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The hom functors

Definition. If  is a category, there are correspondences  and  defined as follows:

 comprises
a function sending each object  to the set of all morphisms .

a function sending each morphism  in  to a function , defined taking  to 

.
The equalities  and  hold.

 comprises
a function sending each object  to the set of all morphisms .

a function sending each morphism  in  to a function , defined taking  to 

.

The equalities  and  hold.

 and  are the (covariant and contravariant) "hom functors" on the objects  and .

Some examples of  and  in categories we know.

In , let ; then  is the set of all subsets of , and  is the function sending a subset 
to the subset .

In , let ; then  is the set of predicates that might fail, defined on .
In , fix a (small! Say, with three vertices) graph  and describe the set of graph homomorphisms .

In , there is only one object . Then,  sends  to the set of morphisms , i.e. to 

and a morphism  to the function .
In , let . Then  sends  to the set of morphisms  (i.e., to a single morphism

" 0,1,...,6,7 ≤ 7 "), and all number  to the empty set.

Isomorphism of functors  isomorphism of objects

Since  and  are defined in terms of families of sets

it follows that the correct notion of isomorphism between  and  must take them all into consideration, and thus consists of a family

of isomorphisms (=bijective functions)

all of which are "polymorphic" in the "variable" .

This means that they behave coherently according the possibility to define a function  out of a function 

, and put together both in a square diagram

declaring that .

Polymorphism is (almost) always present when one defines a widget depending on a parameter, and wants it to behave well under change of that

parameter.

For example: let  A={red,green,blue}  be a set; let  B={cabbage, goat, wolf}  be another set. Obviously  (for example, under the map

 {red -> cabbage, green -> goat, blue -> wolf} ). Then, recall how the  List<A>  type is defined in CRUST:

type List<A> = nil()

             | cons(A, List<A>)

If we want to express the fact that  List<A>  comes equipped with a function  h : A -> List<A>  sending  a : A  to  cons(a, nil())  for all  A 's,

polymorphically in  A , we have to require that, for every way of transforming the type  A  on which  List<A>  depends, using  f : A -> B , we obtain

C C(X, −) C(−,Y )

C(X, −)
A ∈ C  0 f : X → A

u : A → A′ C C(X,A) → C(X,A )′ f : X → A u ∘ f : X →
f

A →u A′

C(X, g ∘ f) = C(X, g) ∘ C(X, f) C(X, id  ) =A id  C(X,A)

C(−,Y )
A ∈ C  0 f : A → Y

u : A → A′ C C(A ,Y ) →′ C(A,Y ) f : A →′ Y f ∘ u : A →u

A′ →
f
Y

C(g ∘ f ,Y ) = C(f ,Y ) ∘ C(g,Y ) C(id  ,Y ) =A id  C(A,Y )

C(X, −) C(−,Y ) X Y

C(X, −) C(−,Y )

C = Set  t X = {0, 1} Set  (A, {0, 1})t A Set  (u, {0, 1})t U ⊆ A′

u A :=−1 ′ {a ∈ A ∣ u(a) ∈ U}
C = Set  p X = {true, false, ⊥} Set  (A,X)p A

C = Graph H G → H

C = (N, +) X = {∙} (N, +)(∙, −) ∙ ∙ → ∙ N = {0, 1, 2, 3, … }
n _ + n : N → N

C = (N, ≤) n = 7 (N, ≤)(7, −) 0, 1, … , 6 0, 1, … , 6, 7 → 7
8, 9, …

⟺

C(X, −) C(−,Y )

{C(A,Y ) ∣ A ∈ C  } {C(X,B) ∣0 B ∈ C  }0

C(X, −) C(X , −)′

C(X,A)  

α  A
C(X ,A)′

A

C(X,u) : C(X,A) → C(X,A )′ u : A →
A′

   

C(X,A)

 
C(X,u)

↓
⏐

C(X,A )′

 

α  A

 

α  A′

C(X ,A)′

 

↓
⏐

C(X ,u)′

C(X ,A )′ ′

α  ∘A′ C(X,u) = C(X ,u) ∘′ α  A

A ≅ B
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that

List<f> (h a) = h (f a)

which means  List<f> (cons(a, nil()) = cons(f(a), nil())  (which is true):

Polymorphism (or in its mathematical name, naturality) is a powerful generalization of this idea, that applies to all correspondences like  and
 and .

The first important observation
If X is isomorphic to Y, then C(-, X) is isomorphic to C(-, Y).

There is an easy way to generate an isomorphism , in the above sense [=a "natural" isomorphism] from a pre-existing

isomorphism  in , i.e. from a pair

such that  and . Indeed,

the fact that the functors  exist, yields for every  a function , and . It must then

be that

so that  and  are bijective functions, inverse to each other.
Now, if  is given, polymorphism/naturality for  is expressed by the fact that the square

commutes, which means that

This is ensured by the fact that composition is associative! Similarly, for ,

(observe that one can "glue" together the two squares

to get the identities as horizontal compositions.)

   

A

 
f
↓
⏐

B

 

h  A

 

h  B

List⟨A⟩

 

↓
⏐

List⟨f⟩

List⟨B⟩

C(X, −)
C(−,Y ) List⟨−⟩

C(−,Y ) ≅ C(−,Y )′

Y ≅ Y ′ C

u : Y → Y , v :′ Y →′ Y

id  =Y Y →u Y ′ →v Y id  =Y ′ Y ′ →v Y →u Y ′

C(A, −) A C(A,Y )  

C(A,u)
C(A,Y )′ C(A,Y )  

′ C(A,v)
C(A,Y )

  

C(A,u) ∘ C(A, v)

C(A, v) ∘ C(A,u)

= C(A,u ∘ v)

= C(A, id  )Y ′

= id  C(A,Y )′

= C(A, v ∘ u)

= C(A, id  )Y

= id  C(A,Y )

C(A,Y ) C(A,Y )′

f : A → A′
 :=ûX C(X,u)

   

C(A ,Y )′

 
C(f ,Y )

↓
⏐

C(A,Y )

 

 ûA′

 

 ûA

C(A ,Y )′ ′

 

↓
⏐

C(f ,Y )′

C(A,Y )′

u ∘ (_ ∘ f) = (u ∘ _) ∘ f .

v

   

C(A ,Y )′ ′

 
C(f ,Y )

↓
⏐

C(A,Y )′

 

 v̂A′

 

 v̂A

C(A ,Y )′

 

↓
⏐

C(f ,Y )′

C(A,Y )

     

C(A ,Y )′

 
C(f ,Y )

↓
⏐

C(A,Y )

 

 ûA′

 

 ûA

C(A ,Y )′ ′

 

↓
⏐

C(f ,Y )′

C(A,Y )′

 

 v̂A′

 

 v̂A

C(A ,Y )′

 

↓
⏐

C(f ,Y )

C(A,Y )
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The second (more) important observation
C(-, X) iso to C(-, Y) implies that X is iso to Y.

Or in other words, all polymorphic/natural isomorphisms  originates from an isomorphism  in .

This is important because

it allows to derive isomorphism of objects from isomorphisms of functors using those objects as parameters
it allows to formally reason about isomorphism: in order to prove that  (abstract objects that you can touch), fix an object  and look at

the sets ,  (concrete sets that you can enumerate): if these sets are polymorphically isomorphic, then  must be isomorphic to
.

The proof will be very fun.

Suppose there is a polymorphic isomorphism . Spelled out: we have  given as a family of bijections 
 with inverse , and such that for every  the squares

commute. This means:

Then,

look at the component . The set  is not empty, so  contains at least one element, 
.

look at the component . The set  is not empty, so  contains at least one element, 
.

Now,

α  :A C(A,X) ≅ C(A,Y ) X ≅ Y C

X ≅ Y A

C(A,X) C(A,Y ) X

Y

α  :A C(A,X) ≅ C(A,Y ) α α  :A C(A,X) →
C(A,Y ) α  :A

−1 C(A,Y ) → C(A,X) f : A → A′

      

C(A ,X)′

 

↓
⏐

C(A,X)

 

α  A′

 

α  A

C(A ,Y )′

 

↓
⏐

C(A,Y )

C(A ,X)′

 

↓
⏐

C(A,X)

 

α  

A′
−1

 

α  

A
−1

C(A ,Y )′

 

↓
⏐

C(A,Y )

∀f g :A→A′ A →X′
α  (g ∘A f) = α  (g) ∘A′ f

∀f h :A→A′ A →Y′
α  (h ∘A

−1 f) = α  (h) ∘A′
−1 f

α  :X C(X,X) → C(X,Y ) C(X,X) C(X,Y ) α  (id  ) =:X X

u

α  :Y
−1 C(Y ,Y ) → C(Y ,X) C(Y ,Y ) C(Y ,X) α  (id  ) =:Y

−1
Y

v

  

u ∘ v

v ∘ u

= α  (id  ) ∘ α  (id  )X X Y
−1

Y

= α  (id  ) ∘ fX X

= α  (id  ) ∘ fX X

= α  (id  ∘ α  (id  ))Y X Y
−1

Y

= α  (α  (id  ))Y Y
−1

Y

= id  Y

= α  (id  ) ∘ α  (id  )Y
−1

Y X X

= α  (id  ) ∘ fY
−1

Y

= α  (id  ∘ f)X
−1

Y

= α  (id  ∘ α  (id  ))X
−1

Y X X

= α  (α  (id  ))X
−1

X X

= id  X


