
2/25/24, 3:06 PM fake_yoneda

file:///home/fouche/repos/ct-course/24/fake_yoneda.html 1/3

The hom functors

Definition. If is a category, there are correspondences and defined as follows:

 comprises
a function sending each object to the set of all morphisms .

a function sending each morphism in to a function , defined taking to

.
The equalities and hold.

 comprises
a function sending each object to the set of all morphisms .

a function sending each morphism in to a function , defined taking to

.

The equalities and hold.

 and are the (covariant and contravariant) "hom functors" on the objects and .

Some examples of and in categories we know.

In , let ; then is the set of all subsets of , and is the function sending a subset
to the subset .

In , let ; then is the set of predicates that might fail, defined on .
In , fix a (small! Say, with three vertices) graph and describe the set of graph homomorphisms .

In , there is only one object . Then, sends to the set of morphisms , i.e. to

and a morphism to the function .
In , let . Then sends to the set of morphisms (i.e., to a single morphism

" 0,1,...,6,7 ≤ 7 "), and all number to the empty set.

Isomorphism of functors isomorphism of objects

Since and are defined in terms of families of sets

it follows that the correct notion of isomorphism between and must take them all into consideration, and thus consists of a family

of isomorphisms (=bijective functions)

all of which are "polymorphic" in the "variable" .

This means that they behave coherently according the possibility to define a function out of a function

, and put together both in a square diagram

declaring that .

Polymorphism is (almost) always present when one defines a widget depending on a parameter, and wants it to behave well under change of that

parameter.

For example: let A={red,green,blue} be a set; let B={cabbage, goat, wolf} be another set. Obviously (for example, under the map

 {red -> cabbage, green -> goat, blue -> wolf}). Then, recall how the List<A> type is defined in CRUST:

type List<A> = nil()

 | cons(A, List<A>)

If we want to express the fact that List<A> comes equipped with a function h : A -> List<A> sending a : A to cons(a, nil()) for all A 's,

polymorphically in A , we have to require that, for every way of transforming the type A on which List<A> depends, using f : A -> B , we obtain

C C(X, −) C(−,Y)

C(X, −)
A ∈ C 0 f : X → A

u : A → A′ C C(X,A) → C(X,A)′ f : X → A u ∘ f : X →
f

A →u A′

C(X, g ∘ f) = C(X, g) ∘ C(X, f) C(X, id) =A id C(X,A)

C(−,Y)
A ∈ C 0 f : A → Y

u : A → A′ C C(A ,Y) →′ C(A,Y) f : A →′ Y f ∘ u : A →u

A′ →
f
Y

C(g ∘ f ,Y) = C(f ,Y) ∘ C(g,Y) C(id ,Y) =A id C(A,Y)

C(X, −) C(−,Y) X Y

C(X, −) C(−,Y)

C = Set t X = {0, 1} Set (A, {0, 1})t A Set (u, {0, 1})t U ⊆ A′

u A :=−1 ′ {a ∈ A ∣ u(a) ∈ U}
C = Set p X = {true, false, ⊥} Set (A,X)p A

C = Graph H G → H

C = (N, +) X = {∙} (N, +)(∙, −) ∙ ∙ → ∙ N = {0, 1, 2, 3, … }
n _ + n : N → N

C = (N, ≤) n = 7 (N, ≤)(7, −) 0, 1, … , 6 0, 1, … , 6, 7 → 7
8, 9, …

⟺

C(X, −) C(−,Y)

{C(A,Y) ∣ A ∈ C } {C(X,B) ∣0 B ∈ C }0

C(X, −) C(X , −)′

C(X,A)

α A
C(X ,A)′

A

C(X,u) : C(X,A) → C(X,A)′ u : A →
A′

C(X,A)

C(X,u)

↓
⏐

C(X,A)′

α A

α A′

C(X ,A)′

↓
⏐

C(X ,u)′

C(X ,A)′ ′

α ∘A′ C(X,u) = C(X ,u) ∘′ α A

A ≅ B

2/25/24, 3:06 PM fake_yoneda

file:///home/fouche/repos/ct-course/24/fake_yoneda.html 2/3

that

List<f> (h a) = h (f a)

which means List<f> (cons(a, nil()) = cons(f(a), nil()) (which is true):

Polymorphism (or in its mathematical name, naturality) is a powerful generalization of this idea, that applies to all correspondences like and
 and .

The first important observation
If X is isomorphic to Y, then C(-, X) is isomorphic to C(-, Y).

There is an easy way to generate an isomorphism , in the above sense [=a "natural" isomorphism] from a pre-existing

isomorphism in , i.e. from a pair

such that and . Indeed,

the fact that the functors exist, yields for every a function , and . It must then

be that

so that and are bijective functions, inverse to each other.
Now, if is given, polymorphism/naturality for is expressed by the fact that the square

commutes, which means that

This is ensured by the fact that composition is associative! Similarly, for ,

(observe that one can "glue" together the two squares

to get the identities as horizontal compositions.)

A

f
↓
⏐

B

h A

h B

List⟨A⟩

↓
⏐

List⟨f⟩

List⟨B⟩

C(X, −)
C(−,Y) List⟨−⟩

C(−,Y) ≅ C(−,Y)′

Y ≅ Y ′ C

u : Y → Y , v :′ Y →′ Y

id =Y Y →u Y ′ →v Y id =Y ′ Y ′ →v Y →u Y ′

C(A, −) A C(A,Y)

C(A,u)
C(A,Y)′ C(A,Y)

′ C(A,v)
C(A,Y)

C(A,u) ∘ C(A, v)

C(A, v) ∘ C(A,u)

= C(A,u ∘ v)

= C(A, id)Y ′

= id C(A,Y)′

= C(A, v ∘ u)

= C(A, id)Y

= id C(A,Y)

C(A,Y) C(A,Y)′

f : A → A′
 :=ûX C(X,u)

C(A ,Y)′

C(f ,Y)

↓
⏐

C(A,Y)

 ûA′

 ûA

C(A ,Y)′ ′

↓
⏐

C(f ,Y)′

C(A,Y)′

u ∘ (_ ∘ f) = (u ∘ _) ∘ f .

v

C(A ,Y)′ ′

C(f ,Y)

↓
⏐

C(A,Y)′

 v̂A′

 v̂A

C(A ,Y)′

↓
⏐

C(f ,Y)′

C(A,Y)

C(A ,Y)′

C(f ,Y)

↓
⏐

C(A,Y)

 ûA′

 ûA

C(A ,Y)′ ′

↓
⏐

C(f ,Y)′

C(A,Y)′

 v̂A′

 v̂A

C(A ,Y)′

↓
⏐

C(f ,Y)

C(A,Y)

2/25/24, 3:06 PM fake_yoneda

file:///home/fouche/repos/ct-course/24/fake_yoneda.html 3/3

The second (more) important observation
C(-, X) iso to C(-, Y) implies that X is iso to Y.

Or in other words, all polymorphic/natural isomorphisms originates from an isomorphism in .

This is important because

it allows to derive isomorphism of objects from isomorphisms of functors using those objects as parameters
it allows to formally reason about isomorphism: in order to prove that (abstract objects that you can touch), fix an object and look at

the sets , (concrete sets that you can enumerate): if these sets are polymorphically isomorphic, then must be isomorphic to
.

The proof will be very fun.

Suppose there is a polymorphic isomorphism . Spelled out: we have given as a family of bijections
 with inverse , and such that for every the squares

commute. This means:

Then,

look at the component . The set is not empty, so contains at least one element,
.

look at the component . The set is not empty, so contains at least one element,
.

Now,

α :A C(A,X) ≅ C(A,Y) X ≅ Y C

X ≅ Y A

C(A,X) C(A,Y) X

Y

α :A C(A,X) ≅ C(A,Y) α α :A C(A,X) →
C(A,Y) α :A

−1 C(A,Y) → C(A,X) f : A → A′

C(A ,X)′

↓
⏐

C(A,X)

α A′

α A

C(A ,Y)′

↓
⏐

C(A,Y)

C(A ,X)′

↓
⏐

C(A,X)

α

A′
−1

α

A
−1

C(A ,Y)′

↓
⏐

C(A,Y)

∀f g :A→A′ A →X′
α (g ∘A f) = α (g) ∘A′ f

∀f h :A→A′ A →Y′
α (h ∘A

−1 f) = α (h) ∘A′
−1 f

α :X C(X,X) → C(X,Y) C(X,X) C(X,Y) α (id) =:X X

u

α :Y
−1 C(Y ,Y) → C(Y ,X) C(Y ,Y) C(Y ,X) α (id) =:Y

−1
Y

v

u ∘ v

v ∘ u

= α (id) ∘ α (id)X X Y
−1

Y

= α (id) ∘ fX X

= α (id) ∘ fX X

= α (id ∘ α (id))Y X Y
−1

Y

= α (α (id))Y Y
−1

Y

= id Y

= α (id) ∘ α (id)Y
−1

Y X X

= α (id) ∘ fY
−1

Y

= α (id ∘ f)X
−1

Y

= α (id ∘ α (id))X
−1

Y X X

= α (α (id))X
−1

X X

= id X

