Bicategories for automata theory

Fosco Loregian

June 28, 2024

Tallinn University of Technology, Tallinn EE

Actually, there is more to this story:

- Boccali, G., Laretto, A., _____, & Luneia, S. Completeness for categories
 of generalized automata. LIPIcs.CALCO.2023.20 \(\mathbb{L}\);
- Boccali, G., Femić, B., Laretto, A., _____, & Luneia, S. The semibicategory of Moore automata. arXiv:2305.00272

Fix an ambient monoidal category \mathcal{K} .

Classically (cf. Ehrig *et al*) one studies the category Mly(A, B) having

- objects the spans $X \stackrel{d}{\leftarrow} A \otimes X \stackrel{s}{\rightarrow} B$;
- morphisms the $f: X \to Y$ 'compatible with d and s' in the obvious sense:

$$\begin{array}{cccc} X & \longleftarrow & A \otimes X & \longrightarrow & B \\ f \downarrow & & & \downarrow & & \parallel \\ Y & \longleftarrow & A \otimes Y & \longrightarrow & B \end{array}$$

and the category Mre(A, B) having objects the 'disconnected' spans $X \leftarrow A \otimes X, X \rightarrow B$ and a similar choice of morphisms.

The results in this direction are essentially three:

- if T: K→ K is a commutative monad, Mealy and Moore machines in the (monoidal) Kleisli category K_T are 'non-deterministic' machines for a notion of fuzziness fixed by T;
- if K is closed, one can characterize Mealy and Moore machines coalgebraically [Jacobs, 2006], and in particular provide a slick proof of the co/completeness of Mly(A, B) and Mre(A, B);
- if K is Cartesian monoidal, Mly(A, B) is the hom-category of a bicategory Mly, and Mre(A, B) the hom-category of a semibicategory (a bicategory without identity 1-cells).

We can do better:

- we can discover structures hidden by these particular specifics;
- we can put more formal category theory in the picture (à la Goguen, Guitart, van den Bril, Betti/Kasangian,...).

If you stare at the definition long enough, you'll notice that

(where $Alg(A \otimes -)$ is the category of endofunctor algebras and up right there are comma categories)

If you stare even longer, you'll see $A \otimes -$ can be replaced with a left adjoint $F : K \to K$

(with similar conventions for Alg(F) and F/B)

Let **K** be a strict 2-category with all finite weighted limits.

Fix a 0-cell C, an endo-1-cell $f:C\to C$ and consider as building blocks of our theory

- the inserter $u: I(f, 1_C) \to C$ or 'object of algebras' for f;
- for every b: B → C the comma object C/b
 (equipped with its canonical projection
 C/b → C);
- the comma object $(f/b) \rightarrow C$.

Let **K** be a strict 2-category with all finite weighted limits.

Consider objects $X, B \in \mathbf{K}$ in a diagram of the following form:

$$X \xrightarrow{1} X \xleftarrow{f} X \xrightarrow{f} X \xleftarrow{b} B$$

this is nothing but a certain (Cat-enriched) sketch of which Mealy/Moore automata are the models in **K**.

(link w/ Petrişan 'sketch of automata')

$$\mathcal{B} \xrightarrow{b} \mathcal{X} \bigcap f$$

Advantages:

- it's tidy;
- clarifies that (in a sense) 'computational machines' are models for a limit sketch;

 \leadsto One has analogues for $\mathbf{Mly}(A,B)$, $\mathbf{Mre}(A,B)$ enriched over a quantale like $[0,\infty]^{op}$: it makes sense to consider a *metric space* $\mathbf{Mly}_{(X,d)}(f,b)$ associated to every nonexpansive map $f:X\to X$ and point $b\in X$.

 $monoidal\ automata \to bicategorical\ automata$

Automata in bicategories

A monoidal category is justTM a bicategory with a single object.

But then, do the definition given above make sense when instead of K we consider a bicategory \mathbb{B} with more than one object?

This idea is not *entirely* new; it resembles old (and obscure) work of Bainbridge, modeling the state space of abstract machines as a functor, of which one can take the left/right Kan extension along an 'input scheme'. See work of Petrişan et al.

Definition

Let $\mathbb B$ be a bicategory; a bicategorical Moore (biMoore) machine in $\mathbb B$ is a diagram of 2-cells

$$e \stackrel{\sigma}{\longleftarrow} e \circ i, e \stackrel{\delta}{\longrightarrow} o$$

between 1-cells e, i, o.¹

The fact that this span exists, *coherces the types* of i, o, e in such a way that i must be an endomorphism of an object A.

$$A \xrightarrow{i} A$$
, $A \xrightarrow{i} A \xrightarrow{i} A$, $A \xrightarrow{i} A \xrightarrow{i} A \xrightarrow{i} A$,...

all make sense.

In the monoidal case, the fact that an input 1-cell stands on a different level from an output was completely obscured by the fact that every 1-cell is an endomorphism.

¹A 1-cell of states (états), of inputs, and of outputs.

The terminal objects of Mly(A, B), Mre(A, B) are respectively $[A^+, B]$, $[A^*, B]$.

Analogously, given that a biMoore of fixed input and output i, o consists of a way of filling the dotted arrows in

with 1- and 2-cells, we have

The terminal object of the category of biMoore machines² is the right extension of $o: A \to B$ along the free monad $i^{\sharp}: A \to A$.

²With the obvious choice of morphisms, *mutatis mutandis*.

Intertwiners

Definition (Intertwiner between bicategorical machines)

Consider two bicategorical Mealy machines $(e, \delta, \sigma)_{A,B}, (e', \delta', \sigma')_{A',B'}$ on different bases.

An intertwiner (u, v): $(e, \delta, \sigma) \hookrightarrow (e', \delta', \sigma')$ consists of a pair of 1-cells $u: A \to A', v: B \to B'$ and a triple of 2-cells ι, ϵ, ω disposed as

such that

Intertwiners

Back to the monoidal (=one object) case, we obtain the following:

An intertwiner between (monoidal) machines $(E, d, s)_{I,O}$ and $(E', d', s')_{I',O'}$ consists of a pair of objects $U, V \in \mathcal{K}$, such that

1. there exist morphisms

$$\iota: I' \otimes U \to V \otimes I, \epsilon: E' \otimes U \to V \otimes E, \omega: O' \otimes U \to V \otimes O;$$

2. the following two identities hold:

$$\epsilon \circ (d' \otimes U) = (V \otimes d) \circ (\epsilon \otimes I) \circ (E' \otimes \iota)$$

 $\omega \circ (s' \otimes U) = (V \otimes s) \circ (\epsilon \otimes I) \circ (E' \otimes \iota)$

This notion is *not* trivial in the monoidal case!

Intertwiner 2-cells

Intertwiners between machines support a notion of higher morphisms:

Definition (2-cell between machines)

Let $(u, v), (u', v') : (e, \delta, \sigma) \hookrightarrow (e', \delta', \sigma')$ be two parallel intertwiners; a 2-cell $(\varphi, \psi) : (u, v) \Rightarrow (u', v')$ consists of a pair of 2-cells $\varphi : u \Rightarrow u', \psi : v \Rightarrow v'$ such that

This notion is *not* trivial in the monoidal case!

Conclusions

Monoidal topology and automata

Let $T:\mathsf{Set}\to\mathsf{Set}$ be a monad, and $\mathcal V$ a quantale.

Clementino, Hofmann, Seal, Tholen... build locally thin bicategories of (T, \mathcal{V}) -matrices and (T, \mathcal{V}) -categories providing a unified description of the categories of topological spaces, approach spaces, metric and ultrametric, probabilistic-metric closure spaces...

BiMoore and biMealy machines, when instantiated in (T, \mathcal{V}) -Prof, a 2-categorical way to look at topological, (ultra)metric ways to study behaviour of a state machine.

The reachability relation becomes topological, (ultra)metric, probabilistic, sequential... according to suitable choices of \mathcal{T}, \mathcal{V} .