)

Fig. 3. Introduction and elimination rules for symmetric equality in first-order logic.

(refl)
[𝑥 : C] Φ ⊢ refl : homC (𝑥, 𝑥)

[𝑥 : C] Φ(𝑥, 𝑥) ⊢ ℎ : 𝑃 (𝑥, 𝑥)
(𝐽)

[𝑎 : Cop, 𝑏 : C] hom(𝑎, 𝑏), Φ(𝑎,𝑏) ⊢ 𝐽 (ℎ) : 𝑃 (𝑎, 𝑏)

Fig. 4. Introduction and elimination rules for directed equality in first-order dinatural directed type theory.

Challenge 2. Polarity problems. Another issue arises in the first example of Figure 2: since

types are now categories, with each type C there should be a type Cop
(the opposite category) of

the opposite “polarity”, where the inhabitants are the same but all directed equalities are reversed.

The type of directed equalities homC (𝑥,𝑦) then is asymmetric, and receives a “negative” argument

𝑥 :Cop
and a “positive” one 𝑦 :C, and provides the set (i.e., a category with only trivial directed

equalities) of morphisms between objects 𝑥,𝑦 of C.
The problem is that in the statement for transitivity of directed equality (i.e. composition)

the variable 𝑦 appears both on the right side of homC (𝑥,𝑦), with type C, and at the same time

on the left side of homC (𝑦, 𝑧), with seemingly different type Cop
! The same problem arises in

, Vol. 1, No. 1, Article . Publication date: October 2018.

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

4 Laretto, Loregian, Veltri

(refl), since 𝑥 is used on both sides of hom, and in (𝐽) because in 𝑃 (𝑥, 𝑥) the same 𝑥 needs to

be used with both polarities. One solution first considered by North [61] and later revisited by

Altenkirch and Neumann [4] is to revert back to the undirected case of groupoids. This solution
may feel unsatisfactory, since one does not intuitively expect groupoids to appear in the semantics

of a type theory where types are categories. How do we solve these polarity problems without having
to resort to groupoids?

Challenge 3. Directed quantifiers. Another fundamental yet unexplored question is what the
quantifiers of directed type theory should be in the 1-categorical case. Because of the above polarity
issues, this is not a trivial question: should the variable 𝑦 in the statement of transitivity be bound

as a variable of type 𝑦 : C or 𝑦 : Cop
? A natural expectation is that quantifiers should be able to

bind both occurrences of 𝑦 at once.

This paper proposes a simple solution that addresses
all of the above challenges for directed type theory: dinaturality [26].

The intuition behind dinaturality and dinatural transformations is that the same variable is

allowed to appear both positively and negatively at the same time, irrespectively of polarity.

Not only do we deal with the variance problems without ever having to mention groupoids, but

dinaturality also tells us what a directed 𝐽 rule should look like, which we illustrate in Figure 4 next

to the symmetric case. Curiously, this rule is reminiscent of the elimination rule for equality of

standard Martin-Löf type theory, but it comes equipped with a precise syntactic restriction that

does not allow symmetry of directed equality to be derived.

What about quantifiers? Dinaturality comes again to the rescue, hinting at a possible answer:

intimately connected to the notion of dinatural transformation are the notions of end and coend [52].

Ends and coends, respectively denoted as

∫
𝑥 :C

𝑃 (𝑥, 𝑥) and
∫ 𝑥 :C

𝑃 (𝑥, 𝑥) for some functor 𝑃 : Cop ×
C → Set, are to be thought of as a sort of universal and existential quantifiers on 𝑃 , respectively. Just
like a quantifier, the integral sign of (co)ends binds positive and negative occurrences of variables,

indicated as 𝑥 : C and 𝑥 : Cop
.

The main application of (co)ends is that they allow non-trivial statements in category theory to

be formulated in a concise way [52]: for example, one can use ends to characterize the set of natural

transformations as the end Nat(𝐹,𝐺) �
∫
𝑥 :C

homD (𝐹 (𝑥),𝐺 (𝑥)); note the resemblance between

this end and the universal quantification used in the usual definition of natural transformation.

With this, we can rephrase the well-known Yoneda lemma [50] as a simple isomorphism, shown in

Figure 5a next to its logical “decategorified” interpretation. A similar statement holds for the case of

existential quantifiers and coends, shown in Figure 5b, which often takes the slogan of “presheaves

are colimits of representables” [50] or “coYoneda lemma” [20, 52].

(a)
𝑃 (𝑎) �

∫
𝑥 :C homC (𝑎, 𝑥) ⇒ 𝑃 (𝑥)

𝑃 (𝑎) ⇔ ∀(𝑥 : 𝐶) . 𝑎 =𝐶 𝑥 ⇒ 𝑃 (𝑥)
(b)

𝑃 (𝑎) �
∫ 𝑥 :C

homC (𝑥, 𝑎) × 𝑃 (𝑥)

𝑃 (𝑎) ⇔ ∃(𝑥 : 𝐶). 𝑥 =𝐶 𝑎 ∧ 𝑃 (𝑥)

Fig. 5. Yoneda and coYoneda lemma using (co)ends and their corresponding logical statements.

The first-order formula behind the (co)Yoneda lemma can be proven using any formal system:

our directed type theory is the first elementary treatment of a formal system for the directed case,

where one can modularly use rules for quantifiers and equality as done in logic, e.g., with suitable

introduction/elimination rules specific to directed equality and (co)ends. To give a taste of how

closely our approach follows that of a standard logical proof, we show in Figure 6 a proof of the

Yoneda lemma in our type theory next to its “decategorified” proof in first-order logic.

, Vol. 1, No. 1, Article . Publication date: October 2018.

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

Di- is for Directed: First-Order Directed Type Theory via Dinaturality 5

[𝑎 :𝐶] Φ(𝑎) ⊢ ∀(𝑥 : 𝐶). 𝑎 =𝐶 𝑥 ⇒ 𝑃 (𝑥)
(∀)

[𝑎 :𝐶, 𝑥 :𝐶] Φ(𝑎) ⊢ 𝑎 =𝐶 𝑥 ⇒ 𝑃 (𝑥)
(⇒)

[𝑎 :𝐶, 𝑥 :𝐶] 𝑎 =𝐶 𝑥 ∧ Φ(𝑎) ⊢ 𝑃 (𝑥)
(=)

[𝑧 : 𝐶] Φ(𝑧) ⊢ 𝑃 (𝑧)

[𝑎 :C] Φ(𝑎) ⊢
∫
𝑥 :C

homC (𝑎, 𝑥) ⇒ 𝑃 (𝑥)
(end)

[𝑎 :C, 𝑥 :C] Φ(𝑎) ⊢ homC (𝑎, 𝑥) ⇒ 𝑃 (𝑥)
(exp)

[𝑎 :C, 𝑥 :C] homC (𝑎, 𝑥) × Φ(𝑎) ⊢ 𝑃 (𝑥)
(𝐽)

[𝑧 : C] Φ(𝑧) ⊢ 𝑃 (𝑧)

Fig. 6. A proof of the Yoneda lemma in first-order logic, and its proof in dinatural directed type theory.

(Co)end calculus. It is common knowledge among category theorists that there is a formal aspect

to the manipulation of ends and coends, outlined in [52], that allows such non-trivial theorems to

be proven using simple “mechanical” rules. This “(co)end calculus” has proven to be particularly

useful in theoretical computer science, for example in the context of profunctor optics [15, 20] and

their string diagrams [14, 74], strong monads and functional programming [5, 6, 40, 80], quantum

circuits [38], and logic [31, 68, 70]. Our work gives a logical interpretation to (co)end calculus by

reconceptualizing it just as a first-order instance of directed type theory, which is what motivates

our focus on a non-dependent presentation of directed type theory.

Dinaturality. Dinaturality is not a novel concept: dinatural transformations are a generalization

of natural transformations for functors 𝐹,𝐺 : Cop × C → D with mixed-variances [26].

Serendipitously, the “di” in dinatural stands for diagonal: a dinatural is a family of maps 𝛼𝑥 :

𝐹 (𝑥, 𝑥) → 𝐺 (𝑥, 𝑥) which is required to be given only on the diagonal of 𝐹,𝐺 by equating the

contravariant and covariant variables with the same value 𝑥 : C. Such family of maps is required to

satisfy a certain equational property, which generalizes the usual square of natural transformations.

Famously, however, dinatural transformations do not always compose: a well-known sufficient

condition for the composability of dinaturals is the absence of loops in a suitably associated

graph [27, 55]. This loop-freeness similarly arises in linear logic with the Danos-Regnier criterion

[11–13, 36], and more in general in logic where composition corresponds to cut elimination [32, 66].

There is a particularly deep connection between dinaturality and parametricity in programming

languages [67, 69, 72, 82] and realizable models for System F [10, 29] where all dinaturals compose.

Dinaturality has remained somewhat of an understudied subject, partly because this lack of general

compositionality has proven to be particularly hard to explain in full generality [75]: an in-depth

review on dinaturality and its importance for computer science can be found in [75], [76, Sec. 3].

1.1 Contribution
In this work, we connect for the first time dinatural transformations to directed type theory, showing

how they turn out to be the key technical notion needed to capture directed type theory in an

elementary and straightforward way.

Our general approach to directed type theory is to take the simplicity of the groupoid model of

Hofmann and Streicher [42] and generalize it to the directed case with a first-order (yet expressive)

system aimed at capturing two specific aspects of directed type theory: first, the ability to construct

and prove properties about theorems of directed equality by following precisely the same steps as

in Martin-Löf type theory; second, the ability to exploit the power of (co)ends-as-quantifiers [52]

to give simple and concise logical proofs of well-known theorems in category theory.

We summarize the main contributions and technical aspects of this paper:

(1) Setting. We introduce a first-order (non-dependent) directed type theory where types are

semantically interpreted as (small) 1-categories, terms as functors, predicates as dipresheaves

(i.e. functors Cop × C → Set), directed equality predicates as hom-functors, and proof-relevant

entailments as dinatural transformations which are not required to compose in the usual sense.

, Vol. 1, No. 1, Article . Publication date: October 2018.

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

6 Laretto, Loregian, Veltri

(2) First-order type theory. Our directed type theory builds on the well-known canonical setting of

first-order logic, with judgments structured in a similar way [43, 4.1]: we have simply-typed

types and terms, on which we build a proof-relevant logic with predicates, entailments, and

equality of entailments. This last aspect is typically absent in usual accounts of first-order logic,

but it is crucial in our presentation because it is precisely the point in which we use dinaturality.

Our system is a type theory in the sense of Jacobs [43, p. 9, (iii)]: proofs have an explicit

computational content, e.g., the proof of transitivity of directed equality is a bona-fide family of

functions that can be used to compose equality witnesses (i.e., morphisms) in the type theory.

(3) Directed equality elimination. In our 1-categorical setting, the rules for directed equality are

straightforward: the directed equality introduction rule is essentially the same as the usual refl,
which we validate using identities in hom-sets. We identify a directed equality elimination rule

which is again syntactically reminiscent of the 𝐽 -rule, but equipped with a syntactic restriction

that does not allow for symmetry to be derived. This syntactic restriction is not ad-hoc, but it is

justified by a precise semantic fact: the connection between dinaturality and ordinary naturality.

In short, the syntactic requirement to contract a directed equality in context homC (𝑥,𝑦) for
𝑥 : Cop, 𝑦 : C is that both 𝑥 and 𝑦 must appear only covariantly (i.e., with the “correct polarity”)

in the conclusion and only contravariantly (i.e., with the “wrong polarity”) in the assumptions

in context. The non-derivability of symmetry, aside from the syntactic restriction of 𝐽 , follows

by soundness and the existence of a countermodel.

(4) Directed theorems. The rules for directed equality allow us to recover in Section 3 the same

type-theoretic definitions about symmetric equality derivable in standard Martin-Löf type

theory, except for symmetry: e.g., transitivity of directed equality (composition in a category),

congruences of terms along directed equalities (the action of a functor on morphisms), transport

along directed equalities (i.e., the coYoneda lemma).

(5) Directed properties. In our type theory one can also prove properties of these maps using a

dependent version of directed 𝐽 specific to the judgment of equality of entailments: for example,

one can show that the composition of directed equalities is automatically associative and unital

on both sides (one of the two sides is definitionally unital on the equality that is being contracted).

The semantic notion of dinaturality is not used to construct such maps (functoriality suffices),

but to validate this dependent directed 𝐽 rule. With this rule one can internally prove that

functoriality and naturality follow “for free”, again, by a simple directed equality contraction.

(6) Polarity. Our type theory is equipped with a precise notion of polarity and variance which

is used to implement the syntactic restriction behind the 𝐽 rule. Even in our non-dependent

case the treatment of variables is non-trivial, since dinaturality requires a precise definition of

variance/polarity that differs from the approaches described in other works [4, 34, 61, 63].

(7) Category theory, logically. Our type theory allows us to give direct, concise, and distinctly logical
proofs of well-known (yet non-trivial) theorems in category theory by using hom as a directed

equality: e.g., the (co)Yoneda lemma, Kan extensions computed via (co)ends are adjoint to

precomposition, presheaves form a closed category, hom-functors preserve (co)limits, and the

Fubini rules; each of these follows by modularly using the logical properties of each connective.

(8) (Co)end calculus. The approach used to prove these theorems is to combine the perspective of

hom as directed equalitywith the ideas of “(co)end calculus” [52], viewing (co)ends as the directed
quantifiers of directed type theory. (Co)end calculus as treated in [52] uses various semantic

properties of (co)ends, which are however selected ad-hoc and not modularly organized in a

precise set of rules: our type theory gives a formal treatment to these techniques, approaching

, Vol. 1, No. 1, Article . Publication date: October 2018.

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

Di- is for Directed: First-Order Directed Type Theory via Dinaturality 7

proofs in a different and more logical fashion. The choice of a first-order (hence non-dependent)

type theory is to capture (co)end calculus, which is typically first-order in practical applications.

(9) Yoneda technique. Our proofs are logical, yet mirror the way that (co)end calculus is used in

practice (e.g., [15, 40, 74]), i.e., via a “Yoneda-like” series of natural isomorphisms of sets: to

prove that two objects 𝐴, 𝐵 :C are isomorphic, one assumes a generic object Φ and then applies

a series of isomorphisms of sets natural in Φ to establish that C(Φ, 𝐴) � C(Φ, 𝐵), from which

𝐴 � 𝐵 follows by the fully faithfulness of the Yoneda embedding [15, 50]. The same technique

can be used to show adjunctions, and that functors are naturally isomorphic.

(10) Adjoint-form rules. In typical syntactic presentations of type theory, rules for connectives are

formulated to make cut admissible [41, 77]. In our case, we cannot have in the semantics that

all entailments (i.e. dinaturals) compose, and therefore our rules must be stated in such a

way that cut is not admissible. In his seminal paper [48], Lawvere introduced the categorical

understanding of logic by viewing quantifiers/connectives as adjoints: we formulate (some of)

the rules of our type theory with dinaturals precisely in Lawvere’s “adjoint-form” (e.g. [43,

4.1.7, 4.1.8]), i.e., as natural bijections between entailments. In standard accounts of logic this

adjoint-form is equivalent to the usual intro/elim. rules for connectives, but only in the presence

of cut; the key observation is that, despite the absence of a general cut rule, the rules for

quantifiers/connectives in adjoint-form can be validated in our semantics with dinaturals.

(11) (Co)ends-as-quantifiers. The rules for ends and coends are reminiscent of the quantifiers-as-

adjoints paradigm by Lawvere [48], which we captured as “right and left adjoint” operations

to weakening [43, 1.9.1]. This adjointness relation should be only interpreted suggestively,

since (co)ends are functorial operations for naturals but in general not dinaturals [52, 1.1.7].

Our approach has the advantage that several properties of quantifiers, e.g., that they can be

exchanged and permuted, follow automatically from certain structural properties of contexts.
For example, in first-order logic the formulas ∀𝑥 .∀𝑦.𝑃 ⇔ ∀𝑦.∀𝑥 .𝑃 ⇔ ∀(𝑥,𝑦).𝑃 are logically

equivalent for any predicate 𝑃 : this is indeed also verified for ends (and coends with existentials),

and takes the name of “Fubini rule” [53, IX.8], [52, 1.3.1], which we prove in Example 6.4. More

details on (co)ends and their calculus can be found in [53, IX.5-6], [52, Ch. 1].

(12) Dinaturality. Dinatural transformations do not compose in general [75]: this lack of general

composition turns out not to be a problem in practice, since they do compose in all examples of

interest. In such cases, dinaturals compose essentially because they compose with other natural
transformations [26], and we capture this in our system by providing two restricted cut rules.

Because of the lack of general compositionality, we do not consider a categorical semantics of our

type theory using standard categorical models, e.g., fibrations [43] or categories with families [18],

since they all ask for full composition, which cannot be guaranteed in our semantics. Hence, our

approach is to simply consider the main rules described in Figure 11 (which have restricted rules

for composition of entailments) and prove soundness w.r.t. the category model with dinaturals.

We formalize the soundness theorems given in this paper about dinaturality using the Agda proof

assistant and the agda-categories library. Whenever present, the symbol () next to theorems

links to the formal proof, for which we report here just the core idea. The full formalization is

accessible at https://github.com/iwilare/dinaturality.

1.2 Related work
Directed type theory has been approached in several (mutually incompatible) ways, with different

methodological choices regarding semantics and rules for directed equality, but without ever

investigating the connection to dinaturality.

, Vol. 1, No. 1, Article . Publication date: October 2018.

https://github.com/agda/agda-categories
https://github.com/iwilare/dinaturality/blob/main/
https://github.com/iwilare/dinaturality

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

8 Laretto, Loregian, Veltri

Directed type theory with groupoids. North [61], Altenrkirch and Neumann [4] describe a

dependent directed type theory with semantics in the category of (small) categories Cat, but using
groupoidal structure to deal with the problem of variance in both introduction and elimination

rules for directed equality. This line of research has been recently expanded in [19, 62] by extending

judgments with variance annotations.

We focus on non-dependent semantics, and avoid groupoids by tackling the variance issue

with dinatural transformations; using dinaturality and (co)ends-as-quantifiers allow us to capture

naturality for free and characterize natural transformations inside of the type theory.

Directed type theory, judgmental models. Another approach to modeling directed equality is

at the judgmental level. This line of research started with Licata and Harper [51] who introduced a

directed type theory with a model in Cat. Since directed equality is treated judgmentally, there

are no rules governing its behavior in terms of elimination and introduction principles, although

variances are similarly used in context as in our approach. Ahrens et al. [2] similarly identify a

type theory with judgmental directed equalities and semantics in comprehension bicategories, and

extensively compare previous works on both judgmental and propositional directed type theories.

Logics for category theory. New and Licata [60] give a sound and complete presentation for

the internal language of (hyperdoctrines of) certain virtual equipments. These models capture

enriched, internal, and fibered categories, and have an intrinsically directed flavor. In these contexts,

the type theory can give synthetic proofs of Fubini, Yoneda, and Kan extensions as adjoints. This

generality however comes at the cost of a non-standard syntactic structure of the logic, especially

when compared to standard Martin-Löf type theory. Directed equality elimination takes the shape

of the (horizontal) identity laws axiomatized in virtual equipments [24], which in the Prof model

is essentially the coYoneda lemma. Their quantifiers are given by tensors and (left/right) internal

homs, which in Prof correspond to certain restricted (co)ends which always come combined with

the tensors and internal homs of Set.
Our work is similar in spirit in that we provide a formal setting for proving category theoretical

theorems using logical methods; we only focus on the elementary 1-categorical model of categories

and do not yet capture enriched and internal settings. However, we treat (co)ends as quantifiers

directly, viewing them as operations which act on the variables of the context, without the need for

them to include any conjunction or implication. Our rules for directed equality are more direct and

reminiscent of standard Martin-Löf type theory, and specifically focus on the semantic justification

of dinaturality. Since we consider less general models, our contexts do not have any linear nor

ordered restriction and the same variable can appear multiple times both in equalities and contexts:

for example, this allows us to write down the statement of symmetry (without being able to prove

it), and to consider profunctors of arbitrary variables, as typically needed in (co)end calculus.

Geometric models of directed type theory. Riehl and Shulman [73] introduce a simplicial type

theory for synthetic (∞, 1)-categories. A directed interval type is axiomatized in a style reminiscent

of cubical type theory [22], which allows a form of (dependent) Yoneda lemma to be derived

using such identity type. This type theory has been implemented in practice in the Rzk proof

assistant [45]. On this line of research, Weaver and Licata [84] present a bicubical type theory with

a directed interval and investigate a directed analog of the univalence axiom; the same objectives

were recently advanced in Gratzer et al. [34, 35] with triangulated type theory and modalities.

In comparison with the above works, we do not explore the geometrical interpretation of

directedness and focus on “algebraic” 1-categorical semantics; moreover, our treatment of directed

equality is done intrinsically with elimination rules as in Martin-Löf type theory rather than with

synthetic intervals, with semantics directly provided by hom-functors.

Coend calculus, formally. Caccamo and Winskel [25] give a formal system in which one can

work with coends and establish non-trivial theorems with a few syntactical rules. The flavor is

, Vol. 1, No. 1, Article . Publication date: October 2018.

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

Di- is for Directed: First-Order Directed Type Theory via Dinaturality 9

explicitly that of an axiomatic system, and does not take inspiration from type-theoretic rules: for

instance, presheaves are postulated to be equivalent under the swapping of quantifiers (Fubini), so

this principle is not derived from structural rules as typically done in a logical presentation.

1.3 Structure of the paper
We start in Section 2 by describing syntax and judgmental structure of the type theory, and give

examples of directed type theory in Section 3. We recall notions about dinaturals in Section 4,

which we then use for the semantics in Section 5. We then apply our type theory to give logical

proofs of theorems in category theory in Section 6, concluding in Section 7 with future works.

2 Syntax
We introduce the main syntactic judgments of our proof-relevant first-order directed type theory,

for which we describe the main ideas and notation in Sections 2.1 and 2.2.

Our type theory is structured in a similar way to first-order logic [43, 4.1], with judgments for

types and terms (i.e., sorts and function symbols), and predicates indexed by a term context.

We will omit several uninteresting equality judgments for contexts, terms, propositional contexts,

as well as usual congruence and equivalence rules. We list here the main judgments of our type

theory alongside a brief description of their semantics to aid intuition, with details in Section 5.

Figure 7:


• C type types C,D are interpreted in the semantics as small categories. Types can

have −op
, and include the terminal ⊤, product C×D, and functor categories [C,D].

• C = D judgmental equality of types, interpreted as isomorphisms of categories;

we use this to simplify (Cop)op = C and propagate the op inside types.

Figure 8:



• Γ ctx contexts Γ,Δ are finite lists of categories, interpreted as products in Cats;
• Γ ∋ 𝑥 : C variable in context, which captures the de Bruijn indices of variables

in context Γ; for us variable names are irrelevant, and we always identify variables

with these judgments. Semantically, these are the projections out of JΓK.
• Γ ⊢ 𝐹 : C terms 𝐹,𝐺 as functors JΓK → JCK, which are similar to terms in STLC;

Figure 9:


• [Γ] 𝑃 prop predicates 𝑃,𝑄 as dipresheaves, i.e., functors J𝑃K :JΓKop × JΓK→Set;

• [Γ] Φ propctx propositional contexts Φ,Φ′
are finite lists of predicates, which

we interpret via the pointwise product of dipresheaves in Set;

Figure 11:


• [Γ] Φ ⊢ 𝛼 : 𝑃 entailments 𝛼, 𝛽,𝛾 are interpreted semantically as dinatural trans-

formations JΦK qq−→ J𝑃K; we axiomatize composition/cut only with natural trans-
formations, not requiring general composition;

• [Γ] Φ ⊢ 𝛼 = 𝛽 : 𝑃 equality of entailments, i.e. equality of dinaturals in Set.

For predicates we consider the following logical connectives, which we denote syntactically with

the same symbol later used in the semantics:

• conjunction −×−, interpreted as the pointwise product of dipresheaves in Set;
• polarized implication −⇒−, by postcomposing dipresheaves with homSet : Setop×Set → Set;
• propositional directed equality homC is interpreted by hom-functors : Cop × C → Set;
• universal and existential quantifiers

∫
𝑥 :C

𝑃 (𝑥, 𝑥),
∫ 𝑥 :C

𝑃 (𝑥, 𝑥) are given by ends and coends.
The judgments for types, terms, propositions and entailments are given in Figures 7 to 9 and 11.

Our directed type theory is equipped with an equational theory for entailments, which we

describe the key features of in Section 2.2 without spelling it out in detail. The most important

cases are given in Figure 11 for directed equality, Figure 15 for cuts, Figure 16 for adjoint rules.

, Vol. 1, No. 1, Article . Publication date: October 2018.

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

10 Laretto, Loregian, Veltri

C type
𝐶 ∈ Σ𝐵

𝐶 type

C type

Cop type

C type D type

C × D type

C type D type

[C,D] type ⊤ type

C = D (Cop)op = C (C × D)op = Cop × Dop [C,D]op = [Cop,Dop] ⊤op = ⊤ · · ·

Fig. 7. Syntax of first-order dinatural directed type theory – types and judgmental equality.

Γ ctx
[] ctx

Γ ctx C type

Γ,C ctx
Γ ctx
Γop ctx

Γ = Γ′ []op = [] (Γ,C)op = Γop,Cop
C = C′ Γ = Γ′

Γ,C = Γ′,C′

Γ ∋ 𝑥 : C
Γ, 𝑥 : C ∋ 𝑥 : C

Γ ∋ 𝑥 : C
Γ, 𝑦 : D ∋ 𝑥 : C

Γ ⊢ 𝑡 : C
Γ ∋ 𝑥 : C
Γ ⊢ 𝑥 : C

Γ ⊢ 𝑡 : C
Γop ⊢ 𝑡op : Cop

𝑓 ∈ Σ𝑇 Γ ⊢ 𝑡 : dom(𝑓)
Γ ⊢ 𝑓 (𝑡) : cod(𝑓)

Γ ⊢ ! : ⊤
Γ ⊢ 𝑠 : C Γ ⊢ 𝑡 : D

Γ ⊢ ⟨𝑠, 𝑡⟩ : C × D

Γ ⊢ 𝑝 : C × D

Γ ⊢ 𝜋1 (𝑝) : C

Γ ⊢ 𝑝 : C × D

Γ ⊢ 𝜋2 (𝑝) : D

Γ ⊢ 𝑠 : [C,D] Γ ⊢ 𝑡 : C

Γ ⊢ 𝑠 · 𝑡 : D

Γ, 𝑥 : C ⊢ 𝑡 (𝑥) : D

Γ ⊢ 𝜆𝑥 .𝑡 (𝑥) : [C,D]

Γ ⊢ 𝑡 = 𝑡 ′ : C
Γ, 𝑥 : C ⊢ 𝑓 (𝑥) : D Γ ⊢ 𝑡 : C

Γ ⊢ (𝜆𝑥.𝑓 (𝑥)) · 𝑡 = 𝑓 [𝑥 ↦→ 𝑡] : D

Γ, 𝑥 : C ⊢ 𝑓 (𝑥) : D

Γ, 𝑥 : C ⊢ (𝜆𝑥 .𝑓 (𝑥)) · 𝑥 = 𝑓 (𝑥) : D

Γ ⊢ 𝑝 : C × D

Γ ⊢ ⟨𝜋1 (𝑝), 𝜋2 (𝑝)⟩ = 𝑝 : C × D
Γ ⊢ 𝑡 : ⊤

Γ ⊢ 𝑡 = ! : ⊤
Γ ⊢ 𝑠 : C Γ ⊢ 𝑡 : D
Γ ⊢ 𝜋1 (⟨𝑠, 𝑡⟩) = 𝑠 : C

Γ ⊢ 𝑠 : C Γ ⊢ 𝑡 : D
Γ ⊢ 𝜋2 (⟨𝑠, 𝑡⟩) = 𝑡 : D

Γ ⊢ 𝑡 : C
Γ ⊢ (𝑡op)op = 𝑡 : D

Γ ⊢ 𝑠 : C Γ ⊢ 𝑡 : D
Γop ⊢ ⟨𝑠, 𝑡⟩op = ⟨𝑠op, 𝑡op⟩ : Cop × Dop

Γop, 𝑥 : C ⊢ 𝑡 : D

Γ ⊢ (𝜆𝑥.𝑡 (𝑥))op = 𝜆𝑥 .𝑡op (𝑥) : [Cop,Dop]

Fig. 8. Syntax of first-order dinatural directed type theory – contexts, variables, terms and their equality.

[Γ] 𝑃 prop
[Γ] 𝑃 prop [Γ] 𝑄 prop

[Γ] 𝑃 ×𝑄 prop

[Γop] 𝑃 prop [Γ] 𝑄 prop

[Γ] 𝑃 ⇒ 𝑄 prop [Γ] ⊤ prop

Γop, Γ ⊢ 𝑠 : Cop Γop, Γ ⊢ 𝑡 : C

[Γ] homC (𝑠, 𝑡) prop
𝑃 ∈ Σ𝑃 Γop, Γ ⊢ 𝑠 : neg(𝑃)op Γop, Γ ⊢ 𝑡 : pos(𝑃)

[Γ] 𝑃 (𝑠 | 𝑡) prop

[Γ, 𝑥 : C] 𝑃 (𝑥, 𝑥) prop
[Γ]

∫
𝑥 :C

𝑃 (𝑥, 𝑥) prop

[Γ, 𝑥 : C] 𝑃 (𝑥, 𝑥) prop

[Γ]
∫ 𝑥 :C

𝑃 (𝑥, 𝑥) prop

Φ propctx • propctx
Φ propctx 𝑃 prop

𝑃,Φ propctx

Fig. 9. Syntax of first-order dinatural directed type theory – predicates and propositional contexts.

, Vol. 1, No. 1, Article . Publication date: October 2018.

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

Di- is for Directed: First-Order Directed Type Theory via Dinaturality 11

Γ ∋ 𝑥 : A cov in 𝑃

Γ ∋ 𝑥 : A cov in 𝑃 Γ ∋ 𝑥 : A cov in𝑄

Γ ∋ 𝑥 : A cov in 𝑃 ×𝑄
Γop ∋ 𝑥 : Aop cov in 𝑃 Γ ∋ 𝑥 : A cov in𝑄

Γ ∋ 𝑥 : A cov in 𝑃 ⇒ 𝑄

Γop, Γ ∋ 𝑥 : Aop unused in 𝑠 : Cop Γop, Γ ∋ 𝑥 : Aop unused in 𝑡 : C

Γ ∋ 𝑥 : A cov in homC (𝑠, 𝑡)
Γop, Γ ∋ 𝑥 : Aop unused in 𝑠 : neg(𝑃)op Γop, Γ ∋ 𝑥 : Aop unused in 𝑡 : pos(𝑃)

Γ ∋ 𝑥 : A cov in 𝑃 (𝑠 | 𝑡)

Γ ∋ 𝑥 : A contra in 𝑃
Γop ∋ 𝑥 : Aop cov in 𝑃op

Γ ∋ 𝑥 : A contra in 𝑃

Γ ∋ 𝑥 : A unused in 𝑡 : C
Γ ∋ 𝑥 : C 𝑥 ≠ 𝑦

Γ ∋ 𝑦 : C unused in𝑥 : C
Γ ∋ 𝑥 : A unused in 𝑡 : dom(𝑓)

Γ ∋ 𝑥 : A unused in 𝑓 (𝑡) : cod(𝑓)
Γ ∋ 𝑥 : A unused in 𝑡 : C

Γop ∋ 𝑥 : Aop unused in 𝑡op : Cop

Fig. 10. Syntax of first-order dinatural directed type theory – syntactic conditions for covariant/contravariant
variables in predicates. Full rules in Figure 14.

[Γ] Φ ⊢ 𝛼 : 𝑃
(var)

[Γ] Φ, 𝑎 : 𝑃,Φ′ ⊢ 𝑎 : 𝑃

[Γ] Φ ⊢ 𝛼 : 𝑄
(wk)

[Γ] 𝑃,Φ ⊢ wk𝑃 (𝛼) : 𝑄
(⊤)

[Γ] Φ ⊢ ! : ⊤

Γop, Γ ⊢ 𝐹 : C [𝑥 : C, Γ] Φ(𝑥, 𝑥) ⊢ 𝛼 : 𝑄 (𝑥, 𝑥)
(idx)

[Γ] Φ(𝐹 (𝑥, 𝑥), 𝐹 (𝑥, 𝑥)) ⊢ 𝐹 ∗ (𝛼) : 𝑄 (𝐹 (𝑥, 𝑥), 𝐹 (𝑥, 𝑥))
[Γ] 𝑃, 𝑃,Φ ⊢ 𝛼 : 𝑄

(contr)
[Γ] 𝑃,Φ ⊢ contr𝑃 (𝛼) : 𝑄

[Γ] Φ ⊢ 𝑃 ×𝑄
(prod)

[Γ] Φ ⊢ 𝑃, [Γ] Φ ⊢ 𝑄

[𝑥 : Γ] 𝐴(𝑥, 𝑥),Φ(𝑥, 𝑥) ⊢ 𝐵(𝑥, 𝑥)
(exp)

[𝑥 : Γ] Φ(𝑥, 𝑥) ⊢ 𝐴op (𝑥, 𝑥) ⇒ 𝐵(𝑥, 𝑥)

[𝑎 : C, Γ] Φ ⊢ 𝑃 (𝑎, 𝑎)
(end)

[Γ] Φ ⊢
∫
𝑎:C

𝑃 (𝑎, 𝑎)

[Γ]
(∫ 𝑎:C

𝑃 (𝑎, 𝑎)
)
,Φ ⊢ 𝑄

(coend)
[𝑎 : C, Γ] 𝑃 (𝑎, 𝑎),Φ ⊢ 𝑄

Γ unused in 𝑃
[𝑎 :Δop, 𝑏 :Δ] Φ(𝑎, 𝑏) ⊢ 𝛼 :𝑃 (𝑎, 𝑏)

[𝑧 :Δ] 𝑘 : 𝑃 (𝑧, 𝑧),Φ(𝑧, 𝑧) ⊢ 𝛾 [𝑘] :𝑄 (𝑧, 𝑧)
(cut-din)

[𝑧 :Δ] Φ(𝑧, 𝑧) ⊢ 𝛾 [𝛼] :𝑄 (𝑧, 𝑧)

Γ unused in 𝑃
[𝑧 :Δ] Φ(𝑧, 𝑧) ⊢ 𝛾 :𝑃 (𝑧, 𝑧)

[𝑎 :Δop, 𝑏 :Δ] 𝑘 :𝑃 (𝑎, 𝑏),Φ(𝑎, 𝑏) ⊢ 𝛼 [𝑘] :𝑄 (𝑎, 𝑏)
(cut-nat)

[𝑧 :Δ] Φ(𝑧, 𝑧) ⊢ 𝛼 [𝛾] :𝑄 (𝑧, 𝑧)

(refl)
[𝑥 : C, Γ] Φ ⊢ reflC : homC (𝑥, 𝑥)

[𝑧 : C, Γ] Φ(𝑧, 𝑧) ⊢ ℎ : 𝑃 (𝑧, 𝑧)
(𝐽)

[𝑎 : Cop, 𝑏 : C, Γ] 𝑒 : homC (𝑎, 𝑏),Φ(𝑏, 𝑎) ⊢ 𝐽 (ℎ) [𝑒] : 𝑃 (𝑎, 𝑏)

[Γ] Φ ⊢ 𝛼 = 𝛽 : 𝑃
(𝐽 -comp)

[𝑧 : C, Γ] 𝑘 : Φ(𝑧, 𝑧) ⊢ 𝐽 (ℎ) [reflC] = ℎ : 𝑃 (𝑧, 𝑧)

[𝑧 : C, Γ] Φ(𝑧, 𝑧) ⊢ 𝛼 [reflC] = 𝛽 [reflC] : 𝑃 (𝑧, 𝑧)
(𝐽 -eq)

[𝑎 : Cop, 𝑏 : C, Γ] 𝑒 : homC (𝑎, 𝑏),Φ(𝑏, 𝑎) ⊢ 𝛼 [𝑒] = 𝛽 [𝑒] : 𝑃 (𝑎, 𝑏)

Fig. 11. Syntax of first-order dinatural directed type theory – entailments and judgmental equality.

, Vol. 1, No. 1, Article . Publication date: October 2018.

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

12 Laretto, Loregian, Veltri

The rules for entailments implicitly use the notion of variance for variables, described in Re-

mark 2.2. Variance is captured formally in Figures 10 and 13 by the following judgments, all of

which presuppose Γ ∋ 𝑥 : A for a variable 𝑥 of type A in context Γ:

Figure 13:
{
• Γ ∋ 𝑥 : A unused in 𝑡 : C for 𝑥 :A does not syntactically appear in a term 𝑡 .

Figure 10:

{
• Γ ∋ 𝑥 : A cov in 𝑃 states that 𝑥 :A is covariant in the predicate [Γ] 𝑃 .
• Γ ∋ 𝑥 : A contra in 𝑃 states that 𝑥 :A is contravariant in the predicate [Γ] 𝑃 .

To make the type theory non-trivial, our judgments are implicitly parameterized by a standard

notion of signature Σ := (Σ𝐵, Σ𝑇 , Σ𝑃 , Σ𝐴), i.e., sets of base type symbols, term symbols, predicate

symbols, and base entailments respectively. Base predicates 𝑃 (𝑠 | 𝑡) for 𝑃 ∈ Σ𝑃 are equipped with

two terms, a negative one 𝑠 : neg(𝑃)op and a positive one 𝑡 : pos(𝑃) typed in the same context Γop, Γ.
This choice is motivated by the fact that hom is similarly equipped with two sides. The judgments

for equality of types are not extended by the signature. We omit the details of this extension.

2.1 Polarity and variance
The main idea behind dinatural transformations is that variables in a predicate are allowed to be

used irrespectively of the op in their type (or lack thereof). To give a taste for our type theory, we

show what the statement and proof of transitivity of directed equality look like in our system:

(var)
[𝑧 : C, 𝑐 : C] 𝑔 : hom(𝑧, 𝑐) ⊢ 𝑔 : hom(𝑧, 𝑐)

(𝐽)
[𝑎 : Cop, 𝑏 : C, 𝑐 : C] 𝑓 : hom(𝑎, 𝑏), 𝑔 : hom(𝑏, 𝑐) ⊢ 𝐽 (𝑔) : hom(𝑎, 𝑐)

Whenever a variable 𝑏 : C is used with the “wrong polarity” we denote such use with 𝑏 : Cop
, as in

the above example. In order to make this intuition precise, we formally introduce the concepts of

position, polarity, and variance and their notation in the type theory. Variance is ultimately used to

implement the syntactic restriction of directed equality elimination (𝐽).

We use the term polarity of a type to refer to the fact that types always come in pairs: whenever

C is a type, its opposite Cop
is also a type. Polarity is a relative notion: we say the type Cop

is the
negative of C irrespectively of the fact that C itself might have an outermost syntactic op.
Polarity is used in the syntax of the type theory in the following way:

• The op operation is also present in contexts, i.e., for a Γ ctx there is a negative context Γop

which is definitionally equal to the context obtained by adding op to each type.

• In the formation rule for [Γ] homC (𝑠, 𝑡) in Figure 9, the term 𝑠 is given return type Cop
.

• In the formation rule for [Γ] 𝑃 ⇒ 𝑄 in Figure 9, the predicate 𝑃 is given type in Γop.

The other crucial idea of our system is the above-mentioned fact that variables can appear at the

same time irrespectively of their polarity. This is implemented by the following ideas:

• There are two cases where variables can appear in a predicate, namely the base cases

[Γ] homC (𝑠, 𝑡) and [Γ] 𝑃 (𝑠 | 𝑡), where the two terms 𝑠, 𝑡 can use the variables from Γ.
• The key idea is that both 𝑠, 𝑡 are not given type in Γ, but in the context concatenation Γop, Γ.
• Intuitively, this allows for variables to be used in 𝑠, 𝑡 also in the “wrong way” (with respect

to the original polarity of the context Γ in which 𝑃 is given type).

We give a specific name to the terms of this shape in concatenated contexts Γop, Γ, since they also

play a crucial role in reindexing.

Definition 2.1. A diterm is a term of the form Γop, Γ ⊢ 𝑡 : C for some context Γ.

We now capture the above intuitive ideas behind polarity and variance with precise terminology.

, Vol. 1, No. 1, Article . Publication date: October 2018.

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

Di- is for Directed: First-Order Directed Type Theory via Dinaturality 13

Definition 2.2 (Positions in a predicate). The name position refers to a point in which a variable

𝑥 :C can appear in a predicate, e.g., there are four possible positions 𝑥,𝑦, 𝑧,𝑤 for variables to appear

in the predicate homC (𝑥,𝑦) × 𝑃 (𝑧, 𝐹 (𝑤)).

Definition 2.3 (Variant use of a variable). For any predicate [Γ] 𝑃 and a position of type Cop
in 𝑃 ,

we say that a variable Γ ∋ 𝑥 : C (with no op) is used contravariantly in that position iff the variable

used in that position is taken from the left side Γop (in the context concatenation Γop, Γ), i.e., with
type 𝑥 : Cop

. Accordingly, we will always denote variables taken from such left side of the context

with an overbar 𝑥 . Similarly, given a position of type C in 𝑃 we say that a variable Γ ∋ 𝑥 : C is

used covariantly in that position iff it is taken from the right side Γ (i.e. in the usual way), which we

denote without any overbar.

The notation 𝑥 is suggestive of the fact that 𝑥 : Cop
and 𝑥 : C will be identified with the same

value when using dinatural transformations in the semantics of entailments.

Example 2.4 (Derivation of a predicate). We provide an example derivation of a predicate in context

combining the previously introduced ideas of co/contravariant variables, for a term 𝑥 : C ⊢ 𝐹 (𝑥) : D.

𝑥 :C, 𝑦 :D, 𝑥 :Cop, 𝑦 :Dop ⊢ 𝑦 :Dop

𝑥 :C, 𝑦 :D, 𝑥 :Cop, 𝑦 :Dop ⊢ 𝑥 : C

𝑥 :C, 𝑦 :D, 𝑥 :Cop, 𝑦 :Dop ⊢ 𝐹 (𝑥) : D

[𝑥 :Cop, 𝑦 :Dop] homD (𝑦, 𝐹 (𝑥)) prop
· · · ⊢ 𝑥 : C

[𝑥 :C, 𝑦 :D] 𝑃 (𝑥) prop
[𝑥 :C, 𝑦 :D] homD (𝑦, 𝐹 (𝑥)) ⇒ 𝑃 (𝑥) prop

Definition 2.5 (Variance of a variable). Variables can occur in multiple positions at the same time:

we say that a variable Γ ∋ 𝑥 : C is covariant in a predicate [Γ] 𝑃 iff it is always used covariantly in

the positions of 𝑃 , i.e., it is always picked from the right side Γ of the context Γop, Γ and is hence

always used “correctly” with respect to Γ. Similarly, a variable Γ ∋ 𝑥 : C is said to be contravariant
in a predicate [Γ] 𝑃 when it is always used contravariantly in the positions of 𝑃 , i.e., it is always

picked from the left side Γop of the context Γop, Γ and is hence always used “in the wrong way”

with respect to Γ. A variable is said to be natural when it is either covariant or contravariant, i.e., it

is consistently used with the same variance. A variable is said to be dinatural or mixed-variance iff
it is neither covariant nor contravariant, i.e., it occurs at least once covariantly and at least once

contravariantly in a predicate.

Example 2.6 (Variance). In the predicate [𝑥 :Cop, 𝑦 :C] homC (𝑥,𝑦), both 𝑥 and 𝑦 are covariant.

In [𝑥 :C, 𝑦 :C, 𝑧 :C] homC (𝑥,𝑦) × homC (𝑦, 𝑧) the variable 𝑥 is contravariant, 𝑦 is dinatural, and 𝑧

is covariant. In [𝑥 :Cop, 𝑧 :Cop] homC (𝑥, 𝑧) ⇒ homC (𝑧, 𝑥), 𝑥 is contravariant and 𝑧 is covariant.

Finally, for a termCop ⊢ 𝐹 : D (i.e., a “contravariant functor”), 𝑥 is covariant in [𝑥 :C] homD (𝐹 (𝑥), 𝑥).

The above definitions capture the way that natural and dinatural usage of variables is referred

to in practice. Formally, variance of variables in predicates is captured using the judgments in

Figures 10 and 13. The actual implementation of variance is slightly different from the description

above, but they are equivalent: the judgment Γ ∋ 𝑥 : A cov in 𝑃 is derivable, i.e., the variable 𝑥 is

covariant, when its contravariant counterpart 𝑥 is not syntactically used anywhere in the predicate.
This last aspect is itself captured by a straightforward judgment, described in Figure 10, which

underapproximates syntactic unusedness of variables in terms. The well-formedness of these

judgments occasionally relies on the fact that Γ ∋ 𝑥 : A implies that Γop ∋ 𝑥 : Aop
, and similarly

Γop, Γ ∋ 𝑥 : A and Γop, Γ ∋ 𝑥 : Aop
in the intuitive way.

, Vol. 1, No. 1, Article . Publication date: October 2018.

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

14 Laretto, Loregian, Veltri

Example 2.7 (Variance, formally). We give an example of a formal derivation for covariance using

the predicate in Figure 10, assuming for simplicity that the predicate 𝑃 does not have any variables:

[𝑥 :C, 𝑦 :D, 𝑥 :Cop, 𝑦 :Dop] ∋ 𝑦 : D unused in 𝑦 [· · ·] ∋ 𝑦 : D unused in 𝐹 (𝑥)
[𝑥 :Cop, 𝑦 :Dop] ∋ 𝑦 : Dop cov in homD (𝑦, 𝐹 (𝑥)) · · ·

[𝑥 :C, 𝑦 :D] ∋ 𝑦 : D cov in homD (𝑦, 𝐹 (𝑥)) ⇒ 𝑃

Remark (Notation for variance in predicates). We indicate with [𝑥 : C, 𝑦,D, Γ] 𝑃 (𝑥, 𝑥,𝑦,𝑦)
the fact that a predicate 𝑃 can depend on 𝑥,𝑦 both co- and contravariantly; we will often omit in 𝑃 the
(unrestricted) presence of variables coming from a context Γ. When either variance is omitted, e.g., as
in 𝑃 (𝑥,𝑦), the predicate must depend only on 𝑥 and 𝑦, i.e., 𝑥 is covariant and 𝑦 is contravariant in 𝑃 .
Variance for entire contexts is intuitively denoted as [𝑦 : Γ] 𝑃 (𝑦), i.e., all variables in Γ are covariant.

Formally, these restrictions are captured using the predicates for variance of Definition 2.5. We use
this convention in the rules for entailments of Figure 11.

There are many choices for the system of variances presented so far: the one presented here is a

simple setup that closely matches the intuition for contravariance typically used in mathematics,

denoting variables as contravariant precisely when one expects it as shown in Example 2.4.

Mnemonically, positions have polarity, and variables have variance. Covariant variables are
“compliant” and they are used as they are told, while contravariant variables are “contrarian” and
always reject well-typing laws.

For any predicate [Γ] 𝑃 , there is an associated opposite predicate [Γop] 𝑃op, defined by induction

on the derivation of 𝑃 , obtained intuitively by inverting the variance of variables in each position:

i.e., whenever 𝑥 was used in some position, 𝑥 is used instead, and vice versa. This operation is used

in the rule for polarized implication (exp), described in Section 2.2, and to define contravariance in

Figure 10. Note that this operation on predicates is defined metatheoretically: types and terms are

the only two judgments for which there is a −op in the syntax.
We start by first defining a metatheoretical operation on diterms that simply swaps contexts:

Definition 2.8 (Context swap of a term). Given a diterm Γop, Γ ⊢ 𝑡 : C, we indicate with Γ, Γop ⊢
𝑡 ctxswap : C the context swap of 𝑡 , which is the term derivation obtained in the intuitive way

by swapping the left and right side of its context; for example, (𝑥 : Dop, 𝑥 : D ⊢ 𝑥 : D)ctxswap =

(𝑥 : D, 𝑥 : Dop ⊢ 𝑥 : D), and (𝑥 : Cop, 𝑥 : C ⊢ 𝐹 (𝑥) : D)ctxswap = (𝑥 : C, 𝑥 : Cop ⊢ 𝐹 (𝑥) : D) for some

term 𝑥 : Cop, 𝑥 : C ⊢ 𝐹 (𝑥) : D. Crucially, the return type of the term does not change, which would

be the case with the 𝑡op operation internal to the syntax. Effectively this operation only rearranges

the de Bruijn indices of variables, which is what the judgments for variance in Figure 10 use to

detect co/contravariance.

Definition 2.9 (Opposite predicate). Given a predicate [Γ] 𝑃 , there is a predicate in context Γop

called the opposite of 𝑃 defined by (metatheoretical) induction on derivations of predicates:

−op
: {[Γ] − prop} → {[Γop] − prop}

(⊤)op := ⊤
(𝑃 ⇒ 𝑄)op := 𝑃op ⇒ 𝑄op

(𝑃 ×𝑄)op := 𝑃op ×𝑄op

(𝑃 (𝑠 | 𝑡))op := 𝑃 (𝑠ctxswap | 𝑡 ctxswap)
(homC (𝑠, 𝑡))op := homC (𝑠ctxswap, 𝑡 ctxswap)(∫ 𝑥 :C

𝑃 (𝑥, 𝑥)
)op

:=
∫ 𝑥 :Cop

𝑃 (𝑥, 𝑥)op(∫
𝑥 :C

𝑃 (𝑥, 𝑥)
)op

:=
∫
𝑥 :Cop 𝑃 (𝑥, 𝑥)op

, Vol. 1, No. 1, Article . Publication date: October 2018.

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

Di- is for Directed: First-Order Directed Type Theory via Dinaturality 15

This operation can similarly be defined by inverting the polarity of a single variable: given a

predicate [𝑥 : C, Γ] 𝑃 (𝑥, 𝑥) we denote with [𝑥 : Cop, Γ] 𝑃𝑥 ↦→op (𝑥, 𝑥) the predicate obtained by

inverting the polarity of each position in 𝑃 where 𝑥 is used. A similar definition can be extended

on propositional contexts Φ. All these operations on predicates are clearly involutive.

Example 2.10. Taking the predicate of Example 2.4 and applying the predicate inversion operation

(homD (𝑦, 𝐹 (𝑥)))op produces the following derivation:

𝑥 :Cop, 𝑦 :Dop, 𝑥 :C, 𝑦 :D ⊢ 𝑦 :Dop

𝑥 :Cop, 𝑦 :Dop, 𝑥 :C, 𝑦 :D ⊢ 𝑥 : C

𝑥 :Cop, 𝑦 :Dop, 𝑥 :C, 𝑦 :D ⊢ 𝐹 (𝑥) : D

[𝑥 :C, 𝑦 :D] homD (𝑦, 𝐹 (𝑥)) prop
The judgment for contravariance Γ ∋ 𝑥 : A contra in 𝑃 in Figure 10 is defined in terms of the

covariant one and the notion of opposite predicate 𝑃op. Note that the well-formedness of this

judgment relies on the fact that Γ ∋ 𝑥 : C implies Γop ∋ 𝑥 : Cop
.

Example 2.11 (Contravariance, formally). We give an example of a formal derivation for con-

travariance, following Example 2.7:

[· · ·] ∋ 𝑥 : Cop unused in 𝑦

[𝑥 :Cop, 𝑦 :Dop, 𝑥 :C, 𝑦 :D] ∋ 𝑥 : Cop unused in 𝑥 : D

[𝑥 :Cop, 𝑦 :Dop, 𝑥 :C, 𝑦 :D] ∋ 𝑥 : Cop unused in 𝐹 (𝑥) : D

[𝑥 :C, 𝑦 :D] ∋ 𝑥 : C cov in homD (𝑦, 𝐹 (𝑥)) · · ·
[𝑥 :Cop, 𝑦 :Dop] ∋ 𝑥 : Cop cov in homD (𝑦, 𝐹 (𝑥)) ⇒ 𝑃

[𝑥 :C, 𝑦 :D] ∋ 𝑥 : C contra in homD (𝑦, 𝐹 (𝑥)) ⇒ 𝑃

2.2 Rules
We now describe and give intuition for the main rules for entailments of our type theory in Figure 10.

Remark (Notation for entailments). We use type-theoretic notation for entailments,

[𝑥 : C, 𝑦 : D, ...] 𝑎 : 𝑃 (𝑥, 𝑥,𝑦,𝑦, ...), 𝑏 : 𝑄 (𝑥, 𝑥,𝑦,𝑦, ...), ... ⊢ 𝛼 [𝑎, 𝑏, ...] : 𝑅(𝑥, 𝑥,𝑦,𝑦, ...)
where we give names to each assumption in the list Φ := 𝑃,𝑄, We overload square brackets 𝛼 [𝑎, 𝑏, ...]
both to indicate the assumptions and to denote composition of entailments in (cut-din) and (cut-nat).

Some of our rules are formulated in “adjoint-form” (e.g. [43, 4.1.7, 4.1.8]), i.e., as natural bijections
between entailments. We use double lines in Figure 11 to indicate such isomorphisms of entailments,

using judgmental equality of entailments to ensure that one direction is the inverse of the other.

Naturality coincides with the fact that these isomorphisms commute with (both) the cut rules in

the equational theory whenever possible: we use this in Section 6 for the Yoneda technique. We

give a spelled-out example of adjoint-form in Figure 16 for the (end) rule, describing precisely the

naturality requirement for the rules in such form.

• Structural rules. The rules (var), (wk), (contr) capture the usual structural rules for assumptions,

weakening, and contraction.

• Products. The rule (prod) for conjunction 𝑃 × 𝑄 is standard: reading the rule top-to-bottom,

given a proof [Γ] Φ ⊢ 𝑃 ×𝑄 one can extract a proof [Γ] Φ ⊢ 𝑃 . Similarly, given two entailments

with type 𝑃 and 𝑄 in the same context one obtains an entailment with type 𝑃 ×𝑄 .
• Polarized implication. Implication (exp) is similarly captured via the adjoint formulation, with

a catch regarding polarity: the key idea is that a predicate 𝑃 (𝑥, 𝑥) can be curried from one side to

the other of the entailment by reversing the variance of all its variables, i.e., using 𝑃op. Contrary

, Vol. 1, No. 1, Article . Publication date: October 2018.

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

16 Laretto, Loregian, Veltri

to naturals and presheaves [50], dinaturals can be curried directly via the (exp) rule by currying

each component of 𝛼 in Set. A similar idea is described in [10, 32] as twisted exponential.
• (Co)ends. The rules (end), (coend) capture the directed quantifiers of our type theory, i.e.,

(co)ends. These are also characterized in “adjoint-form”, following precisely the same formulation

of [43, 4.1.8]. Note that Φ is given type in Γ, and we do not make this weakening explicit.

• Reindexing. Following the doctrinal presentation of logic (see [43, 71] for standard accounts),

variables in entailments can be substituted with terms using the rule (idx): in particular, entail-

ments can be substituted with diterms, i.e., terms that are allowed to access the whole concatena-
tion of contexts Γop, Γ. The fact that 𝐹 is a diterm is not a mere technical point, and it is used in

Remark 3.2 and theorem 3.14 to derive certain non-trivial structural rules related to variance.

• Cut naturals-dinaturals. We present two restricted cut rules (cut-din), (cut-nat) that allow
entailments to be composed together. Associativity and identities for these is captured in Figure 15,

along with a coherence condition that makes the two cuts agree whenever both entailments are

naturals. The occurrences 𝑎,𝑏 in Φ in (cut-nat) are needed to make sure that, in the semantics, 𝛼

is natural in 𝑎, 𝑏 when the domain is just 𝑃 , i.e., by using (exp) to move Φ and invert the variance

of 𝑎,𝑏. Similarly, 𝑃 must also not syntactically depend on Γ to ensure naturality in 𝑎, 𝑏, but both

Φ and 𝑄 can depend on Γ without any restriction; we elaborate on this in the semantics of cuts

in Section 5, which we use to state the naturality requirement for, e.g., ends in Figure 16.

• Directed equality elimination. The operational meaning behind (𝐽) is the following: having

identified two covariant positions 𝑎 :Cop
and 𝑏 :C in the predicate 𝑃 , if there is a directed equality

homC (𝑎, 𝑏) in context then it is enough to prove that 𝑃 holds “on the diagonal”, where the two

positions have been collapsed with the same dinatural variable 𝑧 : C; moreover, 𝑎, 𝑏 can be

collapsed together in the context Φ only if they appear contravariantly, i.e., as 𝑎 and 𝑏.
• Dependent hom elimination. A dependent version of directed 𝐽 , rule (𝐽 -eq), is needed to

prove equational properties of maps definable with (𝐽); this is done by allowing hom(𝑎, 𝑏) to
be contracted inside equality judgments. Intuitively, given entailments 𝛼 [𝑒] and 𝛽 [𝑒] with an

equality in context 𝑒 : homC (𝑎, 𝑏) which can be contracted using (𝐽), we can deduce that 𝛼 and

𝛽 are equal everywhere as soon as they are equal on 𝑒 = reflC,𝑧 for every 𝑧 : C.

3 Directed equality à la Martin-Löf
We show how the rules for directed equality can be used to obtain the same terms definable

with symmetric equality in Martin-Löf type theory, and proving properties about them follows

precisely the steps of the usual proofs, i.e., by equality contraction and computation rules [41, 78].

All examples in this section satisfy the constraints for (cut-nat), (cut-din) to be applied.

We start by showing transitivity of directed equality, i.e., categories have composition maps.

Example 3.1 (Composition in a category). The following derivation constructs the composition
map for C, which is covariant in 𝑎 : Cop, 𝑐 : C and dinatural in 𝑏 : C:

(var)
[𝑧 : C, 𝑐 : C] 𝑔 : hom(𝑧, 𝑐) ⊢ 𝑔 : hom(𝑧, 𝑐)

(𝐽)
[𝑎 : Cop, 𝑏 : C, 𝑐 : C] 𝑓 : hom(𝑎, 𝑏), 𝑔 : hom(𝑏, 𝑐) ⊢ 𝐽 (𝑔) : hom(𝑎, 𝑐)

We contracted the first equality 𝑓 : hom(𝑎, 𝑏). Rule (𝐽) can be applied since 𝑎, 𝑏 appear only

contravariantly in context (𝑎 does not appear) and covariantly in the conclusion (𝑏 does not).

We now prove that comp[𝑓 , 𝑔] := 𝐽 (𝑔), denoted as “𝑓 ; 𝑔”, is unital on identities (i.e., reflC) and
associative. Since we chose to contract 𝑓 , the computation rule ensures unitality on the left:

(𝐽 -comp)
[𝑧 : C, 𝑐 : C] 𝑔 : hom(𝑧, 𝑐) ⊢ refl𝑧 ; 𝑔 = 𝑔 : hom(𝑧, 𝑐)

, Vol. 1, No. 1, Article . Publication date: October 2018.

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

Di- is for Directed: First-Order Directed Type Theory via Dinaturality 17

On the other hand, to show that composition is right-unital we use dependent directed equality

induction (𝐽 -eq), where now it is enough to just consider the case in which 𝑎 = 𝑧 = 𝑤 and 𝑓 = refl𝑤 ,

(𝐽 -comp)
[𝑤 : C] • ⊢ refl𝑤 ; refl𝑤 = refl𝑤 : hom(𝑤,𝑤)

(𝐽 -eq)
[𝑎 : Cop, 𝑧 : C] 𝑓 : hom(𝑎, 𝑧) ⊢ 𝑓 ; refl𝑧 = 𝑓 : hom(𝑎, 𝑧)

which follows by the computation rule for comp since refl𝑤 is on the left. Similarly, to show

associativity we just need to consider the case 𝑎 = 𝑏 = 𝑧 and 𝑓 = refl𝑧 ,

(𝐽 -comp)
[𝑧 : C, 𝑐 : C, 𝑑 : C] 𝑔 : hom(𝑧, 𝑐), ℎ : hom(𝑐, 𝑑) ⊢ refl𝑧 ; (𝑔 ; ℎ) = (refl𝑧 ; 𝑔) ; ℎ : hom(𝑧, 𝑑)

(𝐽 -eq)
[𝑎 : C, 𝑏 : C, 𝑐 : C, 𝑑 : C] 𝑓 : hom(𝑎, 𝑏), 𝑔 : hom(𝑏, 𝑐), ℎ : hom(𝑐, 𝑑) ⊢ 𝑓 ; (𝑔 ; ℎ) = (𝑓 ; 𝑔) ; ℎ : hom(𝑎, 𝑑)

where in the top sequent both entailments are equal to 𝑔 ; ℎ by the computation rules of comp.

Example 3.2 (Functorial action on morphisms). For any term/functor C ⊢ 𝐹 : D, the functorial
action on morphisms of 𝐹 corresponds with the fact that any term 𝐹 respects directed equality, i.e.,

directed equality is a congruence:

(idx)+(refl)
[𝑧 : C] • ⊢ 𝐹 ∗ (reflC) : homD (𝐹 op (𝑧), 𝐹 (𝑧))

(𝐽)
[𝑥 : C, 𝑦 : C] 𝑓 : homC (𝑥,𝑦) ⊢ 𝐽 (𝐹 ∗ (reflC)) : homD (𝐹 op (𝑥), 𝐹 (𝑦))

and thus we define map𝐹 [𝑓] := 𝐽 (𝐹 ∗ (reflC)), using (idx) with 𝐹 in the top sequent.

The computation rule states that 𝐹 maps identities to identities:

(𝐽 -comp)
[𝑧 : C] ⊤ ⊢ map𝐹 [reflC] = 𝐹 ∗ (reflC) : homD (𝐹 op (𝑥), 𝐹 (𝑥))

The following shows functoriality for free; both top sides reduce to map𝐹 [𝑔] using (𝐽 -comp):

(𝐽 -comp)
[𝑧 : C, 𝑐 : C] 𝑔 : hom(𝑧, 𝑐) ⊢ map𝐹 [refl𝑧 ; 𝑔] = refl𝐹 (𝑧) ;map𝐹 [𝑔] : hom(𝑧, 𝑑)

(𝐽 -eq)
[𝑎 : C, 𝑏 : C, 𝑐 : C] 𝑓 : hom(𝑎, 𝑏), 𝑔 : hom(𝑏, 𝑐) ⊢ map𝐹 [𝑓 ; 𝑔] = map𝐹 [𝑓] ;map𝐹 [𝑔] : hom(𝑎, 𝑑)

Example 3.3 (Transport). Transporting points of predicates along directed equalities [78, 2.3.1] is

the functorial action of copresheaves 𝑃 : C→Set, i.e., predicates [𝑥 : C] 𝑃 prop, for 𝑥 only positive:

(var)
[𝑧 : C] 𝑘 : 𝑃 (𝑧) ⊢ 𝑘 : 𝑃 (𝑧)

(𝐽)
[𝑎 : Cop, 𝑏 : C] 𝑓 : hom(𝑎, 𝑏), 𝑘 : 𝑃 (𝑎) ⊢ 𝐽 (𝑘) : 𝑃 (𝑏)

The computation rule simply states that transporting a point of 𝑃 (𝑎) along the identity morphism

with subst[𝑓 , 𝑘] := 𝐽 (𝑘) is the same as giving the point itself, i.e., subst[reflC, 𝑘] = 𝑘 .

Example 3.4 (Pair of rewrites). Pairs of directed equalities induce directed equalities between

pairs. The other direction (i.e., “directed injectivity of pairs”) follows from congruence of directed

equality with the projections 𝜋1, 𝜋2 and then using the judgmental equality of terms.

(idx)+(refl)
[𝑧 : C, 𝑧′ : D] • ⊢ homC×D ((𝑧, 𝑧), (𝑧, 𝑧))

(𝐽)
[𝑎′ : Cop, 𝑏′ : D, 𝑧 : C] 𝑔 : homD (𝑏,𝑏′) ⊢ homC×D ((𝑧, 𝑏), (𝑧, 𝑏′))

(𝐽)
[𝑎, 𝑎′ : Cop, 𝑏, 𝑏′ : D] 𝑓 : homC (𝑎, 𝑎′), 𝑔 : homD (𝑏,𝑏′) ⊢ homC×D ((𝑎, 𝑏), (𝑎′, 𝑏′))

, Vol. 1, No. 1, Article . Publication date: October 2018.

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

18 Laretto, Loregian, Veltri

Example 3.5 (Higher-dimensional rewriting). The following shows that a directed equality between
functors induces a natural transformation [52, 1.4.1] (omitting the resulting term for simplicity):

(idx)+(refl)
[𝐻 : [C,D], 𝑥 : C] • ⊢ homD (𝐻 · 𝑥, 𝐻 · 𝑥)

(end)
[𝐻 : [C,D]] • ⊢

∫
𝑥 :C

homD (𝐻 · 𝑥, 𝐻 · 𝑥)
(𝐽)

[𝐹 : [C,D]op,𝐺 : [C,D]] 𝑒 : hom[C,D] (𝐹,𝐺) ⊢
∫
𝑥 :C

homD (𝐹 · 𝑥,𝐺 · 𝑥)
The opposite direction is not derivable in general, since in the case whereC,D are discrete categories

(i.e., sets), it corresponds to function extensionality.

Example 3.6 (Existence of singletons). The following derivation asserts that singleton subsets are

inhabited [78, Remark 1.12.1], i.e., there is a proof for the first-order logic formula ∀𝑥 .∃𝑦.𝑥 = 𝑦:

(var)
[𝑥 : Cop] 𝑘 :

∫ 𝑦:C
homC (𝑥,𝑦) ⊢ 𝑘 :

∫ 𝑦:C
homC (𝑥,𝑦)

(coend)
[𝑥 : Cop, 𝑦 : C] 𝑓 : homC (𝑥,𝑦) ⊢ coend−1 (𝑘) [𝑓] :

∫ 𝑦:C
homC (𝑥,𝑦)

(cut-nat)
[𝑥 : C] • ⊢ coend−1 (𝑘) [refl𝑥] :

∫ 𝑦:C
homC (𝑥,𝑦)

(end)
[] • ⊢ end(coend−1 (𝑘) [refl𝑥]) :

∫
𝑥 :C

∫ 𝑦:C
homC (𝑥,𝑦)

This derivation is actually an isomorphism in the model, i.e., singletons are contractible. This

follows from dependent directed equality contraction, which we show in detail in Example B.1.

The following theorems show that in our type theory both naturality and dinaturality follow

“for free” from dependent directed equality contraction. Cuts are allowed in both cases because of

the natural appearance of variables in subst.

Example 3.7 (Internal naturality for entailments). For any [𝑥 : C] 𝑃 (𝑥) ⊢ 𝛼 : 𝑄 (𝑥), an internal

version of naturality for entailments holds via (𝐽 -comp):
(𝐽 -comp)

[𝑧 : C] 𝑘 : 𝑃 (𝑧) ⊢ 𝛼 [subst𝑃 [refl𝑧, 𝑘]] = subst𝑄 [refl𝑧, 𝛼 [𝑘]] : 𝑄 (𝑧)
(𝐽 -eq)

[𝑎 : Cop, 𝑏 : C] 𝑓 : homC (𝑎, 𝑏), 𝑘 : 𝑃 (𝑎) ⊢ 𝛼 [subst𝑃 [𝑓 , 𝑘]] = subst𝑄 [𝑓 , 𝛼 [𝑘]] : 𝑄 (𝑏)
Example 3.8 (Internal dinaturality for entailments). For any [𝑥 : C] 𝑃 (𝑥, 𝑥) ⊢ 𝛼 : 𝑄 (𝑥, 𝑥), an

internal version of (di)naturality for entailments, as in Definition 4.2, holds via (𝐽 -comp):
(𝐽 -comp)

[𝑧 : C] 𝑘 : 𝑃 (𝑧, 𝑧) ⊢ subst𝑄 [(refl𝑧, refl𝑧), [𝛼 [subst𝑃 [(refl𝑧, refl𝑧), 𝑘]]]]
= subst𝑄 [(refl𝑧, refl𝑧), [𝛼 [subst𝑃 [(refl𝑧, refl𝑧), 𝑘]]]] : 𝑄 (𝑧, 𝑧)

(𝐽 -eq)
[𝑎 : Cop, 𝑏 : C] 𝑓 : homC (𝑎, 𝑏), 𝑘 : 𝑃 (𝑏, 𝑎) ⊢ subst𝑄 [(refl𝑏, 𝑓), [𝛼 [subst𝑃 [(𝑓 , refl𝑎), 𝑘]]]]

= subst𝑄 [(𝑓 , refl𝑎), [𝛼 [subst𝑃 [(refl𝑏, 𝑓), 𝑘]]]] : 𝑄 (𝑎, 𝑏)
We elucidate more in detail why the above sequence of cuts is valid in Appendix H.

We show in Examples B.2 to B.4 how natural transformations between terms can be captured

using ends [52, 1.4.1]. We show the identity natural, composition of naturals, and internal naturality.

3.1 On the adjoint formulation
We elaborate how the adjoint formulation, i.e., the fact that rules are formulated as bijections of

entailments, differs from the standard type-theoretical presentation of connectives in the style of

natural deduction or sequent calculus [56, 5.1.6]. Since in both of these systems cut is either derivable

or admissible, we cannot recover the usual rules for introduction/elimination for quantifiers and

, Vol. 1, No. 1, Article . Publication date: October 2018.

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

Di- is for Directed: First-Order Directed Type Theory via Dinaturality 19

implication, since in the semantics this would enable us to compose any two entailments/dinatural

transformations. We give an example of introduction/elimination-like rules derivable from the

adjoint formulation for (co)ends in Example 3.9.

Example 3.9 (Rules for (co)ends with terms). The following derivations capture an elimination

rule for ends and, dually, an introduction rule for coends using a concrete diterm Γop, Γ ⊢ 𝐹 : C:

[Γ] Φ ⊢ 𝛼 :

∫
𝑥 :C

𝑃 (𝑥, 𝑥)
(end−1)

[𝑥 : C, Γ] Φ ⊢ end−1 (𝛼) : 𝑃 (𝑥, 𝑥)
(idx)

[Γ] Φ ⊢ 𝐹 ∗ (end−1 (𝛼)) : 𝑃 (𝐹, 𝐹)

[Γ] 𝑘 :

∫ 𝑥 :C

𝑃 (𝑥, 𝑥),Φ ⊢ 𝛼 : 𝑄

(coend−1)
[𝑥 : C, Γ] 𝑘 : 𝑃 (𝑥, 𝑥),Φ ⊢ coend−1 (𝛼) : 𝑄

(idx)
[Γ] 𝑘 : 𝑃 (𝐹, 𝐹),Φ ⊢ 𝐹 ∗ (coend−1 (𝛼)) : 𝑄

We can recover the the projection and injection maps of (co)ends (i.e., the “(co)units” of the adjoint

formulation) by picking 𝑄 :=
∫ 𝑥 :C

𝑃 (𝑥, 𝑥), Φ :=
∫
𝑥 :C

𝑃 (𝑥, 𝑥),Φ′
and 𝛼 := (var) as follows:

[Γ] 𝑘 :

∫
𝑥 :C

𝑃 (𝑥, 𝑥),Φ′ ⊢ 𝐹 ∗ (end−1 (𝑘)) : 𝑃 (𝐹, 𝐹) [Γ] 𝑘 : 𝑃 (𝐹, 𝐹),Φ ⊢ 𝐹 ∗ (coend−1 (𝑘)) :
∫ 𝑥 :C

𝑃 (𝑥, 𝑥)

The crucial aspect is that we cannot derive the above introduction/elimination rules where,

instead, the end appears on the left, or the coend on the right: these would be the remaining rules

for the quantifiers of sequent calculus, and hence full cut would be admissible. In particular we only

recover ∀𝑅 and ∃𝐿 , but not ∀𝐿 and ∃𝑅 , using the terminology of [56, 5.1.8]. We formally prove the

non-admissibility of an unrestricted cut rule in Theorem 5.3.

In standard accounts of logic, the adjoint-form is equivalent to the usual introduction and

elimination rules for connectives, but only in the presence of cut [43, 4.1.8]. Hence, in our setting

we can recover the usual rules only in contexts that are sufficiently natural to allow for cuts to be

applied. We give an example of this situation in Example 3.10 to derive introduction/elimination-

like rules for existentials in the style of natural deduction [56, 5.1.6], and derive in Example 3.11

transitivity of implication (which directly translates to an elimination rule).

Example 3.10 (Natural deduction-style rules for coends). The following derivations capture rules

where coends are on the right of the turnstile: an elimination rule, an introduction rule with a

concrete term Δ ⊢ 𝐹 : C (not a diterm), and an introduction rule with two variables 𝑥 : Cop, 𝑦 : C:

[Γ, 𝑑 :Δ] Φ(𝑑) ⊢
∫ 𝑥 :C

𝑃 (𝑥, 𝑥, 𝑑)
[Γ, 𝑧 : C, 𝑑 :Δ] 𝑃 (𝑧, 𝑧, 𝑑),Φ(𝑑) ⊢ 𝑄 (𝑑)

[Γ, 𝑑 : Δ] Φ(𝑑) ⊢ 𝑄 (𝑑)

[Γ, 𝑑 :Δ] Φ(𝑑) ⊢ 𝑄 (𝐹 (𝑑), 𝑑)

[Γ, 𝑑 :Δ] Φ(𝑑) ⊢
∫ 𝑥 :C

𝑄 (𝑥, 𝑑)

[Γ, 𝑥 :Cop, 𝑦 :C] Φ(𝑥,𝑦) ⊢ 𝑅(𝑥,𝑦)

[Γ] Φ(𝑥,𝑦) ⊢
∫ 𝑧:C

𝑅(𝑧, 𝑧)

Note that the variables of Δ are always used naturally, and 𝑃,𝑄, 𝑅 do not depend on Γ. 𝐹 cannot be

a diterm since 𝑄 (𝐹 (𝑥, 𝑥)) would make the top entailment dinatural in the variables of Δ. We report

complete derivations for these rules in Appendix C.

Example 3.11 (Transitivity of implication). Implication is transitive in natural contexts, with [Γ] Φ:
[𝑎 : C] Φ ⊢ 𝛼 : 𝑃 (𝑎) ⇒ 𝑄 (𝑎)

(exp−1)
[𝑎 : C] 𝑃 (𝑎),Φ ⊢ exp−1 (𝛼) : 𝑄 (𝑎)

[𝑎 : C] Φ ⊢ 𝛽 : 𝑄 (𝑎) ⇒ 𝑅(𝑎)
(exp−1)

[𝑎 : C] 𝑄 (𝑎),Φ ⊢ exp−1 (𝛽) : 𝑅(𝑎)
(cut-nat)

[𝑎 : C] 𝑃 (𝑎),Φ ⊢ 𝛼 ; 𝛽 := exp−1 (𝛽) [exp−1 (𝛼)] : 𝑅(𝑎)
Polarized implication is in general not transitive, since, as we will see in Section 5, entailments are

interpreted as dinaturals which do not compose in general; we show how in Theorem D.4 one can

use implication and ends to internalize the set of all entailments/dinaturals.

, Vol. 1, No. 1, Article . Publication date: October 2018.

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

20 Laretto, Loregian, Veltri

3.2 Aspects of directed type theory
We investigate in this section other proof-theoretical aspects of our directed type theory: in

particular we show why symmetry is not immediately derivable and how all rules for directed

equality can be equivalently characterized as a single isomorphism.

Remark (Syntactic failure of symmetry for directed eqality). The restrictions in (𝐽)

illustrate why one cannot derive that directed equality is symmetric, i.e., obtain a general map

[𝑎 : Cop, 𝑏 : C] 𝑒 : homC (𝑎, 𝑏) ⊢ sym : homC (𝑏, 𝑎).
The equality 𝑒 : homC (𝑎, 𝑏) cannot be contracted because 𝑎 appears in the conclusion contravariantly
(similarly with 𝑏), whereas (𝐽) requires that the conclusion only has covariant occurrences of the
variables being contracted.

The remark above merely illustrates why it is not derivable from the syntactic restriction. We show

in Theorem 5.2 that the existence of a countermodel implies that it is not admissible in general.

As in the symmetric case, the rule for directed equality elimination is actually an isomorphism,

and asking (𝐽) to be an isomorphism fully characterizes all the rules of directed equality [43, 3.2.3]

(in the presence of the structural rules (cut-nat) and (var)):

Theorem 3.12 (Directed 𝐽 as isomorphism). () Rule (𝐽) is an isomorphism, and the inverse
map is given by 𝐽 −1 (ℎ) := ℎ[reflC] using (cut-nat) and (refl). Moreover, (𝐽 -eq) is logically equivalent
to the rule 𝐽 (𝐽 −1 (𝛼)) = 𝛼 in the equational theory for every 𝛼 .

Proof. The computation rule states precisely that 𝐽 −1 (𝐽 (𝛼)) = 𝛼 . To show 𝐽 (𝐽 −1 (𝛼)) = 𝛼 , we in-
stantiate (𝐽 -eq) with 𝛼 := 𝐽 (𝛽 [reflC]) and use (𝐽 -comp) in the hypothesis, i.e., 𝐽 (𝛽 [reflC]) [reflC] =
𝛽 [reflC], to obtain 𝐽 (𝛽 [reflC]) = 𝛽 as desired. We show that 𝐽 (𝐽 −1 (𝛼)) = 𝛼 implies (𝐽 -eq): the
hypothesis in (𝐽 -eq) states exactly 𝐽 −1 (𝛼) = 𝐽 −1 (𝛽), hence 𝛼 = 𝛽 by applying 𝐽 on both sides. □

Theorem 3.13 (𝐽 −1 ⇐⇒ refl). Rule (refl) is logically equivalent to (𝐽 −1).

Proof. Clearly (refl) implies (𝐽 −1) by definition. Rule (refl) follows from (𝐽 −1) in Theorem 3.12 by

picking 𝑃 (𝑎, 𝑏) := hom(𝑎, 𝑏) and using the projection (var) to return the hypothesis 𝑒 : homC (𝑎, 𝑏)
as the bottom side map ℎ, obtaining reflC := 𝐽 −1 (𝑒). We leave the proof that the computation rule

𝐽 (ℎ) [reflC] = ℎ holds in Appendix E. □

The following derivations illustrate how dinaturality, intuitively, allows us to “ignore” polarity

in the contexts of predicates, i.e., one can equivalently consider a contravariant variable of type C
as a covariant variable of type Cop

, and viceversa.

Theorem 3.14 (op of entailments). The following rule is derivable:

[𝑥 : C, Γ] Φ(𝑥, 𝑥) ⊢ 𝛼 : 𝑃 (𝑥, 𝑥)
[𝑥 : Cop, Γ] Φ𝑥 ↦→op (𝑥, 𝑥) ⊢ 𝛼𝑥 ↦→op

: 𝑃𝑥 ↦→op (𝑥, 𝑥)
Proof. Follows by reindexing (idx) with the “negative projection” diterm 𝑥 : C, 𝑥 : Cop ⊢ 𝑥 : C.

The predicate obtained by substituting this term in 𝑃 coincides (metatheoretically) with 𝑃𝑥 ↦→op
.

This reindexing is involutive in the sense that (𝛼𝑥 ↦→op)𝑥 ↦→op = 𝛼 in the equational theory. □

In particular, the above derivation allows us to derive different versions of (𝐽) which adopt one

or the other convention: for example (𝐽) could be stated by requiring 𝑎 : C (rather than Cop
) but

then ask for contravariance of 𝑎 in the conclusion and covariance in Φ. The formulation chosen

in (𝐽) with 𝑎 : Cop, 𝑏 : C is simpler to state in terms of “correct” and “incorrect” appearances and

emphasizes how the two variables play different asymmetric roles.

, Vol. 1, No. 1, Article . Publication date: October 2018.

https://github.com/iwilare/dinaturality/blob/main/Dinaturality/J-Iso.agda

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

Di- is for Directed: First-Order Directed Type Theory via Dinaturality 21

The following derivation shows how dinaturality allows us to capture a sort of “mixed-variance

reindexing” C → Cop × C, since even variables with different polarities can be identified together.

Theorem 3.15 (Dinatural collapse). The following rule is derivable:
[𝑥 : Cop, 𝑦 : C, Γ] Φ(𝑥, 𝑥,𝑦,𝑦) ⊢ 𝛼 : 𝑃 (𝑥, 𝑥,𝑦,𝑦)
[𝑧 : C, Γ] Φ(𝑧, 𝑧, 𝑧, 𝑧) ⊢ 𝛼𝑥,𝑦 ↦→𝑧

: 𝑃 (𝑧, 𝑧, 𝑧, 𝑧)
Proof. Follows by reindexing (idx) with the “identity” diterm 𝑥 : Cop, 𝑥 : C ⊢ ⟨𝑥, 𝑥⟩ : Cop×C. □

The dinatural collapse operation can be used to “downgrade” natural transformations to dinatural

transformations, which no longer compose; since we check for naturality syntactically, this allows

for a situation in which two (dinatural) entailments do not compose in the syntax despite composing

in the semantics (since the map being constructed remains unaltered).

Remark (Collapse loses compositionality). We illustrate how dinatural collapse can make an
entailment no longer composable. Recall the composition map comp[𝑓 , 𝑔] := 𝐽 (𝑔) from Example 3.1:
then, the following entailments are not composable in the syntax, since both comp𝑎,𝑏 ↦→𝑧 and refl are
dinatural in 𝑧; however, comp[refl𝑧, 𝑘] is a valid application of (cut-nat):

[𝑧 : C] Φ ⊢ refl : homC (𝑧, 𝑧)
[𝑎 : Cop, 𝑏, 𝑐 : C] homC (𝑎, 𝑏), homC (𝑏, 𝑐) ⊢ comp : homC (𝑎, 𝑐)

[𝑧, 𝑐 : C] homC (𝑧, 𝑧), homC (𝑧, 𝑐) ⊢ comp𝑎,𝑏 ↦→𝑧
: homC (𝑧, 𝑐)

Note that one can apply comp to a constant dinatural [] • ⊢ 𝛼 : homC (𝐴,𝐴) that selects some
endomorphism for a concrete constant [] ⊢ 𝐴 : C, since 𝛼 would be natural in the empty context.

We elucidate using (exp) why the exponential object in the category of presheaves and natural
transformations is non-trivial [50, 6.3.20], and is not the pointwise hom in Set.

Remark (Exponentials for naturals). Given an entailment which is fully covariant in 𝑥 (i.e., a
natural transformation) for predicates [𝑥 : C] 𝐹 (𝑥),𝐺 (𝑥), 𝐻 (𝑥), by directly applying (exp),

[𝑥 : C] 𝐹 (𝑥) ×𝐺 (𝑥) ⊢ 𝐻 (𝑥)
(exp)

[𝑥 : C] 𝐺 (𝑥) ⊢ 𝐹 (𝑥) ⇒ 𝐻 (𝑥)
one has a natural transformation on top, but the bottom family of arrows is dinatural in 𝑥 .

We show in Example 6.2 how (exp) and the rules for directed equality can be used to give a

logical proof that the usual definition of exponential for presheaves is indeed the correct one.

4 Dinaturality
We recall some preliminary facts about dinatural transformations and (co)ends in order to present

the semantics of our type theory. We will often abbreviate the term dinatural transformations

simply as “dinaturals”, and ordinary natural transformations as “naturals”.

Definition 4.1 (Dipresheaves and difunctors). Consider the (strict) comonad −⋄
: Cat → Cat

defined by C ↦→ Cop×C, where the counit is given by projecting and comultiplication by duplicating

and swapping. A dipresheaf is simply a functor C⋄ → Set, i.e. a functor Cop × C → Set.

We always denote composition diagrammatically, i.e., 𝑓 ; 𝑔 : 𝑎 → 𝑐 for 𝑓 : 𝑎 → 𝑏,𝑔 : 𝑏 → 𝑐 .

Definition 4.2 (Dinatural transformation [26]). Given functors 𝐹,𝐺 : Cop × C → D, a dinatural
transformation 𝛼 : 𝐹

qq−→ 𝐺 is a family of arrows 𝛼𝑥 : 𝐹 (𝑥, 𝑥) −→ 𝐺 (𝑥, 𝑥) indexed by objects 𝑥 : C
such that ∀𝑎, 𝑏 : C, and 𝑓 : 𝑎 → 𝑏 the following equation between arrows 𝐹 (𝑏, 𝑎) → 𝐺 (𝑎, 𝑏) holds:

𝐹 (id𝑏, 𝑓) ; 𝛼𝑏 ;𝐺 (𝑓 , id𝑏) = 𝐹 (𝑓 , id𝑎) ; 𝛼𝑎 ;𝐺 (id𝑏, 𝑓).

, Vol. 1, No. 1, Article . Publication date: October 2018.

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

22 Laretto, Loregian, Veltri

Lemma 4.3 (Dinaturals generalize naturals [26]). A natural transformation 𝛼 : 𝐹 → 𝐺 for
𝐹,𝐺 : C → D equivalently corresponds with a dinatural 𝛼 : (𝜋2 ; 𝐹)

qq−→ (𝜋2 ;𝐺) : Cop × C → D.

The pointwise composition of two dinatural transformations is not necessarily dinatural (see [30,

55]), but dinaturals always compose with naturals on both the left and right side:

Lemma 4.4 (Dinaturals compose with naturals [26]). Given a dinatural transformation
𝛾 : 𝐹

qq−→ 𝐺 and natural transformations 𝛼 : 𝐹 ′ → 𝐹, 𝛽 : 𝐺 → 𝐺 ′ for 𝐹, 𝐹 ′,𝐺,𝐺 ′
: Cop × C → Set,

the map 𝛼 ; 𝛾 ; 𝛽 : 𝐹 ′
qq−→ 𝐺 ′ defined by (𝛼 ; 𝛾 ; 𝛽)𝑥 := 𝛼𝑥𝑥 ; 𝛾𝑥 ; 𝛽𝑥𝑥 is dinatural.

Non-compositionality of dinaturals is an intrinsic property of directed proof-relevant type theory,
since in the groupoidal case they all compose (in the proof-irrelevant case, where Set is replaced by
the preorder I := {0 → 1}, dinaturals compose trivially since there is no hexagon to check):

Theorem 4.5 (Dinaturals in groupoids compose). () Given a groupoid C and a category D
for functors 𝐹,𝐺, 𝐻 : Cop × C → D, any two dinaturals 𝛼 : 𝐹

qq−→ 𝐺, 𝛽 : 𝐺
qq−→ 𝐻 compose.

The fundamental idea behind all rules for directed equality is given by the following elementary

result, which connects dinatural transformations in Set with a corresponding natural one:

Theorem 4.6 (Dinaturals and hom-naturals). () For any 𝑃,𝑄 : Cop × C → Set, there is
a bijection between set of dinatural transformations 𝑃 qq−→ 𝑄 and certain natural transformations
between functors Cop × C → Set, as follows:

𝛼𝑥 : 𝑃 (𝑥, 𝑥) qq−→ 𝑄 (𝑥, 𝑥)

𝛾𝑎𝑏 : hom(𝑎, 𝑏) −→ 𝑃op (𝑏, 𝑎) ⇒ 𝑄 (𝑎, 𝑏)

Proof. We describe the maps in both directions:

(⇓) Given a dinatural 𝛼 : 𝑃
qq−→ 𝑄 and a morphism 𝑓 : hom(𝑎, 𝑏), the map 𝑃 (𝑏, 𝑎) → 𝑄 (𝑎, 𝑏)

corresponds precisely with the sides of the equation given in Definition 4.2 for dinaturality,

which is obtained by applying the functorial action of 𝑃 and 𝑄 .

(⇑) Take 𝑎 = 𝑏 and precompose with id𝑎 ∈ hom(𝑎, 𝑎).
The fact that this is an isomorphism follows from the (di)naturality of both sets of maps. Note the

similarity between the above argument and the proof of the Yoneda lemma, where the two central

ideas are precisely applying the functorial action and instantiating at id, with the isomorphism

following from (di)naturality. □

We now recall definitions for the semantics of (co)ends, later used to give semantics to quantifiers.

Definition 4.7 ((Co)wedges for 𝑃 [52, 1.1.4]). Given 𝑃 : Cop × C → D, a wedge for 𝑃 is a pair

object/dinatural (𝑋 : D, 𝛼 : K𝑋
qq−→ 𝑃), where K𝑋 is the constant functor in 𝑋 . A wedge morphism

(𝑋, 𝛼) → (𝑌, 𝛼 ′) is an 𝑓 :𝑋 → 𝑌 of D such that ∀𝑐 : C, 𝛼𝑐 = 𝑓 ; 𝛼 ′𝑐 . A cowedge is a wedge in Dop
,

denoting the categories of (co)wedges as Wedge(𝑃),Cowedge(𝑃).

Definition 4.8 ((Co)ends [52, 1.1.6]). Given a functor 𝑃 : Cop ×C → D, the end of 𝑃 is defined to be

the terminal object ofWedge(𝑃), whose object in D is denoted as

∫
𝑥 :C

𝑃 (𝑥, 𝑥). Dually, the coend of 𝑃

is the initial object of Cowedge(𝑃), denoted similarly as

∫ 𝑥 :D
𝑃 (𝑥, 𝑥). The integral symbol acts as a

binder, in the sense that “

∫
𝑐 :C
𝑃 (𝑐, 𝑐)” and “

∫
𝑥 :C

𝑃 (𝑥, 𝑥)” are (𝛼-)equivalent; moreover, 𝑃 can depend

on many parameters, e.g., if 𝑃 : (Aop × A) × (Bop × B) → D then

∫
𝑏:B

𝑃 (𝑎, 𝑎, 𝑏, 𝑏) : Aop × A → D.
(Co)ends exist when D is (co)complete [52].

, Vol. 1, No. 1, Article . Publication date: October 2018.

https://github.com/iwilare/dinaturality/blob/main/Dinaturality/GroupoidCompose.agda
https://github.com/iwilare/dinaturality/blob/main/Dinaturality/NaturalDinatural.agda

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

Di- is for Directed: First-Order Directed Type Theory via Dinaturality 23

5 Semantics
We now describe the categorical semantics of our directed type theory: the main idea behind

categorical semantics is that we define functions that associate a certain mathematical object to

each derivation tree, inductively.Whenever present, the symbol () links to the Agda formalization

of the semantic interpretation of each rule.

The semantics for types, contexts, variables, terms, predicates and propositional contexts is given

in Figure 12. The equality judgments associated to these are interpreted in a straightforward way,

which we omit from this presentation; such equalities are only used to take care of involutions and

the equational theory of terms, for which we therefore give a strict semantics: equality of types

and contexts is interpreted as isomorphisms of categories, term equality is strict isomorphism of

functors. Equality of predicates is similarly trivial since it only inherits congruence rules from the

previous equality judgments.

The main rules of our type theory are those of entailments, for which we describe in detail the

intuition behind the semantics of each rule and its soundness in dinatural transformations.

J−K : {− type} → Cat
JCopK := JCKop
JC × DK := JCK × JDK
J[C,D]K := [JCK, JDK]
J⊤K := ⊤

J−K : {− ctx} → Cat
J[]K := ⊤
JΓopK := JΓKop
JΓ,CK := JΓK × JCK

J−K𝑣 : {Γ ∋ − : C} → [JΓK, JCK]
JΓ, 𝑥 : C ∋ 𝑥 : CK𝑣 := 𝜋2
JΓ, 𝑦 : D ∋ 𝑦 : CK𝑣 := 𝜋1 ; J𝑦K𝑣

J−K : {Γ ⊢ − : C} → [JΓK, JCK]
J𝑥K := J𝑥K𝑣
J𝑡opK := J𝑡Kop
J⟨𝑠, 𝑡⟩K := ⟨J𝑠K, J𝑡K⟩
J𝜋1 (𝑝)K := J𝑝K ; 𝜋1
J𝜋2 (𝑝)K := J𝑝K ; 𝜋2
J𝑠 · 𝑡K := ⟨J𝑠K, J𝑡K⟩ ; eval
J𝜆𝑥 .𝑡 (𝑥)K := Λ(𝑡)

J−K : {[Γ] − prop} → [JΓKop × JΓK, Set]
J⊤K := 𝜆𝛾,𝛾 .⊤Set
J𝑃 ×𝑄K := ⟨J𝑃K, J𝑄K⟩ ;×Set
J𝑃 ⇒ 𝑄K := ⟨J𝑃K, J𝑄K⟩ ;⇒Set
JhomC (𝑠, 𝑡)K := ⟨J𝑠K, J𝑡K⟩ ; homC

J
∫
𝑥 :C

𝑃 (𝑥, 𝑥)K := 𝜆𝛾,𝛾 .
∫
𝑥 :C

𝑃 (𝑥, 𝑥,𝛾,𝛾)
J
∫ 𝑥 :C

𝑃 (𝑥, 𝑥)K := 𝜆𝛾,𝛾 .
∫ 𝑥 :C

𝑃 (𝑥, 𝑥,𝛾,𝛾)

J−K : {− propctx} → [JΓKop × JΓK, Set]
J•K := 𝜆𝛾,𝛾 .⊤Set
JΦ, 𝑃K := ⟨JΦK, J𝑃K⟩ ;×Set

Fig. 12. Semantics for the main judgments of directed dinatural type theory.

Theorem 5.1 (Soundness in dinatural transformations). () Each rule in Figure 11 is
validated using the semantics in categories, functors, dipresheaves, dinatural transformations. Inference
rules are interpreted by functions between sets of dinaturals; these are isomorphisms when double-lines
appear. Moreover, every function is natural in all the dipresheaves (both predicates and propositional
contexts) that appear in the rule.

We unpack this theorem by validating and describing the intuition behind each rule, using semantic

brackets J−K to indicate the semantic object denoted by each constructor.

• Structural rules. () Rule (var) is interpreted as the dinatural which projects away the predicate
𝑃 . Moreover, (wk) and (contr) state that dinaturals always compose on the left with, respectively,

the projections and the diagonal map in Set.
• Products. () Dinaturals validate the interpretation of conjunction in (prod) via the pointwise
product of dipresheaves in Set; the bottom sequent indicates the product of sets of dinaturals.

• Polarized implication. () Contrary to naturals and presheaves [50], dinaturals can be

curried directly via the (exp) rule by currying each component of 𝛼 in Set. In the semantics, the

metatheoretical operation Example 2.10 corresponds to swapping arguments in a dipresheaf.

• Reindexing with functors as terms. () Dinaturals can always be “reindexed” by plugging

functors in each index of the component, preserving dinaturality.

, Vol. 1, No. 1, Article . Publication date: October 2018.

https://github.com/iwilare/dinaturality/blob/main/
https://github.com/iwilare/dinaturality/blob/main/All.agda
https://github.com/iwilare/dinaturality/blob/main/Dinaturality/Products.agda
https://github.com/iwilare/dinaturality/blob/main/Dinaturality/Products.agda
https://github.com/iwilare/dinaturality/blob/main/Dinaturality/Exponential.agda
https://github.com/iwilare/dinaturality/blob/main/Dinaturality/Reindexing.agda

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

24 Laretto, Loregian, Veltri

• Cuts naturals-dinaturals. () The two restricted cut rules (cut-din), (cut-nat) correspond
precisely to Lemma 4.4. Intuitively, both rules are stated in such a way that the dipresheaf 𝑃 (in

the middle of the composition) only contains natural occurrences of variables. The use of Γ in

Φ, 𝑄 is unproblematic since one can suitably take the (co)end over Γ to “hide” these variables and

compose naturals together. Associativity, unitality and coherence in Figure 15 are immediate.

The dinatural-into-natural rule (cut-nat) essentially corresponds to vertical composition in Prof
as a virtual equipment [24, 60]: in this type theory, however, contravariant occurrences 𝑎,𝑏 are

allowed to appear in the same predicate 𝑃 (𝑎,𝑏), but in the double-categorical setting they must be

split as 𝑃 (..., 𝑎), 𝑄 (𝑎, 𝑏), 𝑅(𝑏, ...). Note that composing a natural with a dinatural yields a dinatural,
hence the resulting map is always collapsed via Theorem 3.2, e.g., in (cut-nat-id𝑙), (cut-din-id𝑟).

• Directed equality introduction. () The rule (refl) states reflexivity of directed equality, and

is validated semantically by 𝛼𝑥 (ℎ) := id𝑥 . Dinaturality holds since ∀𝑓 : 𝑎 → 𝑏, 𝑓 ; id𝑏 = id𝑎 ; 𝑓 .
• Directed equality elimination. () This rule and its syntactic restriction comes precisely

from Theorem 4.6: in the bottom side of the isomorphism, the dipresheaf 𝑃 is curried on the left

of the turnside but inverting the polarity of 𝑎, 𝑏. This is precisely the propositional context of (𝐽).

Hence, the restriction behind (𝐽) comes from the naturality of the bottom map. Explicitly, given

a dinatural ℎ, the dinatural 𝐽 (ℎ) is defined as follows for indices 𝑎 : JCK, 𝑏 : JCopK, 𝑥 : JΓK:

𝐽 (ℎ)𝑎𝑏𝑥 := 𝜆𝑒, 𝑘.(JΦK(id𝑏, 𝑒, id𝑥 , id𝑥) ; ℎ𝑏𝑥 ; J𝑃K(𝑒, id𝑏, id𝑥 , id𝑥)) (𝑘).
The computation rule clearly holds when 𝑎 = 𝑏 = 𝑧 and 𝑒 = id𝑧 , without the need for dinaturality.

• Dependent hom elimination. ()As shown in Theorem 3.12, the fact that 𝐽 is an isomorphism

characterizes directed equality. In particular, dependent equality elimination is the 𝐽 (𝐽 −1 (𝛼)) = 𝛼
direction, which uses naturality in the proof just like the Yoneda lemma [50, 4.2].

• (Co)ends. () The rules for (co)ends (end) and (coend) express an adjoint-like (up to the

non-composition of dinaturals) correspondence

∫ A[C] ⊣ 𝜋∗
A[C] ⊣

∫
A[C] between the weakening

functor 𝜋∗
A[C] : [C

⋄, Set] → [A⋄ × C⋄, Set] and the functors

∫ A[C]
,
∫

A[C] : [A⋄ × C⋄, Set] →
[C⋄, Set] sending dipresheaves to their (co)end in 𝐴. Semantically, these are simply the bijective

correspondences between (co)wedges and morphisms (out of) into (co)ends, but parameterized

by an additional context of variables Γ. Quantifiers in categorical logic typically have to satisfy

additional requirements in order to faithfully model logical operations: the Beck-Chevalley

condition [43, 1.9.4] states that “quantifiers commute with substitution”, and the Frobenius

condition [43, 1.9.12] logically corresponds to having an additional context Φ in rules for colimit-

like connectives [43, 3.4.4], as in (coend). We show these technical conditions in Theorem F.1.

Theorem 5.2 (Symmetry is not admissible). The statement of symmetry of directed equality in
Remark 3.2 is not admissible in the type theory.

Proof. Add to the signature the category I := {0 → 1} with a unique non-invertible morphism.

By soundness, the lack of symmetry in I implies that symmetry cannot be derived in general. □

The set of all dinaturals can be characterized as an end Dinat(𝑃,𝑄) �
∫
𝑥 :C

𝑃 (𝑥, 𝑥) ⇒ 𝑄 (𝑥, 𝑥);
we prove this in Theorem D.4. We internalize this idea to show that full cut cannot be derived:

Theorem 5.3 (No full cut). A cut rule where Φ, 𝑃,𝑄 are fully unrestricted is not admissible.

Proof. Assuming full cut, the adjoint formulation is equivalent to the rules of natural deduction

of first-order logic, which allows one to derive the following map in the empty context:

[]
∫
𝑥 :C

𝑃 (𝑥, 𝑥) ⇒ 𝑄 (𝑥, 𝑥),
∫
𝑥 :C

𝑄 (𝑥, 𝑥) ⇒ 𝑅(𝑥, 𝑥) ⊢
∫
𝑥 :C

𝑃 (𝑥, 𝑥) ⇒ 𝑅(𝑥, 𝑥)
by soundness of the semantics, this corresponds to composing all dinatural transformations. □

, Vol. 1, No. 1, Article . Publication date: October 2018.

https://github.com/iwilare/dinaturality/blob/main/Dinaturality/Cuts.agda
https://github.com/iwilare/dinaturality/blob/main/Dinaturality/Refl.agda
https://github.com/iwilare/dinaturality/blob/main/Dinaturality/J.agda
https://github.com/iwilare/dinaturality/blob/main/Dinaturality/J-Iso.agda
https://github.com/iwilare/dinaturality/blob/main/Dinaturality/J-Iso.agda

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

Di- is for Directed: First-Order Directed Type Theory via Dinaturality 25

6 Coend calculus via dinaturality
We show how the rules for directed equality and (co)ends can be used to give concise proofs with

a distinctly logical flavor to several central theorems of category theory. The technique we use

mirrors the way (co)end calculus is applied in practical settings (e.g., [15, 40, 74]) via a “Yoneda-like”

series of natural isomorphisms of sets: to prove that two objects 𝐴, 𝐵 :C are isomorphic, one can

assume to have a generic object Φ and then apply a series of isomorphisms of sets natural in Φ to

establish that C(Φ, 𝐴) � C(Φ, 𝐵), from which 𝐴 � 𝐵 follows by the fully faithfulness of the Yoneda

embedding [15, 50]. The same technique can be used to show that functors are naturally isomorphic,

as well as adjunctions, e.g., Examples 6.2 and 6.3. We now show our main examples, with additional

derivations of (co)end calulus in Appendix D, which use Yoneda with Φ on the right side instead.

Remark (Yoneda techniqe and naturality). () All rules given in previous sections are
natural in each of the dipresheaves involved. In the following series of examples no proof ever involves a
“dinatural isomorphism”, since it would not be possible to state the final isomorphism with cuts; natural
isomorphisms between sets of dinaturals are only used as intermediate steps. We show in Appendix G
a spelled-out example of this Yoneda technique in the equational theory by explicitly constructing the
isomorphisms and using naturality of the adjoint-form rules (i.e., they commute with cuts).

Example 6.1 ((co)Yoneda lemma). For any predicate/copresheaf [𝑥 : C] 𝑃 (𝑥) prop, and a predi-

cate/copresheaf [𝑥 : C] Φ(𝑥) propctx acting as generic context, the following derivations capture
the Yoneda lemma [52, Thm. 1] (using the characterization of naturals as an end) and coYoneda

lemma [53, III.7, Theorem 1] (i.e., presheaves are isomorphic to a weighted colimit of representables)

[𝑎 :C] Φ(𝑎) ⊢
∫
𝑥 :C

homC (𝑎, 𝑥) ⇒ 𝑃 (𝑥)
(end)

[𝑎 :C, 𝑥 :C] Φ(𝑎) ⊢ homC (𝑎, 𝑥) ⇒ 𝑃 (𝑥)
(exp)

[𝑎 :C, 𝑥 :C] homC (𝑎, 𝑥),Φ(𝑎) ⊢ 𝑃 (𝑥)
(𝐽)

[𝑧 : C] Φ(𝑧) ⊢ 𝑃 (𝑧)

[𝑎 :C]
∫ 𝑥 :C

homC (𝑥, 𝑎) × 𝑃 (𝑥) ⊢ Φ(𝑎)
(coend)

[𝑎 :C, 𝑥 :C] homC (𝑥, 𝑎) × 𝑃 (𝑥) ⊢ Φ(𝑎)
(𝐽)

[𝑧 : C] 𝑃 (𝑧) ⊢ Φ(𝑧)

Example 6.2 (Presheaves are cartesian closed). For any [C] 𝐴, 𝐵,Φ, the following derivation shows

that the internal hom in the category of presheaves and naturals [50, 6.3.20] defined by (𝐴 ⇒
𝐵) (𝑥) := Nat(hom(𝑥,−) ×𝐴, 𝐵) is indeed the correct one. We show here the tensor/hom adjunction:

[𝑥 : C] Φ(𝑥) ⊢ (𝐴 ⇒ 𝐵) (𝑥) := Nat(homC (𝑥,−) ×𝐴, 𝐵)
=
∫
𝑦:C

homC (𝑥,𝑦) ×𝐴(𝑦) ⇒ 𝐵(𝑦)
(end)

[𝑥 : C, 𝑦 : C] Φ(𝑥) ⊢ homC (𝑥,𝑦) ×𝐴(𝑦) ⇒ 𝐵(𝑦)
(exp)

[𝑥 : C, 𝑦 : C] 𝐴(𝑦) × homC (𝑥,𝑦) × Φ(𝑥) ⊢ 𝐵(𝑦)
(coend)

[𝑦 : C] 𝐴(𝑦) ×
(∫ 𝑥 :C

homC (𝑥,𝑦) × Φ(𝑥)
)
⊢ 𝐵(𝑦)

(coYoneda)
[𝑦 : C] 𝐴(𝑦) × Φ(𝑦) ⊢ 𝐵(𝑦)

We precompose with the (coYoneda) isomorphism given in Example 6.1 (which is a natural isomor-

phism). Note that (𝐽) cannot be applied immediately since 𝑦 appears positively in context in 𝐴(𝑦),
whereas it should be negative to identify it with 𝑥 . The above derivation is a simple application of

our rules via dinaturality, but it is unclear how it can be captured using the proarrow equipment

approach of [60, 85] as an abstract property of Prof, due to the repetition of variables 𝑦,𝑦.

Example 6.3 (Pointwise formula for right Kan extensions). Using our rules, we give a logical proof

that the functor Ran𝐹 : [C, Set] → [D, Set] sending (co)presheaves to their Kan extensions along

, Vol. 1, No. 1, Article . Publication date: October 2018.

https://github.com/iwilare/dinaturality/blob/main/Dinaturality/NaturalityExample.agda

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

26 Laretto, Loregian, Veltri

𝐹 : C → D computed via ends [52, 2.3.6] is right adjoint to precomposition (𝐹 ; −) : [D, Set] →
[C, Set]. We again precompose with the (coYoneda) isomorphism, which we reindex implicitly with

𝐹 . Note the similarity between this derivation and the argument given in [71, 5.6.6] to compute

adjoints in a general doctrine. For any [𝑥 : C] 𝑃 (𝑥), [𝑦 : D] Φ(𝑦), a functor/term 𝐹 : C → D:

[𝑦 : D] Φ(𝑦) ⊢ (Ran𝐹𝑃) (𝑦) :=
∫
𝑥 :C

homD (𝑦, 𝐹 (𝑥)) ⇒ 𝑃 (𝑥)
(end)

[𝑥 : C, 𝑦 : D] Φ(𝑦) ⊢ homD (𝑦, 𝐹 (𝑥)) ⇒ 𝑃 (𝑥)
(exp)

[𝑥 : C, 𝑦 : D] homD (𝑦, 𝐹 (𝑥)) × Φ(𝑦) ⊢ 𝑃 (𝑥)
(coend)

[𝑥 : C]
∫ 𝑦:D

homD (𝑦, 𝐹 (𝑥)) × Φ(𝑦) ⊢ 𝑃 (𝑥)
(coYoneda)

[𝑦 : C] Φ(𝐹 (𝑥)) ⊢ 𝑃 (𝑥)
Example 6.4 (Fubini rule for ends). For conveniencewe only show the case for ends. For [] Φ propctx

in the empty context (i.e., just an object JΦK : Set) and [C,D] 𝑃 prop the following are all equivalent

thanks to the fact that certain structural properties of contexts hold by cartesianness of Cat.

[] Φ ⊢
∫
𝑥 :C

∫
𝑦:D

𝑃 (𝑥, 𝑥,𝑦,𝑦)
(end)

[𝑥 : C] Φ ⊢
∫
𝑦:D

𝑃 (𝑥, 𝑥,𝑦,𝑦)
(end)

[𝑥 : C, 𝑦 : D] Φ ⊢ 𝑃 (𝑥, 𝑥,𝑦,𝑦)
(structural property)

[𝑦 : D, 𝑥 : C] Φ ⊢ 𝑃 (𝑥, 𝑥,𝑦,𝑦)

· · ·
(structural property)

[𝑝 : C × D] Φ ⊢ 𝑃 (𝑝, 𝑝)
(end)

[𝑦 : D] Φ ⊢
∫
𝑥 :C

𝑃 (𝑥, 𝑥,𝑦,𝑦)
(end)

[] Φ ⊢
∫
𝑦:D

∫
𝑥 :C

𝑃 (𝑥, 𝑥,𝑦,𝑦)
(end)

[] Φ ⊢
∫
𝑝 :C×D

𝑃 (𝑥, 𝑥,𝑦,𝑦)

Example 6.5 (⇒ resp. limits). Ends are limits [52], and functors−⇒− : Setop×Set → Set preserve
them (ends/limits in Setop, i.e., coends/colimits in Set). For [] Φ propctx, [] 𝑄 prop, [C] 𝑃 prop:

[] Φ ⊢ 𝑄 ⇒
∫
𝑥 :C

𝑃 (𝑥, 𝑥)
(exp)

[] 𝑄,Φ ⊢
∫
𝑥 :C

𝑃 (𝑥, 𝑥)
(end)

[𝑥 : C] 𝑄,Φ ⊢ 𝑃 (𝑥, 𝑥)
(exp)

[𝑥 : C] Φ ⊢ 𝑄 ⇒ 𝑃 (𝑥, 𝑥)
(end)

[] Φ ⊢
∫
𝑥 :C

(𝑄 ⇒ 𝑃 (𝑥, 𝑥))

[] Φ ⊢ (
∫ 𝑥 :C

𝑃 (𝑥, 𝑥)) ⇒ 𝑄
(exp)

[] (
∫ 𝑥 :C

𝑃 (𝑥, 𝑥)),Φ ⊢ 𝑄
(coend)

[𝑥 : C] 𝑃 (𝑥, 𝑥),Φ ⊢ 𝑄
(exp)

[𝑥 : C] Φ ⊢ 𝑃 (𝑥, 𝑥) ⇒ 𝑄
(end)

[] Φ ⊢
∫
𝑥 :C

𝑃 (𝑥, 𝑥) ⇒ 𝑄

7 Conclusions and future work
In this paper we showed how dinaturality is the key notion to give a simple and natural description

to a first-order directed type theory where types are interpreted as (1-)categories and directed

equality as hom-functors. Our type theory is powerful enough to express theorems about directed

equality in a straightforward way, and to give a distinctly logical interpretation to well-known

theorems in category theory by reinterpreting them under the light of directed type theory.

Dinaturality. The compositionality problem of dinatural transformations is a long-standing and

famously difficult problem [75], which both the category theory and computer science communities

have relatively left unexplored since their introduction in the 1970s [26, 27]. Our work gives a

concrete motivation to further investigate this more than 50-years old mystery by connecting it to

directed type theory. We conjecture that this connection could possibly hint to a deeper directed
homotopical reason [28, 33] for why dinaturals fail to compose. Strong dinaturals [58, 65] are one

possible approach to deal with non-compositionality, but they lack in expressivity, e.g., they are not

, Vol. 1, No. 1, Article . Publication date: October 2018.

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

Di- is for Directed: First-Order Directed Type Theory via Dinaturality 27

closed in general [79]. Following Theorem 4.5, this non-compositionality is intrinsic to the directed

proof-relevant setting, i.e., non-groupoidal categories. We leave investigating the relation between

dinaturality and geometric models of (∞, 1)-categories in the spirit of [34, 73, 84] for future work.

Type dependency. Our treatment of directed equality via dinaturality is a first step towards

understanding the precise interplay of polarity, directedness and variance in fully dependent

Martin-Löf type theory, especially with respect to how polarity of variables is influenced by their

appearance in types, which we conjecture to be particularly non-trivial.

Initiality. The syntactic system presented in this paper could be axiomatized into a suitable

initial object in a category of models that captures the behavior of variables in dinaturals and

naturals (e.g., as in [75]): one possible approach could be to abstractly consider two classes of maps

(dinaturals, naturals) and requiring such maps to interact as in Lemma 4.4.

Doctrines. All of our results can be specialized in the category of posets Pos rather than Cat,
where dinaturals compose trivially and our work provides a “logic of posets”, captured via a

bona fide doctrine, at the cost of trivializing (co)ends with (co)products. This posetal case could

be axiomatized in the style of the doctrinal approach [43, 54], with a notion of directed doctrine
capturing the roles played by variance, the −op

involution, and (di)naturality. This would allow our

syntactic rules to be organized in a well-known structure, with a suitable initiality result.

Internalizing Yoneda. The Yoneda technique for isomorphisms follows from “manually” using

naturality of isomorphisms in the equational theory. One could also get this naturality for free

by making the theory second-order with a universe of propositions Set and adding a directed

univalence statement homSet (𝐴, 𝐵) � 𝐴 ⇒ 𝐵 (as in [4, 34, 84]): this would allow for implication to

be represented as a directed equality, contractible with (𝐽), and “synthetically” reproduce the same

argument as in Example 3.8 by quantifying over all predicates involved.

Higher (co)end calculus. There are other conceptual examples of coend calculus which have

not yet been interpreted in terms of directed equality: for instance, one should be able to express that

composition maps exist for all categories C : Cat, where this quantification can be expressed via a

suitable pseudo-end in Cat [52, 7.1]; similarly, the category of elements of a functor, reminiscent

of a Σ-type, can be given as the pseudo-coend El(𝐹) �
∫ 𝑐 :C

𝑐/C × 𝐹 (𝑐), where 𝑐/C is the coslice

category and 𝐹 (𝑐) is seen as a discrete category [52, 4.2.2]. These examples could be captured by

considering the category of small categories Cat as a suitable universe of types [41].
Enrichment. We do not rely on specific properties of Set (viewed as the base of enrichment

of Cat), other than cartesian closedness to have propositional implication/conjunction and the

existence of (co)limits to express (co)ends. We conjecture that our analysis of dinaturals can be

developed in more generality by taking enriched categories (over a sufficiently structured base of

enrichment) as types, rather than simply categories (enriched over Set).
Implementation.We remark how an implementation of the metatheory of our type-theoretical

system in a proof assistant is non-trivial, since one has to push−op
down into connectives and ensure

that (𝑋 op)op ≡ 𝑋 everywhere in the syntax: in types, contexts, terms, predicates, propositional

contexts. This could be tackled in practice by using QITs [3] and the --rewriting feature of

Agda [21] to simplify op whenever necessary. Another solution would be to have −op
only at the

level of base types, and then derive −op
as a metatheoretical operation on full types; this has the

disadvantage that −op
is not a primitve type former that one can explicitly manipulate in the syntax.

Acknowledgments
The authors thank the reviewers for their detailed suggestions and Paweł Sobociński for invaluable

feedback on the presentation of this work. Loregian was supported by the Estonian Research

Council grant PRG1210. Veltri was supported by the Estonian Research Council grant PSG749.

, Vol. 1, No. 1, Article . Publication date: October 2018.

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

28 Laretto, Loregian, Veltri

References
[1] Benedikt Ahrens, Paige Randall North, and Niels van der Weide. 2022. Semantics for two-dimensional type theory.

In Proceedings of the 37th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS ’22). Association for

Computing Machinery, New York, NY, USA, 1–14. doi:10.1145/3531130.3533334

[2] Benedikt Ahrens, Paige Randall North, and Niels van der Weide. 2023. Bicategorical type theory: semantics and syntax.

Mathematical Structures in Computer Science (Oct. 2023), 1–45. doi:10.1017/S0960129523000312
[3] Thorsten Altenkirch and Ambrus Kaposi. 2016. Type theory in type theory using quotient inductive types. In

Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’16).
Association for Computing Machinery, New York, NY, USA, 18–29. doi:10.1145/2837614.2837638

[4] Thorsten Altenkirch and Jacob Neumann. 2024. Synthetic 1-Categories in Directed Type Theory.

arXiv:2410.19520 [math] doi:10.48550/arXiv.2410.19520 arXiv:2410.19520.

[5] Kazuyuki Asada. 2010. Arrows are strongmonads. In Proceedings of the third ACM SIGPLANworkshop onMathematically
structured functional programming (MSFP ’10). Association for Computing Machinery, New York, NY, USA, 33–42.

doi:10.1145/1863597.1863607

[6] Kazuyuki Asada and Ichiro Hasuo. 2010. Categorifying Computations into Components via Arrows as Profunctors.

Electronic Notes in Theoretical Computer Science 264, 2 (Aug. 2010), 25–45. doi:10.1016/j.entcs.2010.07.012
[7] Steve Awodey and Michael A. Warren. 2009. Homotopy theoretic models of identity types. Mathematical Proceedings

of the Cambridge Philosophical Society 146, 1 (2009), 45–55. doi:10.1017/S0305004108001783

[8] J. Baez and M. Stay. 2010. Physics, Topology, Logic and Computation: A Rosetta Stone. In New Structures for Physics.
Springer, 95–172. arXiv:0903.0340 [quant-ph] doi:10.48550/arxiv.0903.0340

[9] Edwin S. Bainbridge. 1976. Feedback and generalized logic. Information and Control 31, 1 (May 1976), 75–96.

doi:10.1016/S0019-9958(76)90390-9

[10] Edwin S. Bainbridge, Peter J. Freyd, Andre Scedrov, and Philip J. Scott. 1990. Functorial polymorphism. Theoretical
Computer Science 70, 1 (Jan. 1990), 35–64. doi:10.1016/0304-3975(90)90151-7

[11] Richard Blute. 1993. Linear logic, coherence and dinaturality. Theoretical Computer Science 115, 1 (July 1993), 3–41.

doi:10.1016/0304-3975(93)90053-V

[12] R. F. Blute and P. J. Scott. 1996. Linear Läuchli semantics. Annals of Pure and Applied Logic 77, 2 (Jan. 1996), 101–142.
doi:10.1016/0168-0072(95)00017-8

[13] R. F. Blute and P. J. Scott. 1998. The Shuffle Hopf Algebra and Noncommutative Full Completeness. Journal of Symbolic
Logic 63, 4 (1998), 1413–1436. doi:10.2307/2586659

[14] Guillaume Boisseau. 2020. String Diagrams for Optics. In 5th International Conference on Formal Structures for
Computation and Deduction (FSCD 2020) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 167), Zena M.

Ariola (Ed.). Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 17:1–17:18. doi:10.4230/LIPIcs.

FSCD.2020.17

[15] Guillaume Boisseau and Jeremy Gibbons. 2018. What you needa know about Yoneda: profunctor optics and the

Yoneda lemma (functional pearl). Proceedings of the ACM on Programming Languages 2, ICFP (July 2018), 84:1–84:27.

doi:10.1145/3236779

[16] Francis Borceux. 1994. Handbook of Categorical Algebra: Volume 1: Basic Category Theory. Encyclopedia of Mathematics

and its Applications, Vol. 1. Cambridge University Press, Cambridge. doi:10.1017/CBO9780511525858

[17] Claudia Casadio and Philip J. Scott (Eds.). 2021. Joachim Lambek: The Interplay of Mathematics, Logic, and Linguistics.
Springer Verlag, Cham.

[18] Simon Castellan, Pierre Clairambault, and Peter Dybjer. 2020. Categories with Families: Unityped, Simply Typed, and
Dependently Typed. Technical Report. arXiv:1904.00827 doi:10.48550/arXiv.1904.00827 arXiv:1904.00827 [cs] type:

article.

[19] Fernando Chu, Éléonore Mangel, and Paige Randall North. 2024. A directed type theory for 1-categories. In 30th
International Conference on Types for Proofs and Programs TYPES 2024–Abstracts. 205. https://types2024.itu.dk/abstracts.
pdf#page=215

[20] Bryce Clarke, Derek Elkins, Jeremy Gibbons, Fosco Loregian, Bartosz Milewski, Emily Pillmore, and Mario Román.

2022. Profunctor Optics, a Categorical Update. arXiv:2001.07488 [cs.PL] doi:10.48550/arxiv.2001.07488

[21] Jesper Cockx, Nicolas Tabareau, and ThéoWinterhalter. 2021. The taming of the rew: a type theory with computational

assumptions. Proceedings of the ACM on Programming Languages 5, POPL (Jan. 2021), 60:1–60:29. doi:10.1145/3434341

[22] Cyril Cohen, Thierry Coquand, Simon Huber, and Anders Mörtberg. 2015. Cubical Type Theory: A Constructive

Interpretation of the Univalence Axiom. In 21st International Conference on Types for Proofs and Programs (TYPES
2015) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 69), Tarmo Uustalu (Ed.). Schloss Dagstuhl –

Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 5:1–5:34. doi:10.4230/LIPIcs.TYPES.2015.5

[23] Roy L. Crole. 1994. Categories for Types. Cambridge University Press, Cambridge. doi:10.1017/CBO9781139172707

, Vol. 1, No. 1, Article . Publication date: October 2018.

https://doi.org/10.1145/3531130.3533334
https://doi.org/10.1017/S0960129523000312
https://doi.org/10.1145/2837614.2837638
https://arxiv.org/abs/2410.19520
https://doi.org/10.48550/arXiv.2410.19520
https://doi.org/10.1145/1863597.1863607
https://doi.org/10.1016/j.entcs.2010.07.012
https://doi.org/10.1017/S0305004108001783
https://arxiv.org/abs/0903.0340
https://doi.org/10.48550/arxiv.0903.0340
https://doi.org/10.1016/S0019-9958(76)90390-9
https://doi.org/10.1016/0304-3975(90)90151-7
https://doi.org/10.1016/0304-3975(93)90053-V
https://doi.org/10.1016/0168-0072(95)00017-8
https://doi.org/10.2307/2586659
https://doi.org/10.4230/LIPIcs.FSCD.2020.17
https://doi.org/10.4230/LIPIcs.FSCD.2020.17
https://doi.org/10.1145/3236779
https://doi.org/10.1017/CBO9780511525858
https://arxiv.org/abs/1904.00827
https://doi.org/10.48550/arXiv.1904.00827
https://types2024.itu.dk/abstracts.pdf#page=215
https://types2024.itu.dk/abstracts.pdf#page=215
https://arxiv.org/abs/2001.07488
https://doi.org/10.48550/arxiv.2001.07488
https://doi.org/10.1145/3434341
https://doi.org/10.4230/LIPIcs.TYPES.2015.5
https://doi.org/10.1017/CBO9781139172707

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

Di- is for Directed: First-Order Directed Type Theory via Dinaturality 29

[24] G.S.H. Cruttwell and Michael Shulman. 2010. A unified framework for generalized multicategories. Theory Appl.
Categ. 24 (2010), 580–655. arXiv:0907.2460 doi:10.48550/arxiv.0907.2460

[25] Mario Cáccamo and Glynn Winskel. 2001. A Higher-Order Calculus for Categories. In Theorem Proving in Higher Order
Logics (Lecture Notes in Computer Science), Richard J. Boulton and Paul B. Jackson (Eds.). Springer, Berlin, Heidelberg,

136–153. doi:10.1007/3-540-44755-5_11

[26] Eduardo Dubuc and Ross Street. 1970. Dinatural transformations. In Reports of the Midwest Category Seminar IV
(Lecture Notes in Mathematics), S. MacLane, H. Applegate, M. Barr, B. Day, E. Dubuc, Phreilambud, A. Pultr, R. Street,

M. Tierney, and S. Swierczkowski (Eds.). Springer, Berlin, Heidelberg, 126–137. doi:10.1007/BFb0060443

[27] Samuel Eilenberg and G. M Kelly. 1966. A generalization of the functorial calculus. Journal of Algebra 3, 3 (May 1966),

366–375. doi:10.1016/0021-8693(66)90006-8

[28] Lisbeth Fajstrup, Eric Goubault, Emmanuel Haucourt, Samuel Mimram, and Martin Raussen. 2016. Directed Algebraic
Topology and Concurrency. Springer International Publishing. doi:10.1007/978-3-319-15398-8

[29] Peter J. Freyd, E. P. Robinson, and G. Rosolini. 1992. Dinaturality for free. In Applications of Categories in Computer
Science: Proceedings of the London Mathematical Society Symposium, Durham 1991, A. M. Pitts, M. P. Fourman, and P. T.

Johnstone (Eds.). Cambridge University Press, Cambridge, 107–118. doi:10.1017/CBO9780511525902.007

[30] Peter J. Freyd, Edmund P. Robinson, and Giuseppe Rosolini. 1992. Functorial Parametricity. In Proceedings of the
Seventh Annual Symposium on Logic in Computer Science (LICS ’92), Santa Cruz, California, USA, June 22-25, 1992. IEEE
Computer Society, 444–452. doi:10.1109/LICS.1992.185555

[31] Zeinab Galal. 2020. A Profunctorial Scott Semantics. In 5th International Conference on Formal Structures for Computation
and Deduction (FSCD 2020) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 167), Zena M. Ariola (Ed.).

Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 16:1–16:18. doi:10.4230/LIPIcs.FSCD.2020.16

[32] Jean-Yves Girard, Andre Scedrov, and Philip J. Scott. 1992. Normal Forms and Cut-Free Proofs as Natural Trans-

formations. In Logic from Computer Science, Yiannis N. Moschovakis (Ed.). Springer, New York, NY, 217–241.

doi:10.1007/978-1-4612-2822-6_8

[33] Marco Grandis. 2009. Directed Algebraic Topology: Models of Non-Reversible Worlds. Cambridge University Press.

[34] Daniel Gratzer, Jonathan Weinberger, and Ulrik Buchholtz. 2024. Directed univalence in simplicial homotopy type

theory. doi:10.48550/arXiv.2407.09146

[35] Daniel Gratzer, Jonathan Weinberger, and Ulrik Buchholtz. 2025. The Yoneda embedding in simplicial type theory.

doi:10.48550/arXiv.2501.13229

[36] Stefano Guerrini. 2004. Proof Nets and the 𝜆-Calculus. Cambridge University Press, 65–118.

[37] Robert Harper. 2016. Practical Foundations for Programming Languages (2nd ed.). Cambridge University Press, USA.

[38] James Hefford and Cole Comfort. 2023. Coend Optics for Quantum Combs. Electronic Proceedings in Theoretical
Computer Science 380 (Aug. 2023), 63–76. arXiv:2205.09027 [quant-ph] doi:10.4204/EPTCS.380.4

[39] Chris Heunen and Jamie Vicary. 2019. Categories for Quantum Theory: An Introduction. Oxford University

Press. arXiv:https://academic.oup.com/book/43710/book-pdf/50991591/9780191060069_web.pdf doi:10.1093/oso/

9780198739623.001.0001

[40] Ralf Hinze. 2012. Kan Extensions for Program Optimisation Or: Art and Dan Explain an Old Trick. In Mathematics of
Program Construction (Lecture Notes in Computer Science), Jeremy Gibbons and Pablo Nogueira (Eds.). Springer, Berlin,

Heidelberg, 324–362. doi:10.1007/978-3-642-31113-0_16

[41] Martin Hofmann. 1997. Syntax and Semantics of Dependent Types. In Semantics and Logics of Computation, Andrew M.

Pitts and Peter Dybjer (Eds.). Cambridge University Press, Cambridge, 79–130. doi:10.1017/CBO9780511526619.004

[42] Martin Hofmann and Thomas Streicher. 1998. The groupoid interpretation of type theory. In Twenty-five years of
constructive type theory (Venice, 1995), Giovanni Sambin and Jan M Smith (Eds.). Oxford Logic Guides, Vol. 36. Oxford

Univ. Press, New York, 83–111. doi:10.1093/oso/9780198501275.003.0008

[43] Bart P. F. Jacobs. 1999. Categorical Logic and Type Theory. Studies in Logic and the Foundations of Mathematics,

Vol. 141. North-Holland.

[44] Alex Kavvos. 2019. A Quantum of Direction. (2019). https://seis.bristol.ac.uk/~tz20861/papers/meio.pdf

[45] Nikolai Kudasov, Emily Riehl, and Jonathan Weinberger. 2024. Formalizing the ∞-Categorical Yoneda Lemma. In

Proceedings of the 13th ACM SIGPLAN International Conference on Certified Programs and Proofs (London, UK, 2024)
(CPP 2024). Association for Computing Machinery, New York, NY, USA, 274–290. doi:10.1145/3636501.3636945

[46] Joachim Lambek and Philip J. Scott. 1986. Introduction to Higher-Order Categorical Logic. Cambridge Stud-

ies in Advanced Mathematics, Vol. 7. Cambridge University Press. 5https://www.cambridge.org/ee/

academic/subjects/mathematics/logic-categories-and-sets/introduction-higher-order-categorical-logic,https:

//www.cambridge.org/ee/academic/subjects/mathematics/logic-categories-and-sets

[47] F. William Lawvere. 1963. Functorial Semantics of Algebraic Theories. Ph. D. Dissertation. Columbia University.

[48] F. William Lawvere. 1969. Adjointness in Foundations. Dialectica 23, 3/4 (1969), 281–296. https://www.jstor.org/

stable/42969800

, Vol. 1, No. 1, Article . Publication date: October 2018.

https://arxiv.org/abs/0907.2460
https://doi.org/10.48550/arxiv.0907.2460
https://doi.org/10.1007/3-540-44755-5_11
https://doi.org/10.1007/BFb0060443
https://doi.org/10.1016/0021-8693(66)90006-8
https://doi.org/10.1007/978-3-319-15398-8
https://doi.org/10.1017/CBO9780511525902.007
https://doi.org/10.1109/LICS.1992.185555
https://doi.org/10.4230/LIPIcs.FSCD.2020.16
https://doi.org/10.1007/978-1-4612-2822-6_8
https://doi.org/10.48550/arXiv.2407.09146
https://doi.org/10.48550/arXiv.2501.13229
https://arxiv.org/abs/2205.09027
https://doi.org/10.4204/EPTCS.380.4
https://arxiv.org/abs/https://academic.oup.com/book/43710/book-pdf/50991591/9780191060069_web.pdf
https://doi.org/10.1093/oso/9780198739623.001.0001
https://doi.org/10.1093/oso/9780198739623.001.0001
https://doi.org/10.1007/978-3-642-31113-0_16
https://doi.org/10.1017/CBO9780511526619.004
https://doi.org/10.1093/oso/9780198501275.003.0008
https://seis.bristol.ac.uk/~tz20861/papers/meio.pdf
https://doi.org/10.1145/3636501.3636945
5https://www.cambridge.org/ee/academic/subjects/mathematics/logic-categories-and-sets/introduction-higher-order-categorical-logic, https://www.cambridge.org/ee/academic/subjects/mathematics/logic-categories-and-sets
5https://www.cambridge.org/ee/academic/subjects/mathematics/logic-categories-and-sets/introduction-higher-order-categorical-logic, https://www.cambridge.org/ee/academic/subjects/mathematics/logic-categories-and-sets
5https://www.cambridge.org/ee/academic/subjects/mathematics/logic-categories-and-sets/introduction-higher-order-categorical-logic, https://www.cambridge.org/ee/academic/subjects/mathematics/logic-categories-and-sets
https://www.jstor.org/stable/42969800
https://www.jstor.org/stable/42969800

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

30 Laretto, Loregian, Veltri

[49] F. William Lawvere. 1970. Equality in hyperdoctrines and comprehension schema as an adjoint functor. In Applications
of Categorical Algebra, A. Heller (Ed.). American Mathematical Society, Providence, R.I., 1–14.

[50] Tom Leinster. 2014. Basic Category Theory. Cambridge University Press, Cambridge. doi:10.1017/CBO9781107360068

[51] Daniel R. Licata and Robert Harper. 2011. 2-Dimensional Directed Type Theory. Electronic Notes in Theoretical
Computer Science 276 (Sept. 2011), 263–289. doi:10.1016/j.entcs.2011.09.026

[52] Fosco Loregian. 2021. (Co)end Calculus. Cambridge University Press, Cambridge. doi:10.1017/9781108778657

[53] Saunders Mac Lane. 1998. Categories for the Working Mathematician (2nd ed.). Graduate Texts in Mathematics, Vol. 5.

Springer-Verlag New York. xii+314 pages. doi:10.1007/978-1-4757-4721-8

[54] Maria Emilia Maietti and Giuseppe Rosolini. 2015. Unifying Exact Completions. Applied Categorical Structures 23, 1
(Feb. 2015), 43–52. doi:10.1007/s10485-013-9360-5

[55] Guy McCusker and Alessio Santamaria. 2021. Composing dinatural transformations: Towards a calculus of substitution.

Journal of Pure and Applied Algebra 225, 10 (Oct. 2021), 106689. doi:10.1016/j.jpaa.2021.106689
[56] Samuel Mimram. 2020. Program = Proof. Independently Published. https://books.google.ee/books?id=nzZzzgEACAAJ

[57] Eugenio Moggi. 1991. Notions of computation and monads. Information and Computation 93, 1 (1991), 55 – 92.

Selections from 1989 IEEE Symposium on Logic in Computer Science.

[58] Jacob Neumann. 2023. Paranatural Category Theory. Technical Report. arXiv:2307.09289 doi:10.48550/arXiv.2307.09289
arXiv:2307.09289.

[59] Jacob Neumann. 2025. A Generalized Algebraic Theory of Directed Equality. Ph. D. Dissertation.
[60] Max S. New and Daniel R. Licata. 2023. A Formal Logic for Formal Category Theory. In Foundations of Software

Science and Computation Structures (Lecture Notes in Computer Science), Orna Kupferman and Pawel Sobocinski (Eds.).

Springer Nature Switzerland, 113–134. doi:10.1007/978-3-031-30829-1_6

[61] Paige Randall North. 2019. Towards a Directed Homotopy Type Theory. Electronic Notes in Theoretical Computer
Science 347 (Nov. 2019), 223–239. doi:10.1016/j.entcs.2019.09.012

[62] Paige Randall North and Fernando Chu. 2025. Dependent two-sided fibrations for directed type theory. (2025).

[63] Andreas Nuyts. 2015. Towards a Directed Homotopy Type Theory based on 4 Kinds of Variance. Master’s thesis. KU

Leuven.

[64] Andreas Nuyts. 2023. Higher Pro-arrows: Towards a Model for Naturality Pretype Theory. (2023).

[65] Robert Paré and Leopoldo Román. 1998. Dinatural numbers. Journal of Pure and Applied Algebra 128, 1 (June 1998),
33–92. doi:10.1016/S0022-4049(97)00036-4

[66] Zoran Petrić. 2003. G-dinaturality. Annals of Pure and Applied Logic 122, 1 (Aug. 2003), 131–173. doi:10.1016/S0168-
0072(03)00003-4

[67] Paolo Pistone. 2017. On Dinaturality, Typability and beta-eta-Stable Models. In 2nd International Conference on Formal
Structures for Computation and Deduction (FSCD 2017) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 84),
Dale Miller (Ed.). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 29:1–29:17. doi:10.4230/

LIPIcs.FSCD.2017.29

[68] Paolo Pistone. 2018. Proof nets, coends and the Yoneda isomorphism. In Proceedings Joint International Workshop on
Linearity & Trends in Linear Logic and Applications, Linearity-TLLA@FLoC 2018, Oxford, UK, 7-8 July 2018 (EPTCS,
Vol. 292), Thomas Ehrhard, Maribel Fernández, Valeria de Paiva, and Lorenzo Tortora de Falco (Eds.). 148–167.

doi:10.4204/EPTCS.292.9

[69] Paolo Pistone. 2019. On completeness and parametricity in the realizability semantics of System F. Logical Methods in
Computer Science Volume 15, Issue 4 (Oct. 2019). doi:10.23638/LMCS-15(4:6)2019

[70] Paolo Pistone and Luca Tranchini. 2021. The Yoneda Reduction of Polymorphic Types. In 29th EACSL Annual Conference
on Computer Science Logic (CSL 2021) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 183), Christel Baier
and Jean Goubault-Larrecq (Eds.). Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 35:1–35:22.

doi:10.4230/LIPIcs.CSL.2021.35

[71] Andrew M. Pitts. 1995. Categorical logic. In Handbook of Logic in Computer Science: Volume 5: Logic and Algebraic
Methods, S. Abramsky, D. M. Gabbay, and T. S. E. Maibaum (Eds.). Oxford University Press, 39–123. doi:10.1093/oso/

9780198537816.003.0002

[72] Gordon Plotkin andMartín Abadi. 1993. A logic for parametric polymorphism. In Typed Lambda Calculi andApplications,
Marc Bezem and Jan Friso Groote (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 361–375.

[73] Emily Riehl and Michael Shulman. 2017. A type theory for synthetic ∞-categories. Higher structures 1, 1 (2017).

arXiv:1705.07442.

[74] Mario Román. 2020. Open Diagrams via Coend Calculus. In Electronic Proceedings in Theoretical Computer Science,
Vol. 333. 65–78. arXiv:2004.04526v4 doi:10.4204/EPTCS.333.5

[75] Alessio Santamaria. 2019. Towards a Godement calculus for dinatural transformations. Ph. D. Dissertation. University
of Bath. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.787523

, Vol. 1, No. 1, Article . Publication date: October 2018.

https://doi.org/10.1017/CBO9781107360068
https://doi.org/10.1016/j.entcs.2011.09.026
https://doi.org/10.1017/9781108778657
https://doi.org/10.1007/978-1-4757-4721-8
https://doi.org/10.1007/s10485-013-9360-5
https://doi.org/10.1016/j.jpaa.2021.106689
https://books.google.ee/books?id=nzZzzgEACAAJ
https://arxiv.org/abs/2307.09289
https://doi.org/10.48550/arXiv.2307.09289
https://doi.org/10.1007/978-3-031-30829-1_6
https://doi.org/10.1016/j.entcs.2019.09.012
https://doi.org/10.1016/S0022-4049(97)00036-4
https://doi.org/10.1016/S0168-0072(03)00003-4
https://doi.org/10.1016/S0168-0072(03)00003-4
https://doi.org/10.4230/LIPIcs.FSCD.2017.29
https://doi.org/10.4230/LIPIcs.FSCD.2017.29
https://doi.org/10.4204/EPTCS.292.9
https://doi.org/10.23638/LMCS-15(4:6)2019
https://doi.org/10.4230/LIPIcs.CSL.2021.35
https://doi.org/10.1093/oso/9780198537816.003.0002
https://doi.org/10.1093/oso/9780198537816.003.0002
https://arxiv.org/abs/2004.04526v4
https://doi.org/10.4204/EPTCS.333.5
https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.787523

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

Di- is for Directed: First-Order Directed Type Theory via Dinaturality 31

[76] P. J. Scott. 2000. Some aspects of categories in computer science. Handbook of Algebra, Vol. 2. North-Holland, 3–77.

doi:10.1016/S1570-7954(00)80027-3

[77] Michael Shulman. 2016. Categorical Logic from a Categorical Point of View. https://github.com/mikeshulman/catlog

[78] The Univalent Foundations Program. 2013. Homotopy Type Theory: Univalent Foundations of Mathematics. https:
//homotopytypetheory.org/book, Institute for Advanced Study.

[79] Tarmo Uustalu. 2010. A Note on Strong Dinaturality, Initial Algebras and Uniform Parameterized Fixpoint Operators.

In 7th Workshop on Fixed Points in Computer Science, FICS 2010, Brno, Czech Republic, August 21-22, 2010, Luigi
Santocanale (Ed.). Laboratoire d’Informatique Fondamentale de Marseille, 77–82. https://hal.archives-ouvertes.fr/hal-

00512377/document#page=78

[80] Tarmo Uustalu, Niccolò Veltri, and Noam Zeilberger. 2020. Eilenberg-Kelly Reloaded. Electronic Notes in Theoretical
Computer Science 352 (Oct. 2020), 233–256. doi:10.1016/j.entcs.2020.09.012

[81] Benno van den Berg and Richard Garner. 2010. Types are weak 𝜔-groupoids. Proceedings of the London Mathematical
Society 102, 2 (Oct. 2010), 370–394. arXiv:https://academic.oup.com/plms/article-pdf/102/2/370/4487337/pdq026.pdf

doi:10.1112/plms/pdq026

[82] Janis Voigtländer. 2020. Free Theorems Simply, via Dinaturality. In Declarative Programming and Knowledge Manage-
ment, Petra Hofstedt, Salvador Abreu, Ulrich John, Herbert Kuchen, and Dietmar Seipel (Eds.). Springer International

Publishing, Cham, 247–267. doi:10.1007/978-3-030-46714-2_16

[83] Matthew Weaver. 2024. Bicubical Directed Type Theory. Ph. D. Dissertation. https://dataspace.princeton.edu/handle/

88435/dsp017s75dg778

[84] Matthew Z. Weaver and Daniel R. Licata. 2020. A Constructive Model of Directed Univalence in Bicubical Sets.

In Proceedings of the 35th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS ’20). Association for

Computing Machinery, New York, NY, USA, 915–928. doi:10.1145/3373718.3394794

[85] R. J. Wood. 1982. Abstract proarrows I. Cahiers de topologie et géometrie différentielle categoriques 23, 3 (1982), 279–290.

, Vol. 1, No. 1, Article . Publication date: October 2018.

https://doi.org/10.1016/S1570-7954(00)80027-3
https://github.com/mikeshulman/catlog
https://homotopytypetheory.org/book
https://homotopytypetheory.org/book
https://hal.archives-ouvertes.fr/hal-00512377/document#page=78
https://hal.archives-ouvertes.fr/hal-00512377/document#page=78
https://doi.org/10.1016/j.entcs.2020.09.012
https://arxiv.org/abs/https://academic.oup.com/plms/article-pdf/102/2/370/4487337/pdq026.pdf
https://doi.org/10.1112/plms/pdq026
https://doi.org/10.1007/978-3-030-46714-2_16
https://dataspace.princeton.edu/handle/88435/dsp017s75dg778
https://dataspace.princeton.edu/handle/88435/dsp017s75dg778
https://doi.org/10.1145/3373718.3394794

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

32 Laretto, Loregian, Veltri

A Additional judgments for first-order dinatural directed type theory
The rules to formally capture the variance of variables in predicates is given in Figure 14, with the

accompanying definition of unused variables in terms in Figure 13.

We show in Figure 15 the full rules in the equational theory regarding cuts. In Figure 16 we

explicitly illustrate what a bidirectional rule in “adjoint-form” looks like, by explicitly listing the

two directions, the isomorphisms and the naturality conditions.

Γ ∋ 𝑥 : A unused in 𝑡 : C
Γ ∋ 𝑥 : C 𝑥 ≠ 𝑦

Γ ∋ 𝑦 : C unused in𝑥 : C Γ ∋ 𝑥 : A unused in ! : ⊤
Γ ∋ 𝑥 : A unused in 𝑡 : dom(𝑓)

Γ ∋ 𝑥 : A unused in 𝑓 (𝑡) : cod(𝑓)
Γ ∋ 𝑥 : A unused in 𝑡 : C

Γop ∋ 𝑥 : Aop unused in 𝑡op : Cop

Γ ∋ 𝑥 : A unused in 𝑠 : C Γ ∋ 𝑥 : A unused in 𝑡 : D
Γ ∋ 𝑥 : A unused in ⟨𝑠, 𝑡⟩ : C × D

Γ ∋ 𝑥 : A unused in𝑝 : C × D

Γ ∋ 𝑥 : A unused in𝜋1 (𝑝) : C

Γ ∋ 𝑥 : A unused in𝑝 : C × D

Γ ∋ 𝑥 : A unused in𝜋2 (𝑝) : D

Γ ∋ 𝑥 : A unused in 𝑠 : [C,D] Γ ∋ 𝑥 : A unused in 𝑡 : C

Γ ∋ 𝑥 : A unused in 𝑠 · 𝑡 : D

Γ, 𝑥 : C ⊢ 𝑡 (𝑥) : D

Γ ∋ 𝑥 : A unused in 𝜆𝑥 .𝑡 (𝑥) : [C,D]

Fig. 13. Syntax of first-order dinatural directed type theory – syntactically unused variables in terms.

Γ ∋ 𝑥 : A cov in𝜑

Γ ∋ 𝑥 : A cov in 𝑃 Γ ∋ 𝑥 : A cov in𝑄

Γ ∋ 𝑥 : A cov in 𝑃 ×𝑄
Γop ∋ 𝑥 : Aop cov in 𝑃 Γ ∋ 𝑥 : A cov in𝑄

Γ ∋ 𝑥 : A cov in 𝑃 ⇒ 𝑄

Γ ∋ 𝑥 : A cov in⊤

Γ, 𝑦 : C ∋ 𝑥 : A cov in𝜑

Γ ∋ 𝑥 : A cov in
∫ 𝑦:C

𝜑 (𝑦,𝑦)

Γ, 𝑦 : C ∋ 𝑥 : A cov in𝜑

Γ ∋ 𝑥 : A cov in
∫
𝑦:C

𝜑 (𝑦,𝑦)

Γop, Γ ∋ 𝑥 : Aop unused in 𝑠 : Cop Γop, Γ ∋ 𝑥 : Aop unused in 𝑡 : C

Γ ∋ 𝑥 : A cov in homC (𝑠, 𝑡)

Γop, Γ ∋ 𝑥 : Aop unused in 𝑠 : neg(𝑃)op Γop, Γ ∋ 𝑥 : Aop unused in 𝑡 : pos(𝑃)
Γ ∋ 𝑥 : A cov in 𝑃 (𝑠 | 𝑡)

A = A′ 𝜑 = 𝜑 ′ Γ ∋ 𝑥 : A cov in𝜑

Γ ∋ 𝑥 : A′ cov in𝜑 ′

Γ ∋ 𝑥 : A contra in𝜑

Γop ∋ 𝑥 : Aop contra in𝜑op

Γ ∋ 𝑥 : A contra in𝜑

Fig. 14. Syntax of first-order dinatural directed type theory – syntactic conditions for covariant/contravariant
variables in predicates.

, Vol. 1, No. 1, Article . Publication date: October 2018.

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

Di- is for Directed: First-Order Directed Type Theory via Dinaturality 33

[Γ] Φ ⊢ 𝛼 = 𝛽 : 𝑃 · · ·

Γ unused in 𝑃 and 𝑄
[𝑎 : Δop, 𝑏 : Δ, 𝑥 : Γ] Φ(𝑎, 𝑏, 𝑥, 𝑥) ⊢ 𝛼 : 𝑃 (𝑎, 𝑏)

[𝑧 : Δ, 𝑥 : Γ] 𝑘 : 𝑃 (𝑧, 𝑧),Φ(𝑧, 𝑧, 𝑥, 𝑥) ⊢ 𝛾 [𝑘] : 𝑄 (𝑧, 𝑧)
[𝑎 : Δop, 𝑏 : Δ, 𝑥 : Γ] 𝑘 : 𝑄 (𝑎, 𝑏),Φ(𝑏, 𝑎, 𝑥, 𝑥) ⊢ 𝛽 [𝑘] : 𝑅(𝑎, 𝑏, 𝑥, 𝑥)

(assoc-nat-din-nat)
[𝑧 : Δ, 𝑥 : Γ] Φ(𝑧, 𝑧, 𝑥, 𝑥) ⊢ (𝛽 [𝛾]) [𝛼] = 𝛽 [𝛾 [𝛼]] : 𝑅(𝑧, 𝑧, 𝑥, 𝑥)

Γ unused in 𝑃, Δ unused in Φ
[𝑎 : Δ] 𝑘 : 𝑃 (𝑎),Φ ⊢ 𝛼 [𝑘] : 𝑄 (𝑎)
[𝑎 : Δ] 𝑟 : 𝑄 (𝑎),Φ ⊢ 𝛽 [𝑟] : 𝑅(𝑎)

(cut-coherence)
[𝑎 : Δ] 𝑘 : 𝑃 (𝑎),Φ ⊢ 𝛽 [𝛼]cut-nat = 𝛽 [𝛼]cut-din : 𝑄 (𝑎)

Γ unused in 𝑃
[𝑧 : Δ, 𝑥 : Γ] 𝑘 : 𝑃 (𝑧, 𝑧),Φ(𝑧, 𝑧, 𝑥, 𝑥) ⊢ 𝑘 : 𝑃 (𝑧, 𝑧)

[𝑎 : Δop, 𝑏 : Δ, 𝑥 : Γ] 𝑃 (𝑎, 𝑏),Φ(𝑏, 𝑎, 𝑥, 𝑥) ⊢ 𝛼 : 𝑄 (𝑎, 𝑏)
(cut-nat-id𝑙)

[𝑧 : Δ, 𝑥 : Γ] 𝑃 (𝑧, 𝑧),Φ(𝑧, 𝑧, 𝑥, 𝑥) ⊢ 𝛼 [𝑘] = 𝛼𝑎,𝑏 ↦→𝑧
: 𝑄 (𝑧, 𝑧)

Γ unused in 𝑄
[𝑧 : Δ, 𝑥 : Γ] Φ(𝑧, 𝑧, 𝑥, 𝑥) ⊢ 𝛼 : 𝑄 (𝑧, 𝑧)

[𝑎 : Δop, 𝑏 : Δ, 𝑥 : Γ] 𝑘 : 𝑃 (𝑎, 𝑏),Φ(𝑏, 𝑎, 𝑥, 𝑥) ⊢ 𝑘 : 𝑃 (𝑎, 𝑏)
(cut-nat-id𝑟)[𝑧 : Δ, 𝑥 : Γ] Φ(𝑧, 𝑧, 𝑥, 𝑥) ⊢ 𝑘 [𝛼] = 𝛼 : 𝑄 (𝑧, 𝑧)

Γ unused in 𝑃
[𝑎 : Δop, 𝑏 : Δ, 𝑥 : Γ] 𝑘 : 𝑃 (𝑎, 𝑏),Φ(𝑎, 𝑏, 𝑥, 𝑥) ⊢ 𝑘 : 𝑃 (𝑎, 𝑏)

[𝑧 : Δ, 𝑥 : Γ] 𝑃 (𝑧, 𝑧),Φ(𝑧, 𝑧, 𝑥, 𝑥) ⊢ 𝛼 : 𝑄 (𝑧, 𝑧)
(cut-din-id𝑙)[𝑧 : Δ, 𝑥 : Γ] 𝑃 (𝑧, 𝑧),Φ(𝑧, 𝑧, 𝑥, 𝑥) ⊢ 𝛼 [𝑘] = 𝛼 : 𝑄 (𝑧, 𝑧)

Γ unused in 𝑄
[𝑎 : Δop, 𝑏 : Δ, 𝑥 : Γ] Φ(𝑎, 𝑏, 𝑥, 𝑥) ⊢ 𝛼 : 𝑄 (𝑎, 𝑏)

[𝑧 : Δ, 𝑥 : Γ] 𝑘 : 𝑄 (𝑧, 𝑧),Φ(𝑧, 𝑧, 𝑥, 𝑥) ⊢ 𝑘 : 𝑄 (𝑧, 𝑧)
(cut-din-id𝑟)

[𝑧 : Δ, 𝑥 : Γ] Φ(𝑧, 𝑧, 𝑥, 𝑥) ⊢ 𝑘 [𝛼] = 𝛼𝑎,𝑏 ↦→𝑧
: 𝑄 (𝑧, 𝑧)

Fig. 15. Syntax of first-order directed type theory – Equational rules for cuts: associativity for natural-
dinatural-natural cuts, coherence for cuts between naturals, left and right identities for cut.

, Vol. 1, No. 1, Article . Publication date: October 2018.

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

34 Laretto, Loregian, Veltri

[Γ] Φ ⊢ 𝛼 : 𝑃 · · ·

[𝑥 : C, Γ] Φ ⊢ 𝛼 : 𝑃 (𝑥, 𝑥)
(end)

[Γ] Φ ⊢ end(𝛼) :
∫
𝑥 :C

𝑃 (𝑥, 𝑥)
[Γ] Φ ⊢ 𝛼 :

∫
𝑥 :C

𝑃 (𝑥, 𝑥)
(end−1)

[𝑥 : C, Γ] Φ ⊢ end−1 (𝛼) : 𝑃 (𝑥, 𝑥)

[Γ] Φ ⊢ 𝛼 = 𝛽 : 𝑃 · · ·

[𝑥 : C, Γ] Φ ⊢ 𝛼 : 𝑃 (𝑥, 𝑥)
[𝑥 : C, Γ] Φ ⊢ end−1 (end(𝛼)) = 𝛼 : 𝑃 (𝑥, 𝑥)

[Γ] Φ ⊢ 𝛼 :

∫
𝑥 :C

𝑃 (𝑥, 𝑥)

[Γ] Φ ⊢ end(end−1 (𝛼)) = 𝛼 :

∫
𝑥 :C

𝑃 (𝑥, 𝑥)

[𝑧 : Δ, Γ] Φ(𝑧, 𝑧) ⊢ 𝛽 : 𝑄 (𝑧, 𝑧)
[𝑎 : Δop, 𝑏 : Δ, 𝑥 : C, Γ] 𝑘 : 𝑄 (𝑎, 𝑏),Φ(𝑎, 𝑏) ⊢ 𝛼 : 𝑃 (𝑥, 𝑥, 𝑎, 𝑏)

(end-nat𝑙)
[𝑥 : C, 𝑧 : Δ, Γ] Φ(𝑧, 𝑧) ⊢ end(𝛼) [𝛽] = end(𝛼 [𝛽]) :

∫
𝑥 :C

𝑃 (𝑥, 𝑥, 𝑧, 𝑧)

[𝑎 : Δop, 𝑏 : Δ, Γ] Φ(𝑎, 𝑏) ⊢ 𝛽 : 𝑄 (𝑎, 𝑏)
[𝑥 : C, 𝑧 : Δ, Γ] 𝑘 : 𝑄 (𝑧, 𝑧),Φ(𝑧, 𝑧) ⊢ 𝛼 : 𝑃 (𝑥, 𝑥, 𝑧, 𝑧)

(end-din𝑙)
[𝑥 : C, 𝑧 : Δ, Γ] Φ(𝑧, 𝑧) ⊢ end(𝛼) [𝛽] = end(𝛼 [𝛽]) :

∫
𝑥 :C

𝑃 (𝑥, 𝑥, 𝑧, 𝑧)

[𝑥1 :Cop, 𝑥2 :C, 𝑎 :Δop, 𝑏 :Δ] 𝑃 (𝑥1, 𝑥2, 𝑎, 𝑏) ⊢ 𝛽 : 𝑃 ′ (𝑥1, 𝑥2, 𝑎, 𝑏)
[𝑥 : C, 𝑧 : Δ] Φ(𝑧, 𝑧) ⊢ 𝛼 : 𝑃 (𝑥, 𝑥, 𝑧, 𝑧)

(end-din𝑟)
[𝑧 : Δ] Φ(𝑧, 𝑧) ⊢ end𝐹 (𝛽) [end(𝛼)] = end(𝛽 [𝛼]) :

∫
𝑥 :C

𝑃 ′ (𝑥, 𝑥, 𝑧, 𝑧)

[𝑥1 :Cop, 𝑥2 :C, 𝑧 :Δ] 𝑄 (𝑥1, 𝑥2, 𝑧, 𝑧) ⊢ 𝛽 : 𝑃 ′ (𝑥1, 𝑥2, 𝑧, 𝑧)
[𝑥 : C, 𝑎 : Δop, 𝑏 : Δ] Φ(𝑎, 𝑏) ⊢ 𝛼 : 𝑄 (𝑥, 𝑥, 𝑎, 𝑏)

(end-nat𝑟)
[𝑎 : Δop, 𝑏 : Δ] Φ(𝑎, 𝑏) ⊢ end𝐹 (𝛽) [end(𝛼)] = end(𝛽 [𝛼]) :

∫
𝑥 :C

𝑃 ′ (𝑥, 𝑥, 𝑎, 𝑏)

Fig. 16. Syntax of first-order directed type theory – Explicit description of a rule in “adjoint-form”, e.g., for
ends: rules, isomorphisms, and naturality in Φ, 𝑃 for (end). Naturality in 𝑃 uses functoriality in Figure 17.

[𝑎 : Cop, 𝑏 : C, Γ] 𝑘 : 𝑃 (𝑎, 𝑏) ⊢ 𝛼 [𝑘] : 𝑃 (𝑎, 𝑏)

[𝑥 : C, Γ] 𝑝 :

∫
𝑥 :C

𝑃 (𝑥, 𝑥) ⊢ end𝐹 (𝛼) := end(𝛼 [end−1 (𝑝)])

= end(𝛼) [end−1 (𝑝)] :
∫
𝑥 :C

𝑃 (𝑥, 𝑥)

Fig. 17. Functoriality of ends for naturals by precomposing with the counit of (end).

, Vol. 1, No. 1, Article . Publication date: October 2018.

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

Di- is for Directed: First-Order Directed Type Theory via Dinaturality 35

B Directed type theory, other derivations
Example B.1 (Contractibility of singletons). Recall the derivation for existence of singletons:

[] · ⊢ end(coend−1 (𝑘) [refl𝑥]) :
∫
𝑥 :Cop

∫ 𝑦:C

homC (𝑥,𝑦)

Wenow show that singletons are actually contractible: assuming another element𝑘 :

∫ 𝑦:C

homC (𝑥,𝑦),
we show that it is equal to the the one given in the first derivation (after removing the universal

quantifier). Note that the right-hand side must cut away the hypothesis 𝑘 by precomposing with

the constant dinatural !. In the bottom of the derivation we use the fact that the isomorphisms for

coends are natural with respect to the cut rules of our type theory. In the top of the derivation

we omit for simplicity an application of associativity of cuts and uniqueness of ! which is used to

remove the application of 𝐽 −1.

(refl)
[𝑧 : C] • ⊢ coend−1 (𝑘) [refl𝑧] = coend−1 (𝑘) [refl𝑧] : · · ·

(!-unique)+(assoc-nat-din-nat)
[𝑧 : C] • ⊢ coend−1 (𝑘) [refl𝑧] = coend−1 (𝑘) [refl𝑧] [!] [refl𝑧] : · · ·

(𝐽 -eq)
[𝑥 : Cop, 𝑦 : C] 𝑘 : homC (𝑥,𝑦) ⊢ coend−1 (𝑘) = coend−1 (𝑘) [refl𝑥] [!] : · · ·

(!-unique)
· · · = coend−1 (𝑘) [refl𝑥] [coend−1 (!)] : · · ·

(coend-natural)
[𝑥 : Cop, 𝑦 : C] 𝑘 : homC (𝑥,𝑦) ⊢ coend−1 (𝑠) = coend−1 (coend−1 (𝑘) [refl𝑥] [!]) : · · ·

(coend)

[𝑥 : Cop] 𝑘 :

∫ 𝑦:C

homC (𝑥,𝑦) ⊢ 𝑘 = coend−1 (𝑘) [refl𝑥] [!] :
∫ 𝑦:C

homC (𝑥,𝑦)

Example B.2 (Internal naturality for natural transformations). We show that naturality for natural

transformations between terms, expressed as ends [52, 1.4.1], holds internally by directed equality

elimination. Given terms C ⊢ 𝐹,𝐺 : D, we use the counit of (end) to extract the family of hom-sets.

We first explicitly show the rules used to construct the two sides of a naturality square:

[𝑎 : Cop, 𝑏 : C] 𝑓 : homC (𝑎, 𝑏), 𝜂 :

∫
𝑥 :C

homD 𝐹 (𝑥),𝐺 (𝑥) ⊢ 𝜂 :

∫
𝑥 :C

hom(𝐹 (𝑥),𝐺 (𝑥))
(end−1)

[𝑎 : Cop, 𝑏 : C, 𝑥 : C] 𝑓 : homC (𝑎, 𝑏), 𝜂 : ... ⊢ end−1 (𝜂) : hom(𝐹 (𝑥),𝐺 (𝑥))
(idx)

[𝑎 : Cop, 𝑏 : C] 𝑓 : homC (𝑎, 𝑏), 𝜂 : ... ⊢ Δ∗ (end−1 (𝜂)) : hom(𝐹 (𝑎),𝐺 (𝑎))
(cut-nat)

[𝑎 : Cop, 𝑏 : C] 𝑓 : homC (𝑎, 𝑏), 𝜂 : ... ⊢ comp[Δ∗ (end−1 (𝜂)), cong𝐺 [𝑓]] : hom(𝐹 (𝑎),𝐺 (𝑏))
where Δ∗

is the reindexing functor which collapses 𝑎, 𝑥 to a single variable 𝑎, and (cut-nat) is used
to apply comp on cong for 𝐺 . This composition can be done since both cong and comp have the

correct naturality shape that allows for (cut-nat) to be applied.

The other derivation is obtained similarly:

[𝑎 : Cop, 𝑏 : C] 𝑓 : homC (𝑎, 𝑏), 𝜂 :

∫
𝑥 :C

homD 𝐹 (𝑥),𝐺 (𝑥) ⊢ 𝜂 :

∫
𝑥 :C

hom(𝐹 (𝑥),𝐺 (𝑥))
(end−1)

[𝑎 : Cop, 𝑏 : C, 𝑥 : C] 𝑓 : homC (𝑎, 𝑏), 𝜂 : ... ⊢ end−1 (𝜂) : hom(𝐹 (𝑥),𝐺 (𝑥))
(idx)

[𝑎 : Cop, 𝑏 : C] 𝑓 : homC (𝑎, 𝑏), 𝜂 : ... ⊢ Δ∗ (end−1 (𝜂)) : hom(𝐹 (𝑏),𝐺 (𝑏))
(cut-nat)

[𝑎 : Cop, 𝑏 : C] 𝑓 : homC (𝑎, 𝑏), 𝜂 : ... ⊢ comp[cong𝐹 [𝑓],Δ∗ (end−1 (𝜂))] : hom(𝐹 (𝑎),𝐺 (𝑏))
We show that the two maps constructed, corresponding to the two sides of a naturality square,

are equal using directed equality elimination; let 𝐾 := Δ∗ (end−1 (𝜂)):

, Vol. 1, No. 1, Article . Publication date: October 2018.

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

36 Laretto, Loregian, Veltri

[𝑧 : C] ... ⊢ 𝐾 = 𝐾 : hom(𝐹 (𝑧),𝐺 (𝑧))
(𝐽 -comp)

[𝑧 : C] ... ⊢ comp[refl𝑧, 𝐾] = comp[𝐾, refl𝑧] : hom(𝐹 (𝑧),𝐺 (𝑧))
(𝐽 -comp)

[𝑧 : C] ... ⊢ comp[cong𝐹 [refl𝑧], 𝐾] = comp[𝐾, cong𝐺 [refl𝑧]] : hom(𝐹 (𝑧),𝐺 (𝑧))
(𝐽 -eq)

[𝑎 : Cop, 𝑏 : C] 𝑓 : homC (𝑎, 𝑏), ... ⊢ comp[cong𝐹 [𝑓], 𝐾] = comp[𝐾, cong𝐺 [𝑓]] : hom(𝐹 (𝑎),𝐺 (𝑏))
where the equations used follow by the computation rules for cong and left and right unitality of

comp. Note that (𝐽 -eq) can be used since 𝑎, 𝑏 appear precisely with the correct types that allow for

(𝐽) to be applied to contract the equality.

This naturality can then be used to prove a suitable internal Yoneda lemma for the hom of

categories by following the standard argument, e.g., given in [50].

Example B.3 (Identity natural transformation). We show the existence of the identity natural

transformation for terms, given a functor C ⊢ 𝐹 : D:

(refl)+(idx)
[𝑥 : C] • ⊢ 𝐹 ∗ (refl𝑥) : homD (𝐹 (𝑥), 𝐹 (𝑥))

(end)
[] • ⊢ end−1 (𝑙) :

∫
𝑥 :C

homD (𝐹 (𝑥), 𝐹 (𝑥))

Example B.4 (Composition of natural transformations). We show that natural transformations

between terms, expressed as an end [52, 1.4.1], can be composed. Take functors C ⊢ 𝐹,𝐺, 𝐻 : D;
first, consider the following elementary derivations:

[] 𝑙 :
∫
𝑥 :C

homC (𝐹 (𝑥),𝐺 (𝑥)), 𝑟 :
∫
𝑥 :C

homC (𝐺 (𝑥), 𝐻 (𝑥)) ⊢ 𝑙 :
∫
𝑥 :C

homC (𝐹 (𝑥),𝐺 (𝑥))
(end−1)

[𝑥 : C] 𝑙 :
∫
𝑥 :C

homC (𝐹 (𝑥),𝐺 (𝑥)), 𝑟 :
∫
𝑥 :C

homC (𝐺 (𝑥), 𝐻 (𝑥)) ⊢ end−1 (𝑙) : homC (𝐹 (𝑥),𝐺 (𝑥))

[] 𝑙 :
∫
𝑥 :C

homC (𝐹 (𝑥),𝐺 (𝑥)), 𝑟 :
∫
𝑥 :C

homC (𝐺 (𝑥), 𝐻 (𝑥)) ⊢ 𝑙 :
∫
𝑥 :C

homC (𝐹 (𝑥),𝐺 (𝑥))
(end−1)

[𝑥 : C] 𝑙 :
∫
𝑥 :C

homC (𝐹 (𝑥),𝐺 (𝑥)), 𝑟 :
∫
𝑥 :C

homC (𝐺 (𝑥), 𝐻 (𝑥)) ⊢ end−1 (𝑟) : homC (𝐺 (𝑥), 𝐻 (𝑥))
Then, we take the statement for transitivity of directed equality, and reindex 𝑎 with 𝐹 (𝑎), 𝑏 with
𝐺 (𝑏), and 𝑐 with 𝐻 (𝑐):

(𝐽)
[𝑎 : Dop, 𝑏 : D, 𝑐 : D] 𝑓 : homD (𝑎, 𝑏), 𝑔 : homD (𝑏, 𝑐) ⊢ comp : homD (𝑎, 𝑐)

(idx)
[𝑎 : Cop, 𝑏 : C, 𝑐 : C] 𝑓 : homD (𝐹 (𝑎),𝐺 (𝑏)), 𝑔 : hom(𝐺 (𝑏), 𝐻 (𝑐)) ⊢ comp′ [𝑓 , 𝑔] : homD (𝐹 (𝑎), 𝐻 (𝑐))
Now we can perform the composition of this map with the entailments above, which can be done

because comp is individually natural in 𝑎, 𝑏, and 𝑏, 𝑐 . Composing 𝑙 into comp contracts 𝑎, 𝑏 to the

same variable 𝑧, while still allowing the other map to be later composed in the equality with 𝑧, 𝑐 .

Finally, we reintroduce the end quantifier.

(cut-nat)
[𝑧 : Cop, 𝑐 : C] 𝑙 : ... , 𝑟 : ... , 𝑔 : hom(𝐺 (𝑧), 𝐻 (𝑐)) ⊢ comp′ [end−1 (𝑙), 𝑔] : homD (𝐹 (𝑧), 𝐻 (𝑐))

(cut-nat)
[𝑤 : C] 𝑙 : ... , 𝑟 : ... , ⊢ comp′ [end−1 (𝑙), end−1 (𝑟)] : homD (𝐹 (𝑤), 𝐻 (𝑤))

(end)

[] 𝑙 : ... , 𝑟 : ... , ⊢ end(comp′ [end−1 (𝑙), end−1 (𝑟)]) :
∫
𝑤:C

homD (𝐹 (𝑤), 𝐻 (𝑤))

Associativity of the map above follows from associativity of comp as in the standard case.

Example B.5 (Directed equality in opposite categories). We do not ask that predicates [𝑥 : C, 𝑦 :

Cop] homCop (𝑥,𝑦) and [𝑥 : C, 𝑦 : Cop] homC (𝑦, 𝑥) are definitionally equal in the equational theory

, Vol. 1, No. 1, Article . Publication date: October 2018.

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

Di- is for Directed: First-Order Directed Type Theory via Dinaturality 37

(although this would arguably be a desirable choice), but we can prove by directed equality induction

that they are isomorphic:

(refl)
[𝑧 : C, Γ] Φ ⊢ refl𝑧 : homC (𝑧, 𝑧)

(𝐽)
[𝑥 : C, 𝑦 : Cop, Γ] 𝑓 : homCop (𝑥,𝑦),Φ ⊢ 𝐽 (refl𝑧) [𝑓] : homC (𝑦, 𝑥)

Rule (𝐽) can be applied since 𝑥,𝑦 appear covariantly in the conclusion. The inverse direction is

identical:

(refl)
[𝑧 : C, Γ] Φ ⊢ refl𝑧 : homCop (𝑧, 𝑧)

(𝐽)
[𝑥 : C, 𝑦 : Cop, Γ] 𝑓 : homC (𝑦, 𝑥),Φ ⊢ 𝐽 (refl𝑧) [𝑓] : homCop (𝑦, 𝑥)

In one direction, they compose (since they are both naturals) to the identity by directed equality

induction:

(𝐽 -comp)
[𝑧 : C, Γ] Φ ⊢ 𝐽 (refl𝑧) [𝐽 (refl𝑧) [refl𝑧]] = 𝐽 (refl𝑧) [refl𝑧] = refl𝑧 : homCop (𝑧, 𝑧)

(𝐽 -eq)
[𝑥 : C, 𝑦 : Cop, Γ] 𝑓 : homC (𝑦, 𝑥),Φ ⊢ 𝐽 (refl𝑧) [𝐽 (refl𝑧) [𝑓]] = 𝑓 : homCop (𝑦, 𝑥)

The other direction is analogous.

C Other rules derivable from the adjoint formulation
The following series of examples captures natural deduction-style rules for coends, where coends

are on the right side of the turnstile.

Example C.1 (Elimination for coends). The following derivation captures an elimination rule for

coends, where [Γ, 𝑑 :Δ] Φ(𝑑) propctx, 𝑄 (𝑑) prop, [𝑥 :Cop, 𝑦 :C, 𝑑 :Δ] 𝑃 (𝑥,𝑦, 𝑑) prop, with variables

in Δ always being used naturally:

[Γ, 𝑑 :Δ] Φ(𝑑) ⊢
∫ 𝑥 :C

𝑃 (𝑥, 𝑥, 𝑑)
(coend−1)

[𝑑 :Δ]
∫ 𝛾 :Γ

Φ(𝛾,𝛾, 𝑑) ⊢
∫ 𝑥 :C

𝑃 (𝑥, 𝑥, 𝑑)

[Γ, 𝑧 : C, 𝑑 :Δ] 𝑃 (𝑧, 𝑧, 𝑑),Φ(𝛾,𝛾, 𝑑) ⊢ 𝑄 (𝑑)
(coend−1)

[Γ, 𝑑 :Δ]
∫ 𝑧:C

𝑃 (𝑧, 𝑧, 𝑑),Φ(𝛾,𝛾, 𝑑) ⊢ 𝑄 (𝑑)
(coend−1)+
(end)[𝑑 :Δ] 𝑃 (𝑧, 𝑧, 𝑑),

∫ 𝛾 :Γ
Φ(𝛾,𝛾, 𝑑) ⊢

∫
𝛾 :Γ
𝑄 (𝛾,𝛾, 𝑑)

(cut-nat)
[𝑑 : Δ]

∫ 𝛾 :Γ
Φ(𝛾,𝛾, 𝑑) ⊢

∫ 𝛾 :Γ
𝑄 (𝛾,𝛾, 𝑑)

(coend)+(end−1)
[Γ, 𝑑 : Δ] Φ(𝑑) ⊢ 𝑄 (𝑑)

Example C.2 (Introduction for coends with a term). The following derivation captures an intro-

duction rule for coends with a generic term Δ ⊢ 𝐹 : C (not a diterm), for [Γ, 𝑑 : Δ] Φ(𝑑) propctx,
[𝑥 : C, 𝑑 : Δ] 𝑄 (𝑥, 𝑑) prop:

[Γ, 𝑑 : Δ] Φ(𝑑) ⊢ 𝑄 (𝐹 (𝑑), 𝑑)

(coend-unit)
[𝑥 : C, 𝑑 : Δ] 𝑄 (𝑥, 𝑑) ⊢

∫ 𝑥 :C
𝑄 (𝑥, 𝑑)

(idx)
[𝑑 : Δ] 𝑄 (𝐹 (𝑑), 𝑑) ⊢

∫ 𝑥 :C
𝑄 (𝑥, 𝑑)

[Γ, 𝑑 : Δ] Φ(𝑑) ⊢
∫ 𝑥 :C

𝑄 (𝑥, 𝑑)

In particular, we picked (coend-unit) with 𝑄 depending on just a single variable and reindexed

with 𝐹 , which ignores the negative context. Note that variables in Δ are always used naturally.

Example C.3 (Introduction for coends with a dinatural variable). The following derivation cap-

tures an introduction rule for coends with a dinatural variable 𝑥 , for [𝑥 : Cop, 𝑦 : C, Γ, 𝑑 :

, Vol. 1, No. 1, Article . Publication date: October 2018.

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

38 Laretto, Loregian, Veltri

Δ] Φ(𝑥,𝑦, 𝑑) propctx, [𝑥 : Cop, 𝑦 : C, 𝑑 : Δ] 𝑄 (𝑥,𝑦, 𝑑) prop:

[Γ, 𝑥 : Cop, 𝑦 : C] Φ(𝑥,𝑦, 𝑑) ⊢ 𝑄 (𝑥,𝑦, 𝑑)
(coend-unit)

[𝑑 : Δ] 𝑄 (𝑧, 𝑧, 𝑑) ⊢
∫ 𝑧:C

𝑄 (𝑧, 𝑧, 𝑑)
(cut-din)

[Γ] Φ ⊢
∫ 𝑧:C

𝑄 (𝑧, 𝑧, 𝑑)
In particular, we picked (coend-unit) with 𝑄 depending naturally on 𝑥,𝑦, 𝑧. Note that variables in

Δ are always used naturally.

D (Co)end calculus, other derivations
We report here additional examples of derivations for (co)end calculus using our rules.

Example D.1 (Pointwise fomula for left Kan extensions). Dually to Example 6.3, we give a logical

proof that the functor Lan𝐹 : [C, Set] → [D, Set] sending (co)presheaves to their left Kan extensions
along 𝐹 : C → D computed via coends [52, 2.3.6] is left adjoint to precomposition (𝐹 ;−) : [D, Set] →
[C, Set]. For any [𝑥 : C] 𝑃 (𝑥) prop, a functor/term C ⊢ 𝐹 : D and a generic [𝑦 : D] 𝜑 (𝑦) prop:

[𝑦 : D] (Lan𝐹𝑃) (𝑥) :=∫ 𝑥 :C
homC (𝐹 (𝑥), 𝑦) × 𝑃 (𝑥) ⊢ 𝜑 (𝑦)

(coend)
[𝑥 : C, 𝑦 : D] homC (𝐹 (𝑥), 𝑦) × 𝑃 (𝑥) ⊢ 𝜑 (𝑦)

(exp)
[𝑥 : C, 𝑦 : D] 𝑃 (𝑥) ⊢ homC (𝐹 (𝑥), 𝑦) ⇒ 𝜑 (𝑦)

(end)
[𝑥 : C] 𝑃 (𝑥) ⊢

∫
𝑦:D

homD (𝐹 (𝑥), 𝑦) ⇒ 𝜑 (𝑦)
(Yoneda)

[𝑥 : C] 𝑃 (𝑥) ⊢ 𝜑 (𝐹 (𝑥))
Example D.2 (Right rifts in profunctors). We give a logical proof that composition (on both sides)

in Prof has a right adjoint [52, 5.2.5 and Exercise 5.2]. This makes Prof a bicategory where right
extensions and right lifts exist. For simplicity we only treat precomposition, although postcompo-

sition is completely analogous. For any composable profunctors [𝑥 : Cop, 𝑦 : A] 𝑃 (𝑥,𝑦) prop,[𝑥 :

Aop, 𝑦 : D] 𝑄 (𝑥,𝑦) prop and a generic [𝑥 : Cop, 𝑦 : D] 𝜑 (𝑥,𝑦) prop:

[𝑥 : Cop, 𝑧 : D] (𝑃 ; −)(𝑄) (𝑥, 𝑧) :=∫ 𝑦:A
𝑃 (𝑥,𝑦) ×𝑄 (𝑦, 𝑧) ⊢ 𝜑 (𝑥, 𝑧)

(coend)
[𝑥 : Cop, 𝑦 : A, 𝑧 : D] 𝑃 (𝑥,𝑦) ×𝑄 (𝑦, 𝑧) ⊢ 𝜑 (𝑥, 𝑧)

(exp)
[𝑥 : Cop, 𝑦 : A, 𝑧 : D] 𝑄 (𝑦, 𝑧) ⊢ 𝑃 (𝑥,𝑦) ⇒ 𝜑 (𝑥, 𝑧)

(end)
[𝑦 : A, 𝑧 : D] 𝑄 (𝑦, 𝑧) ⊢

∫
𝑥 :C

𝑃 (𝑥,𝑦) ⇒ 𝜑 (𝑥, 𝑧)
(op)

[𝑦 : Aop, 𝑧 : D] 𝑄 (𝑦, 𝑧) ⊢
∫
𝑥 :C

𝑃 (𝑥,𝑦) ⇒ 𝜑 (𝑥, 𝑧)

:= Rift𝑃 (𝜑) (𝑦, 𝑧)
where the last (end) can be applied since 𝑥 : C does not appear on the left.

Example D.3 (Composition of profunctors is associative). Using our approach relying on contextual

operations we easily show that composition of profunctors, defined via a coend [52], is associative

and essentially follows from associativity of products. For composable profunctors [𝑥 : Aop, 𝑦 :

B] 𝑃 (𝑥,𝑦) prop, [𝑥 : Bop, 𝑦 : C] 𝑄 (𝑥,𝑦) prop, [𝑥 : Cop, 𝑦 : D] 𝑅(𝑥,𝑦) prop, and a generic [𝑥 : Aop, 𝑦 :

D] 𝜑 (𝑥,𝑦) prop:

, Vol. 1, No. 1, Article . Publication date: October 2018.

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

Di- is for Directed: First-Order Directed Type Theory via Dinaturality 39

[𝑎 : A, 𝑑 : D]
∫ 𝑏:B

𝑃 (𝑎, 𝑏) ×
(∫ 𝑐 :C

𝑄 (𝑏, 𝑐) × 𝑅(𝑐, 𝑑)
)
⊢ 𝜑 (𝑎, 𝑑)

(coend)
[𝑎 : A, 𝑏 : B, 𝑑 : D] 𝑃 (𝑎, 𝑏) ×

(∫ 𝑐 :C
𝑄 (𝑏, 𝑐) × 𝑅(𝑐, 𝑑)

)
⊢ 𝜑 (𝑎, 𝑑)

(coend)
[𝑎 : A, 𝑏 : B, 𝑐 : C, 𝑑 : D] 𝑃 (𝑎, 𝑏) × (𝑄 (𝑏, 𝑐) × 𝑅(𝑐, 𝑑)) ⊢ 𝜑 (𝑎, 𝑑)

(structural property)
[𝑎 : A, 𝑏 : B, 𝑐 : C, 𝑑 : D] (𝑃 (𝑎, 𝑏) ×𝑄 (𝑏, 𝑐)) × 𝑅(𝑐, 𝑑) ⊢ 𝜑 (𝑎, 𝑑)

(coend)
[𝑎 : A, 𝑐 : C, 𝑑 : D]

(∫ 𝑏:B
𝑃 (𝑎, 𝑏) ×𝑄 (𝑏, 𝑐)

)
× 𝑅(𝑐, 𝑑) ⊢ 𝜑 (𝑎, 𝑑)

(coend)
[𝑎 : A, 𝑑 : D]

∫ 𝑐 :C
(∫ 𝑏:B

𝑃 (𝑎, 𝑏) ×𝑄 (𝑏, 𝑐)
)
× 𝑅(𝑐, 𝑑) ⊢ 𝜑 (𝑎, 𝑑)

Theorem D.4 (Dinaturals as an end). The set of dinaturals Dinat(𝑃,𝑄) := {𝑃 qq−→ 𝑄} between
dipresheaves 𝑃,𝑄 : Cop × C → Set can be characterized in terms of the following end [26, Thm. 1],
Dinat(𝑃,𝑄) �

∫
𝑥 :C

𝑃 (𝑥, 𝑥) ⇒ 𝑄 (𝑥, 𝑥).

Proof. We give a simple derivation that characterizes all the points (i.e., dinaturals from the

point in the empty term context) of the end above using our syntax:

Dinat(𝑃,𝑄) := [𝑥 : C] 𝑃 (𝑥, 𝑥) ⊢ 𝑄 (𝑥, 𝑥)
(exp)

[𝑥 : C] • ⊢ 𝑃 (𝑥, 𝑥) ⇒ 𝑄 (𝑥, 𝑥)
(end)

[] • ⊢
∫
𝑥 :C

𝑃 (𝑥, 𝑥) ⇒ 𝑄 (𝑥, 𝑥)
Since dinaturals generalize naturals, a similar derivation justifies the well-known description of

natural transformations as ends shown in Section 1 for 𝐹,𝐺 : C → Set,

Nat(𝐹,𝐺) �
∫
𝑥 :C

𝐹 (𝑥) ⇒ 𝐺 (𝑥).
□

E Computation rule via 𝐽 −1

We spell out the proof of the computation rule for the definition of 𝐽 −1 given in Theorem 3.13.

Theorem E.1 (𝐽 −1 ⇐⇒ refl). Rule (refl) is logically equivalent to (𝐽 −1); in particular, assuming
naturality of 𝐽 −1, if one defines reflC := 𝐽 −1 (𝑒) then the computation rule 𝐽 (ℎ) [reflC] = ℎ holds in
the equational theory.

Proof. We start by spelling out naturality of 𝐽 −1 in 𝑃 , which is assumed: explicitly, naturality

states that the following two derivations are equal in the equational theory for any 𝛼 and 𝛽

(simplifying the context as much as possible for readability):

[𝑎 : Cop, 𝑏 : C] 𝑒 : homC (𝑎, 𝑏),Φ(𝑏, 𝑎) ⊢ 𝛼 : 𝑃 (𝑎, 𝑏)
[𝑧 : C] Φ(𝑧, 𝑧) ⊢ 𝐽 −1 (𝛼 [𝑒]) : 𝑃 (𝑧, 𝑧) [𝑧 : C] 𝑘 : 𝑃 (𝑎, 𝑏),Φ(𝑎,𝑏) ⊢ 𝛽 [𝑘] : 𝑄 (𝑎, 𝑏)

[𝑧 : C] Φ(𝑧, 𝑧) ⊢ 𝛽 [𝐽 −1 (𝛼)] : 𝑄 (𝑧, 𝑧)
and

[𝑎 : Cop, 𝑏 : C] 𝑒 : homC (𝑎, 𝑏),Φ(𝑏, 𝑎) ⊢ 𝛼 : 𝑃 (𝑎, 𝑏) [𝑧 : C] 𝑘 : 𝑃 (𝑎, 𝑏),Φ(𝑎,𝑏) ⊢ 𝛽 [𝑘] : 𝑄 (𝑎, 𝑏)

[𝑧 : C] 𝑒 : homC (𝑎, 𝑏),Φ(𝑏, 𝑎) ⊢ 𝛽 [𝛼] : 𝑃 (𝑧, 𝑧)
[𝑧 : C] Φ(𝑧, 𝑧) ⊢ 𝐽 −1 (𝛽 [𝛼]) : 𝑄 (𝑧, 𝑧)

, Vol. 1, No. 1, Article . Publication date: October 2018.

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

40 Laretto, Loregian, Veltri

i.e., 𝛽 [𝐽 −1 (𝛼)] = 𝐽 −1 (𝛽 [𝛼]). In our particular case we take 𝑃 (𝑎, 𝑏) := hom(𝑎, 𝑏) and 𝛼 := 𝑒 the

projection with (var) and 𝛽 := 𝐽 (ℎ), from which we obtain that 𝐽 (ℎ) [reflC] ≡ 𝐽 (ℎ) [𝐽 −1 (𝑒)] =

𝐽 −1 (𝐽 (ℎ) [𝑒]) = 𝐽 −1 (𝐽 (ℎ)) = ℎ by the assumption that 𝐽 −1 (𝐽 (ℎ)) = ℎ and the fact that (var) is the
identity for cut. □

F Frobenius and Beck-Chevalley conditions for (co)ends
Theorem F.1 (Beck-Chevalley and Frobenius condition for (co)ends). (Co)ends satisfy a

Beck-Chevalley condition, in the sense that for all 𝐹 : C⋄ → D there is a strict isomorphism∫
A[D] ; 𝐹 ∗ � (idA⋄ × 𝐹)∗ ;

∫
A[C]

in the (large) functor category [[A⋄ × D⋄, Set],[D⋄, Set]], where∫
A[C],

∫ A[C]
: [A⋄ × C⋄, Set] → [C⋄, Set]

are the functors sending dipresheaves to their (co)end in A and 𝐹 ∗ : [D⋄, Set] → [C⋄, Set] is precom-
position with 𝐹 ⋄ .

Moreover, a Frobenius condition for coends is satisfied, in the sense that there is an isomorphism∫ A[C] (𝜋∗
A[C] (𝑃) × Φ) � 𝜋∗

A[C] (𝑃) ×
∫ A[C] (Φ)

natural in Φ : A⋄ × C⋄ → Set, 𝑃 : C⋄ → Set, where − × − : [C, Set] × [C, Set]→ [C, Set] for any C
is the product of (di)presheaves.

Proof. Beck-Chevalley is immediate. For Frobenius, our logical rules can be used to apply

exactly the argument given in [43, 1.9.12(i)], detailed in Theorem F.2. □

Theorem F.2 (Frobenius condition for coends). For any 𝛤 : A⋄ × C⋄ → Set and a generic
𝐾 : C⋄ → Set, the following series of derivations gives a logical proof of the Frobenius condition given
in Theorem F.1, which we prove by following exactly the argument given in [43, 1.9.12(i)] in the case of
fibrations with exponentials. In particular, we show that the Frobenius formulation of (co)ends follows
from the non-Frobenius one combined with polarized exponentials. Note that we use the same Yoneda
technique described in Remark 6.

[Γ]
∫ 𝑥 :A[Γ] (𝑃 × Φ(𝑥, 𝑥)) ⊢ 𝜑

(coend-without-frobenius)
[𝑥 : A, Γ] 𝑃,Φ(𝑥, 𝑥) ⊢ 𝜑

(exp)
[𝑥 : A, Γ] Φ(𝑥, 𝑥) ⊢ 𝑃 ⇒ 𝜑

(coend-without-frobenius)
[Γ]

∫ 𝑥 :A[Γ]
Φ(𝑥, 𝑥) ⊢ 𝑃 ⇒ 𝜑

(exp)
[Γ] 𝑃,

∫ 𝑥 :A[Γ]
Φ(𝑥, 𝑥) ⊢ 𝜑

Theorem F.3 ((coend-without-frobenius)⇒ (coend)). The rule (coend) can be directly justified
using (coend-without-frobenius), as follows:

[Γ]
(∫ 𝑎:A

𝑄 (𝑎, 𝑎)
)
,Φ ⊢ 𝜑

(exp)
[Γ]

∫ 𝑎:A
𝑄 (𝑎, 𝑎) ⊢ Φ(𝑥, 𝑥) ⇒ 𝜑

(coend-without-frobenius)
[𝑦 : C, Γ] 𝑄 (𝑎, 𝑎) ⊢ Φ(𝑥, 𝑥) ⇒ 𝜑

(exp)
[Γ] 𝑄 (𝑎, 𝑎),Φ ⊢ 𝜑

, Vol. 1, No. 1, Article . Publication date: October 2018.

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

Di- is for Directed: First-Order Directed Type Theory via Dinaturality 41

G Yoneda technique
We show how the Yoneda technique described in Remark 6 can be used to prove a derivation of

(co)end calculus. We show the case of Yoneda Example 6.1.

[𝑎 :C] Φ(𝑎) ⊢
∫
𝑥 :C

homC (𝑎, 𝑥) ⇒ 𝑃 (𝑥)
(end)

[𝑎 :C, 𝑥 :C] Φ(𝑎) ⊢ homC (𝑎, 𝑥) ⇒ 𝑃 (𝑥)
(exp)

[𝑎 :C, 𝑥 :C] homC (𝑎, 𝑥) × Φ(𝑎) ⊢ 𝑃 (𝑥)
(𝐽)

[𝑧 : C] Φ(𝑧) ⊢ 𝑃 (𝑧)
Explicitly, the two entailments witnessing the isomorphism are obtained by picking Φ to be the

context with a single formula and the (var) case at the top of the derivation, i.e.,

(var)
[𝑧 : C] 𝑘 : 𝑃 (𝑧) ⊢ 𝑘 : 𝑃 (𝑧)

(𝐽)
[𝑎 :C, 𝑥 :C] 𝑘 : 𝑃 (𝑎), homC (𝑎, 𝑥) ⊢ 𝐽 (𝑘) : 𝑃 (𝑥)

(exp)
[𝑎 :C, 𝑥 :C] 𝑘 : 𝑃 (𝑎) ⊢ exp(𝐽 (𝑘)) : homC (𝑎, 𝑥) ⇒ 𝑃 (𝑥)

(end)
[𝑎 :C] 𝑘 : 𝑃 (𝑎) ⊢ end(exp(𝐽 (𝑘))) :

∫
𝑥 :C

homC (𝑎, 𝑥) ⇒ 𝑃 (𝑥)

and

(var)
[𝑎 :C] 𝑘 :

∫
𝑥 :C

homC (𝑎, 𝑥) ⇒ 𝑃 (𝑥) ⊢ 𝑘 :

∫
𝑥 :C

homC (𝑎, 𝑥) ⇒ 𝑃 (𝑥)
(end−1)

[𝑎 :C, 𝑥 :C] 𝑘 : · · · ⊢ homC (𝑎, 𝑥) ⇒ 𝑃 (𝑥)
(exp−1)

[𝑎 :C, 𝑥 :C] 𝑘 : · · · , homC (𝑎, 𝑥) ⊢ 𝑃 (𝑥)
(𝐽 −1)

[𝑧 : C] 𝑘 :

∫
𝑥 :C

homC (𝑧, 𝑥) ⇒ 𝑃 (𝑥) ⊢ 𝐽 −1 (exp−1 (end−1 (𝑘))) : 𝑃 (𝑧)
These two entailments can clearly be composed since they are both natural transformations.

They compose to the identity in both directions by using the same approach when proving fully

faithfulness of the Yoneda embedding [50], i.e., using naturality of each rule in Φ to make them

commute with cuts and then using the fact that all rules are invertible:

[𝑎 :C] 𝑘 : 𝑃 (𝑎) ⊢ 𝐽 −1 (exp−1 (end−1 (𝑘))) [𝑘 ↦→ end(exp(𝐽 (𝑘)))]
= 𝐽 −1 (exp−1 (end−1 (𝑘)) [𝑘 ↦→ end(exp(𝐽 (𝑘)))])
= 𝐽 −1 (exp−1 (end−1 (𝑘) [𝑘 ↦→ end(exp(𝐽 (𝑘)))]))
= 𝐽 −1 (exp−1 (end−1 (𝑘 [𝑘 ↦→ end(exp(𝐽 (𝑘)))])))
= 𝐽 −1 (exp−1 (end−1 (end(exp(𝐽 (𝑘))))))
= 𝐽 −1 (exp−1 (exp(𝐽 (𝑘))))
= 𝐽 −1 (𝐽 (𝑘))
= 𝑘 : 𝑃 (𝑎)

Note that we are propagating the cut along the hypothesis 𝑘 in context (this is only ambiguous

in the rule (exp) since there are two hypotheses, where we leave 𝑓 : hom(𝑎, 𝑏) untouched).
The other direction is obtained analogously.

H Composite in Example 3.8
Given a dinatural transformation

[𝑧 : C] 𝑘 : 𝑃 (𝑧, 𝑧) ⊢ 𝛼 : 𝑄 (𝑧, 𝑧)

, Vol. 1, No. 1, Article . Publication date: October 2018.

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

42 Laretto, Loregian, Veltri

we illustrate how the composite

[𝑎 : Cop, 𝑏 : C] 𝑓 : homC (𝑎, 𝑏), 𝑘 : 𝑃 (𝑏, 𝑎) ⊢ subst𝑄 [(𝑓 , refl𝑎), [𝛼 [subst𝑃 [(refl𝑏, 𝑓), 𝑘]]]] : 𝑄 (𝑎, 𝑏)
in Example 3.8 is indeed allowed by the cut rules of our type theory, i.e., that dinaturals compose.

The well-formedness of Example 3.7 follows similarly since it is a special case of the one below. We

construct one of the two sides of the equation, with the other one following similarly.

The key idea is that subst is essentially a natural transformation when saturated in the function

𝑓 (even partially). The subst of a predicate [𝑎 : Cop, 𝑏 : C] 𝑄 (𝑧, 𝑏) depending on two variables

corresponds to the following entailment:

[𝑎′, 𝑏 : Cop, 𝑎, 𝑏′ : C] 𝑓 : homC (𝑎′, 𝑎), 𝑔 : homC (𝑏, 𝑏′), 𝑘 : 𝑄 (𝑎,𝑏) ⊢ subst𝑃 [𝑓 , 𝑔, 𝑘] : 𝑃 (𝑎′, 𝑏′)
After precomposing 𝑓 with refl and renaming variables via Theorem 3.14 note that the resulting

map is natural in 𝑧, 𝑏 after currying the equality 𝑔 to the right.

[𝑏, 𝑧 : Cop, 𝑏′ : C] 𝑔 : homC (𝑏,𝑏′), 𝑘 : 𝑃 (𝑧, 𝑏) ⊢ subst𝑃 [refl𝑧, 𝑔, 𝑘] : 𝑃 (𝑧, 𝑏′)
This map can be precomposed with 𝛼 by picking 𝑏 to be part of the variables of Γ in the rule (cut-din).
The intuition for this, described in Section 5 for the semantics of cut, is that one can take the (co)end

over 𝑏 and obtain the above family as natural in 𝑧 and 𝑏′, without 𝑏 appearing, which then can be

composed with 𝛼 in the expression 𝛼 [subst𝑃 [(refl𝑏, 𝑓), 𝑘]]. The remaining part of the term is then

obtained by using (cut-nat) to compose with subst𝑄 in an analogous way.

Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009

, Vol. 1, No. 1, Article . Publication date: October 2018.

	Abstract
	1 Introduction
	1.1 Contribution
	1.2 Related work
	1.3 Structure of the paper

	2 Syntax
	2.1 Polarity and variance
	2.2 Rules

	3 Directed equality à la Martin-Löf
	3.1 On the adjoint formulation
	3.2 Aspects of directed type theory

	4 Dinaturality
	5 Semantics
	6 Coend calculus via dinaturality
	7 Conclusions and future work
	Acknowledgments
	References
	A Additional judgments for first-order dinatural directed type theory
	B Directed type theory, other derivations
	C Other rules derivable from the adjoint formulation
	D (Co)end calculus, other derivations
	E Computation rule via J-1
	F Frobenius and Beck-Chevalley conditions for (co)ends
	G Yoneda technique
	H Composite in ex:internaldinaturality

