The hom functors

Definition. If \mathcal{C} is a category, there are correspondences $\mathcal{C}(X,-)$ and $\mathcal{C}(-, Y)$ defined as follows:

- $\mathcal{C}(X,-)$ comprises
- a function sending each object $A \in \mathcal{C}_{0}$ to the set of all morphisms $f: X \rightarrow A$.

。 a function sending each morphism $u: A \rightarrow A^{\prime}$ in \mathcal{C} to a function $\mathcal{C}(X, A) \rightarrow \mathcal{C}\left(X, A^{\prime}\right)$, defined taking $f: X \rightarrow A$ to $u \circ f: X \xrightarrow{f}$ $A \xrightarrow{u} A^{\prime}$.

- The equalities $\mathcal{C}(X, g \circ f)=\mathcal{C}(X, g) \circ \mathcal{C}(X, f)$ and $\mathcal{C}\left(X, i d_{A}\right)=i d_{\mathcal{C}(X, A)}$ hold.
- $\mathcal{C}(-, Y)$ comprises
- a function sending each object $A \in \mathcal{C}_{0}$ to the set of all morphisms $f: A \rightarrow Y$.

。 a function sending each morphism $u: A \rightarrow A^{\prime}$ in \mathcal{C} to a function $\mathcal{C}\left(A^{\prime}, Y\right) \rightarrow \mathcal{C}(A, Y)$, defined taking $f: A^{\prime} \rightarrow Y$ to $f \circ u: A \xrightarrow{u}$ $A^{\prime} \xrightarrow{f} Y$.

- The equalities $\mathcal{C}(g \circ f, Y)=\mathcal{C}(f, Y) \circ \mathcal{C}(g, Y)$ and $\mathcal{C}\left(i d_{A}, Y\right)=i d_{\mathcal{C}(A, Y)}$ hold.
$\mathcal{C}(X,-)$ and $\mathcal{C}(-, Y)$ are the (covariant and contravariant) "hom functors" on the objects X and Y.
Some examples of $\mathcal{C}(X,-)$ and $\mathcal{C}(-, Y)$ in categories we know.
- In $\mathcal{C}=\operatorname{Set}_{t}$, let $X=\{0,1\}$; then $\operatorname{Set}_{t}(A,\{0,1\})$ is the set of all subsets of A, and $\operatorname{Set}_{t}(u,\{0,1\})$ is the function sending a subset $U \subseteq A^{\prime}$ to the subset $u^{-1} A^{\prime}:=\{a \in A \mid u(a) \in U\}$.
- In $\mathcal{C}=\operatorname{Set}_{p}$, let $X=\{$ true, $\mathrm{false}, \perp\}$; then $\operatorname{Set}_{p}(A, X)$ is the set of predicates that might fail, defined on A.
- In $\mathcal{C}=$ Graph, fix a (small! Say, with three vertices) graph H and describe the set of graph homomorphisms $G \rightarrow H$.
- In $\mathcal{C}=(\mathbb{N},+)$, there is only one object $X=\{\bullet\}$. Then, $(\mathbb{N},+)(\bullet,-)$ sends \bullet to the set of morphisms $\bullet \rightarrow \bullet$, i.e. to $\mathbb{N}=\{0,1,2,3, \ldots\}$ and a morphism n to the function ${ }_{-}+n: \mathbb{N} \rightarrow \mathbb{N}$.
- In $\mathcal{C}=(\mathbb{N}, \leq)$, let $n=7$. Then $(\mathbb{N}, \leq)(7,-)$ sends $0,1, \ldots, 6$ to the set of morphisms $0,1, \ldots, 6,7 \rightarrow 7$ (i.e., to a single morphism " $0,1, \ldots, 6,7 \leq 7$ "), and all number $8,9, \ldots$ to the empty set.

Isomorphism of functors \Longleftrightarrow isomorphism of objects

Since $\mathcal{C}(X,-)$ and $\mathcal{C}(-, Y)$ are defined in terms of families of sets

$$
\left\{\mathcal{C}(A, Y) \mid A \in \mathcal{C}_{0}\right\} \quad\left\{\mathcal{C}(X, B) \mid B \in \mathcal{C}_{0}\right\}
$$

it follows that the correct notion of isomorphism between $\mathcal{C}(X,-)$ and $\mathcal{C}\left(X^{\prime},-\right)$ must take them all into consideration, and thus consists of a family of isomorphisms (=bijective functions)

$$
\mathcal{C}(X, A) \xrightarrow{\alpha_{A}} \mathcal{C}\left(X^{\prime}, A\right)
$$

all of which are "polymorphic" in the "variable" A.
This means that they behave coherently according the possibility to define a function $\mathcal{C}(X, u): \mathcal{C}(X, A) \rightarrow \mathcal{C}\left(X, A^{\prime}\right)$ out of a function $u: A \rightarrow$ A^{\prime}, and put together both in a square diagram

declaring that $\alpha_{A^{\prime}} \circ \mathcal{C}(X, u)=\mathcal{C}\left(X^{\prime}, u\right) \circ \alpha_{A}$.
Polymorphism is (almost) always present when one defines a widget depending on a parameter, and wants it to behave well under change of that parameter.

For example: let $\mathrm{A}=\{$ red, green, blue \} be a set; let $\mathrm{B}=\{$ cabbage, goat, wolf\} be another set. Obviously $A \cong B$ (for example, under the map \{red -> cabbage, green -> goat, blue -> wolf\}). Then, recall how the List<A> type is defined in CRUST:
type List<A> = nil()
| cons(A, List<A>)

If we want to express the fact that List<A> comes equipped with a function $h: A->$ List<A> sending a : A to cons(a, nil()) for all A 's, polymorphically in A, we have to require that, for every way of transforming the type A on which List<A> depends, using f : A $->$, we obtain
that

List<f> (h a) = h (f a)
which means List<f> (cons(a, nil()) = cons(f(a), nil()) (which is true):

Polymorphism (or in its mathematical name, naturality) is a powerful generalization of this idea, that applies to all correspondences like $\mathcal{C}(X,-)$ and $\mathcal{C}(-, Y)$ and List $\langle-\rangle$.

The first important observation

If X is isomorphic to Y, then $C(-, X)$ is isomorphic to $C(-, Y)$.
There is an easy way to generate an isomorphism $\mathcal{C}(-, Y) \cong \mathcal{C}\left(-, Y^{\prime}\right)$, in the above sense [=a "natural" isomorphism] from a pre-existing isomorphism $Y \cong Y^{\prime}$ in \mathcal{C}, i.e. from a pair

$$
u: Y \rightarrow Y^{\prime}, \quad v: Y^{\prime} \rightarrow Y
$$

such that $i d_{Y}=Y \xrightarrow{u} Y^{\prime} \xrightarrow{v} Y$ and $i d_{Y^{\prime}}=Y^{\prime} \xrightarrow{v} Y \xrightarrow{u} Y^{\prime}$. Indeed,

- the fact that the functors $\mathcal{C}(A,-)$ exist, yields for every A a function $\mathcal{C}(A, Y) \xrightarrow{\mathcal{C}(A, u)} \mathcal{C}\left(A, Y^{\prime}\right)$, and $\mathcal{C}\left(A, Y^{\prime}\right) \xrightarrow{\mathcal{C}(A, v)} \mathcal{C}(A, Y)$. It must then be that

$$
\begin{aligned}
\mathcal{C}(A, u) \circ \mathcal{C}(A, v) & =\mathcal{C}(A, u \circ v) \\
& =\mathcal{C}\left(A, i d_{Y^{\prime}}\right) \\
& =i d_{\mathcal{C}\left(A, Y^{\prime}\right)} \\
\mathcal{C}(A, v) \circ \mathcal{C}(A, u)= & \mathcal{C}(A, v \circ u) \\
& =\mathcal{C}\left(A, i d_{Y}\right) \\
& =i d_{\mathcal{C}(A, Y)}
\end{aligned}
$$

so that $\mathcal{C}(A, Y)$ and $\mathcal{C}\left(A, Y^{\prime}\right)$ are bijective functions, inverse to each other.

- Now, if $f: A \rightarrow A^{\prime}$ is given, polymorphism/naturality for $\hat{u}_{X}:=\mathcal{C}(X, u)$ is expressed by the fact that the square

commutes, which means that

$$
u \circ(-\circ f)=(u \circ-) \circ f
$$

This is ensured by the fact that composition is associative! Similarly, for v,

$$
\begin{aligned}
& \mathcal{C}\left(A^{\prime}, Y^{\prime}\right) \xrightarrow{\hat{v}_{A^{\prime}}} \mathcal{C}\left(A^{\prime}, Y\right) \\
& \mathcal{C}(f, Y) \downarrow \\
& \mathcal{C}\left(A, Y^{\prime}\right) \xrightarrow[\hat{v}_{A}]{ } \mathcal{C}(A, Y)
\end{aligned}
$$

(observe that one can "glue" together the two squares

to get the identities as horizontal compositions.)

The second (more) important observation

$C(-, X)$ iso to $C(-, Y)$ implies that X is iso to Y.
Or in other words, all polymorphic/natural isomorphisms $\alpha_{A}: \mathcal{C}(A, X) \cong \mathcal{C}(A, Y)$ originates from an isomorphism $X \cong Y$ in \mathcal{C}.
This is important because

- it allows to derive isomorphism of objects from isomorphisms of functors using those objects as parameters
- it allows to formally reason about isomorphism: in order to prove that $X \cong Y$ (abstract objects that you can touch), fix an object A and look at the sets $\mathcal{C}(A, X), \mathcal{C}(A, Y)$ (concrete sets that you can enumerate): if these sets are polymorphically isomorphic, then X must be isomorphic to Y.

The proof will be very fun.

Suppose there is a polymorphic isomorphism $\alpha_{A}: \mathcal{C}(A, X) \cong \mathcal{C}(A, Y)$. Spelled out: we have α given as a family of bijections $\alpha_{A}: \mathcal{C}(A, X) \rightarrow$ $\mathcal{C}(A, Y)$ with inverse $\alpha_{A}^{-1}: \mathcal{C}(A, Y) \rightarrow \mathcal{C}(A, X)$, and such that for every $f: A \rightarrow A^{\prime}$ the squares

commute. This means:

- $\forall f^{A \rightarrow A^{\prime}} g^{A^{\prime} \rightarrow X}: \alpha_{A}(g \circ f)=\alpha_{A^{\prime}}(g) \circ f$
- $\forall f^{A \rightarrow A^{\prime}} h^{A^{\prime} \rightarrow Y}: \alpha_{A}^{-1}(h \circ f)=\alpha_{A^{\prime}}^{-1}(h) \circ f$

Then,

- look at the component $\alpha_{X}: \mathcal{C}(X, X) \rightarrow \mathcal{C}(X, Y)$. The $\operatorname{set} \mathcal{C}(X, X)$ is not empty, so $\mathcal{C}(X, Y)$ contains at least one element, $\alpha_{X}\left(i d_{X}\right)=$: u.
- look at the component $\alpha_{Y}^{-1}: \mathcal{C}(Y, Y) \rightarrow \mathcal{C}(Y, X)$. The set $\mathcal{C}(Y, Y)$ is not empty, so $\mathcal{C}(Y, X)$ contains at least one element, $\alpha_{Y}^{-1}\left(i d_{Y}\right)=$: v.

Now,

$$
\begin{aligned}
u \circ v & =\alpha_{X}\left(i d_{X}\right) \circ \alpha_{Y}^{-1}\left(i d_{Y}\right) \\
& =\alpha_{X}\left(i d_{X}\right) \circ f \\
& =\alpha_{X}\left(i d_{X}\right) \circ f \\
& =\alpha_{Y}\left(i d_{X} \circ \alpha_{Y}^{-1}\left(i d_{Y}\right)\right) \\
& =\alpha_{Y}\left(\alpha_{Y}^{-1}\left(i d_{Y}\right)\right) \\
& =i d_{Y} \\
v \circ u & =\alpha_{Y}^{-1}\left(i d_{Y}\right) \circ \alpha_{X}\left(i d_{X}\right) \\
& =\alpha_{Y}^{-1}\left(i d_{Y}\right) \circ f \\
& =\alpha_{X}^{-1}\left(i d_{Y} \circ f\right) \\
& =\alpha_{X}^{-1}\left(i d_{Y} \circ \alpha_{X}\left(i d_{X}\right)\right) \\
& =\alpha_{X}^{-1}\left(\alpha_{X}\left(i d_{X}\right)\right) \\
& =i d_{X}
\end{aligned}
$$

