2/25/24, 3:06 PM fake_yoneda

The hom functors

Definition. If C is a category, there are correspondences C(X, —) and C(—,Y") defined as follows:

« C(X,—) comprises
o afunction sending each object A € C to the set of all morphisms f : X — A.
o a function sending each morphism u : A — A’in C to a function C(X, A) — C(X, A’), defined taking f : X — Atouo f: X EN

A5 A

o The equalities C(X, g o f) = C(X,g) o C(X, f) and C(X,id4) = idc(x,4) hold.

o C(—,Y) comprises
o a function sending each object A € C to the set of all morphisms f : A — Y.
o afunction sending each morphism u : A — A’ in C to a function C(A’,Y) — C(A,Y), defined taking f : A’ = Yo fou: A%

aty
o The equalites C(g o f,Y) = C(f,Y) o C(g,Y) and C(ida,Y") = idc(a,y) hold.

C(X,—)and C(—,Y) are the (covariant and contravariant) "hom functors" on the objects X and Y.
Some examples of C(X, —) and C(—, Y") in categories we know.

o InC = Sety, let X = {0,1}; then Set;(A, {0,1}) is the set of all subsets of A4, and Set;(u, {0, 1}) is the function sending a subset U C A’
to the subset u 1A’ := {a € A | u(a) € U}.

 InC = Sety, let X = {true, false, L};then Set,(A, X) is the set of predicates that might fail, defined on A.

 InC = Graph, fix a (small! Say, with three vertices) graph H and describe the set of graph homomorphisms G — H.

« InC = (N, 4), there is only one object X = {e}. Then, (N, +)(e, —) sends e to the set of morphisms e — e,i.e.to N = {0,1,2,3,...}
and a morphism n to the function _ +n : N — N,

e InC= (N, <),letn = 7.Then (N, <)(7,—) sends 0, 1,. .., 6 to the set of morphisms 0, 1,...,6,7 — 7 (i.e., to a single morphism
"0,1,...,6,7 < 7 "), and all number 8,9, . . . to the empty set.

Isomorphism of functors <—> isomorphism of objects

Since C(X, —) and C(—,Y") are defined in terms of families of sets
{C(A,Y) | Acco) {C(X,B) | B <Gy}

it follows that the correct notion of isomorphism between C(X, —) and C(X’, —) must take them all into consideration, and thus consists of a family
of isomorphisms (=bijective functions)

C(X,A) — c(X',A)

all of which are "polymorphic" in the "variable" A.

This means that they behave coherently according the possibility to define a function C(X,u) : C(X, A) — C(X, A") out of a function v : A —
A’ and put together both in a square diagram

C(X,4) —— C(X',4)
C(X,u)l lC(X',u)
C(X,4) — C(X',4)
Qyr

declaring that g 0 C(X,u) = C(X', u) 0 aua.

Polymorphism is (almost) always present when one defines a widget depending on a parameter, and wants it to behave well under change of that
parameter.

For example: let A={red, green,blue} be a set; let B={cabbage, goat, wolf} be another set. Obviously A 22 B (for example, under the map
{red -> cabbage, green -> goat, blue -> wolf}). Then, recall how the List<A> type is defined in CRUST:

type List<A> = nil()
| cons(A, List<A>)

If we want to express the fact that List<A> comes equipped with a function h : A -> List<A> sending a : A to cons(a, nil()) forall A's,
polymorphically in A, we have to require that, for every way of transforming the type A on which List<A> depends, using f : A -> B, we obtain

file:///home/fouche/repos/ct-course/24/fake_yoneda.html 1/3

2/25/24, 3:06 PM fake_yoneda
that

List<f> (h a) = h (f a)

which means List<f> (cons(a, nil()) = cons(f(a), nil()) (which is true):

A M List(A)

fl JList ()

B —— List(B)
B

Polymorphism (or in its mathematical name, naturality) is a powerful generalization of this idea, that applies to all correspondences like C(X, 7) and

C(—,Y) and List(—).

The first important observation
If X is isomorphic to Y, then C(-, X) is isomorphic to C(-, Y).

There is an easy way to generate an isomorphism C(—,Y") = C(—,Y"), in the above sense [=a "natural” isomorphism] from a pre-existing
isomorphismY = Y"inC, i.e. from a pair

u:Y =Y, v:Y =Y
suchthatidy =Y %Y’ 5 Yandidy =Y' 3 Y % Y. Indeed,

« the fact that the functors C(A, —) exist, yields for every A a function C(4,Y) Ly, C(A,Y'),and C(4,Y") L), C(A,Y). It must then
be that

C(A,u)oC(A,v) =C(A,uov)
=C(4,idy)

= idc(ay)
C(A,v)oC(A,u) =C(Avou)
=C(4,idy)

=1idc(a,y)

sothat C(A,Y") and C(A,Y"”) are bijective functions, inverse to each other.
e Now, if f : A — A’is given, polymorphism/naturality for iy := C(X7 u) is expressed by the fact that the square

cAYy) M c(AY")
C(f,Y)l ¢‘C(f,Y)
C(AY) —— C(AY")
ua

commutes, which means that

uo(_of)=(uo_)of.
This is ensured by the fact that composition is associative! Similarly, for v,
CAY') —4 5 C(A)Y)
C(fﬁ’)l lc(fﬁ")
C(A)Y") T> C(A)Y)

(observe that one can "glue" together the two squares

u

CAY) — s (A Y) —4 s c(AY)
C(f»Y)l lC(f»Y) lc(f,Y)
C(AY) — C(AY') — C(AY)
Ug vA

to get the identities as horizontal compositions.)

file:///home/fouche/repos/ct-course/24/fake_yoneda.html 2/3

2/25/24, 3:06 PM fake_yoneda
The second (more) important observation

C(-, X) iso to C(-, Y) implies that X isiso to Y.
Or in other words, all polymorphic/natural isomorphisms a4 : C(4, X) =2 C(A,Y) originates from an isomorphism X =2 Y in C.
This is important because

« it allows to derive isomorphism of objects from isomorphisms of functors using those objects as parameters
« it allows to formally reason about isomorphism: in order to prove that X = Y (abstract objects that you can touch), fix an object A and look at

the sets C(A, X), C(A, Y) (concrete sets that you can enumerate): if these sets are polymorphically isomorphic, then X must be isomorphic to
Y.

The proof will be very fun.

Suppose there is a polymorphic isomorphism a4 : C(A, X) =2 C(A,Y). Spelled out: we have « given as a family of bijections cq : C(4, X) —
C(A,Y) with inverse a;' : C(A4,Y) — C(A, X), and such that for every f : A — A’ the squares

-1

C(ALX) —4 s c(AY) C(AX) — X c(Ay)

commute. This means:

. vaaA’gA'ﬁX . aA(gof) _OéA’()Of
. vaaA’hA’HY . a;ll(ho)—OtA/()of

Then,

o look at the component acx : C(X, X) — C(X,Y). The set C(X, X) is not empty, so C(X,Y") contains at least one element, ax (idx) =
u.

« look at the component iy : C(Y,Y) — C(Y, X). The set C(Y,Y) is not empty, so C(Y", X) contains at least one element, oy (idy) =
v.

Now,

ax(idx) o aY (idy)
ax(idx) o
= ax(idx) o
ay (idx o ay (’Ldy))
= ay(aY (idy))
= idy
vou = ay'(idy) o ax(idx)
= ay'(idy) o f
= ay'(idy o f)
= ay'(idy o ax(idx))
= ax' (ax(idx))

=1idyx

file:///home/fouche/repos/ct-course/24/fake_yoneda.html 3/3

