## Bicategories for automata theory

Fosco Loregian<br>June 28, 2024

Tallinn University of Technology, Tallinn EE

Line of research: a series $\mathrm{j} / \mathrm{w}$ G. Boccali, A. Laretto, S. Luneia; EPTCS.397.1

Actually, there is more to this story:

- Boccali, G., Laretto, A., __ \& Luneia, S. Completeness for categories of generalized automata. LIPIcs.CALCO.2023.20 ®;
- Boccali, G., Femić, B., Laretto, A., ___ \& Luneia, S. The semibicategory of Moore automata. arXiv:2305.00272
- ___ Automata and coalgebras in categories of species, arXiv.2401.04242 , Proceedings of CMCS.

Fix an ambient monoidal category $\mathcal{K}$.
Classically (cf. Ehrig et al) one studies the category $\operatorname{Mly}(A, B)$ having

- objects the spans $X \stackrel{d}{\leftarrow} A \otimes X \xrightarrow{s} B$;
- morphisms the $f: X \rightarrow Y$ 'compatible with $d$ and $s$ ' in the obvious sense:

and the category $\operatorname{Mre}(A, B)$ having objects the 'disconnected' spans $X \leftarrow A \otimes X, X \rightarrow B$ and a similar choice of morphisms.

The results in this direction are essentially three:

- if $T: \mathcal{K} \rightarrow \mathcal{K}$ is a commutative monad, Mealy and Moore machines in the (monoidal) Kleisli category $\mathcal{K}_{T}$ are 'non-deterministic' machines for a notion of fuzziness fixed by $T$;
- if $\mathcal{K}$ is closed, one can characterize Mealy and Moore machines coalgebraically [Jacobs, 2006], and in particular provide a slick proof of the co/completeness of $\operatorname{Mly}(A, B)$ and $\operatorname{Mre}(A, B)$;
- if $\mathcal{K}$ is Cartesian monoidal, $\operatorname{Mly}(A, B)$ is the hom-category of a bicategory Mly, and $\operatorname{Mre}(A, B)$ the hom-category of a semibicategory (a bicategory without identity 1-cells).

We can do better:

- we can discover structures hidden by these particular specifics;
- we can put more formal category theory in the picture (à la Goguen, Guitart, van den Bril, Betti/Kasangian,... ).

If you stare at the definition long enough, you'll notice that

(where $\operatorname{Alg}(A \otimes-)$ is the category of endofunctor algebras and up right there are comma categories)

If you stare even longer, you'll see $A \otimes-$ can be replaced with a left adjoint $F: K \rightarrow K$

(with similar conventions for $A l g(F)$ and $F / B$ )

Let $\mathbf{K}$ be a strict 2-category with all finite weighted limits.
Fix a 0-cell $C$, an endo-1-cell $f: C \rightarrow C$ and consider as building blocks of our theory

- the inserter $u: I\left(f, 1_{C}\right) \rightarrow C$ or 'object of algebras' for $f$;
- for every $b: B \rightarrow C$ the comma object $C / b$ (equipped with its canonical projection $C / b \rightarrow C)$;
- the comma object $(f / b) \rightarrow C$.


Let $\mathbf{K}$ be a strict 2-category with all finite weighted limits.
Consider objects $X, B \in \mathbf{K}$ in a diagram of the following form:

$$
X \underset{1}{\longrightarrow} X{\underset{f}{f}} X \underset{f}{\longrightarrow} X \underset{b}{<_{b}} B
$$

this is nothing but a certain (Cat-enriched) sketch of which Mealy/Moore automata are the models in $\mathbf{K}$.
(link w/ Petrișan 'sketch of automata')


Advantages:

- it's tidy;
- clarifies that (in a sense) 'computational machines' are models for a limit sketch;
$\rightsquigarrow$ One has analogues for $\operatorname{Mly}(A, B)$, $\operatorname{Mre}(A, B)$ enriched over a quantale like $[0, \infty]^{o p}$ : it makes sense to consider a metric space $\mathbf{M l y}_{(X, d)}(f, b)$ associated to every nonexpansive map $f: X \rightarrow X$ and point $b \in X$.
monoidal automata $\rightarrow$ bicategorical automata


## Automata in bicategories

A monoidal category is just ${ }^{\top \mathrm{M}}$ a bicategory with a single object.
But then, do the definition given above make sense when instead of $K$ we consider a bicategory $\mathbb{B}$ with more than one object?

This idea is not entirely new; it resembles old (and obscure) work of Bainbridge, modeling the state space of abstract machines as a functor, of which one can take the left/right Kan extension along an 'input scheme'. See work of Petrișan et al.

## Definition

Let $\mathbb{B}$ be a bicategory; a bicategorical Moore (biMoore) machine in $\mathbb{B}$ is a diagram of 2-cells

$$
e \Longleftarrow \stackrel{\sigma}{\Longleftarrow} e \circ i, e \xlongequal{\delta} 0
$$

between 1-cells e, i, o. ${ }^{1}$
The fact that this span exists, coherces the types of $i, o, e$ in such a way that $i$ must be an endomorphism of an object $A$.

$$
A \xrightarrow{i} A, \quad A \xrightarrow{i} A \xrightarrow{i} A, \quad A \xrightarrow{i} A \xrightarrow{i} A \xrightarrow{i} A, \ldots
$$

all make sense.
In the monoidal case, the fact that an input 1-cell stands on a different level from an output was completely obscured by the fact that every 1-cell is an endomorphism.
${ }^{1}$ A 1-cell of states (états), of inputs, and of outputs.

The terminal objects of $\operatorname{Mly}(A, B), \operatorname{Mre}(A, B)$ are respectively $\left[A^{+}, B\right],\left[A^{*}, B\right]$.

Analogously, given that a biMoore of fixed input and output $i, o$ consists of a way of filling the dotted arrows in

with 1- and 2-cells, we have

The terminal object of the category of biMoore machines ${ }^{2}$ is the right extension of $o: A \rightarrow B$ along the free monad $i^{\sharp}: A \rightarrow A$.
${ }^{2}$ With the obvious choice of morphisms, mutatis mutandis.

## Intertwiners

## Definition (Intertwiner between bicategorical machines)

Consider two bicategorical Mealy machines $(e, \delta, \sigma)_{A, B},\left(e^{\prime}, \delta^{\prime}, \sigma^{\prime}\right)_{A^{\prime}, B^{\prime}}$ on different bases.

An intertwiner $(u, v):(e, \delta, \sigma) \leftrightarrow\left(e^{\prime}, \delta^{\prime}, \sigma^{\prime}\right)$ consists of a pair of 1-cells $u: A \rightarrow A^{\prime}, v: B \rightarrow B^{\prime}$ and a triple of 2-cells $\iota, \epsilon, \omega$ disposed as

$$
\begin{aligned}
& A \xrightarrow{u} A^{\prime} \\
& i{ }_{i}^{\nVdash_{\iota}} \|^{i^{\prime}} \\
& A \xrightarrow[u]{\longrightarrow} A^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
& A \xrightarrow{u} A^{\prime} \\
& e\left\|_{\downarrow}^{\mathbb{K}_{\epsilon}}\right\|^{e^{\prime}} \\
& B \xrightarrow[v]{ } B^{\prime}
\end{aligned}
$$

such that


## Intertwiners

Back to the monoidal (=one object) case, we obtain the following:

An intertwiner between (monoidal) machines $(E, d, s)_{I, O}$ and $\left(E^{\prime}, d^{\prime}, s^{\prime}\right)_{I^{\prime}, O^{\prime}}$ consists of a pair of objects $U, V \in \mathcal{K}$, such that

1. there exist morphisms

$$
\iota: I^{\prime} \otimes U \rightarrow V \otimes I, \epsilon: E^{\prime} \otimes U \rightarrow V \otimes E, \omega: O^{\prime} \otimes U \rightarrow V \otimes O
$$

2. the following two identities hold:

$$
\begin{aligned}
& \epsilon \circ\left(d^{\prime} \otimes U\right)=(V \otimes d) \circ(\epsilon \otimes I) \circ\left(E^{\prime} \otimes \iota\right) \\
& \omega \circ\left(s^{\prime} \otimes U\right)=(V \otimes s) \circ(\epsilon \otimes I) \circ\left(E^{\prime} \otimes \iota\right)
\end{aligned}
$$

This notion is not trivial in the monoidal case!

## Intertwiner 2-cells

Intertwiners between machines support a notion of higher morphisms:

## Definition (2-cell between machines)

Let $(u, v),\left(u^{\prime}, v^{\prime}\right):(e, \delta, \sigma) \leftrightarrow\left(e^{\prime}, \delta^{\prime}, \sigma^{\prime}\right)$ be two parallel intertwiners; a 2-cell $(\varphi, \psi):(u, v) \Rightarrow\left(u^{\prime}, v^{\prime}\right)$ consists of a pair of 2-cells $\varphi: u \Rightarrow u^{\prime}, \psi: v \Rightarrow v^{\prime}$ such that


This notion is not trivial in the monoidal case!

Conclusions

## Monoidal topology and automata

Let $T:$ Set $\rightarrow$ Set be a monad, and $\mathcal{V}$ a quantale.

Clementino, Hofmann, Seal, Tholen... build locally thin bicategories of $(T, \mathcal{V})$-matrices and $(T, \mathcal{V})$-categories providing a unified description of the categories of topological spaces, approach spaces, metric and ultrametric, probabilistic-metric closure spaces...

BiMoore and biMealy machines, when instantiated in ( $T, \mathcal{V}$ )-Prof, a 2-categorical way to look at topological, (ultra)metric ways to study behaviour of a state machine.

The reachability relation becomes topological, (ultra)metric, probabilistic, sequential. . according to suitable choices of $T, \mathcal{V}$.

