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A nice feature of rings is that they behave like monoidal categories with
one object (or vice versa).

Any monoidal functor F : V → W (lax is enough) induces a base
change 2-functor

F∗ : V-Cat −→W-Cat

that sends a V-category C into the W-category having the same
objects of C and where (F∗C)(X ,Y ) = F (C(X ,Y )).

The structural 2-cells of F induce the monoidal structure on F∗C.

Monoidal transformations are induced accordingly (the definition is
straightforward): a natural transformation β : F → G induces a
2-natural transformation between the 2-functors F∗ and G∗ with
‘restricted’ components.

It seems that this construction could be applied to V → Set to generate
the underlying functor U : V-Cat→ Cat, but the fact is that hom(J,−) is
seldom monoidal.
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The assignment described above that sends V into V-Cat, F to F∗ and β
to β∗ is a 2-functor

(−)-Cat : Cat⊗ −→ 2-Cat

A suitable 2-categorical Grothendieck construction gives rise then to a
universal fibration

EnCat

p

��

Cat⊗

whose fiber over V is the 2-category of V-categories.

This is no different from the construction of the fibration
Mod→ Ring whose fiber over the ring R is the category R-Mod of
modules over R. This is the canonical fibration for F : Ring→ Cat,
and Mod =

∫
1F .

General definitions pertaining the Grothendieck construction apply
here and we have a definition on functors and natural transformations.
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A morphism (V, C)→ (W,D) in EnCat is given by a pair u : V → W
and a functor f : u∗C → D. Composition is given by

(vu)∗C = v∗u∗C
v∗f−−→ v∗D

g−→ E

A 2-cell α : (u, f )→ (v , g) is defined for two parallel 1-cells
(V, C)→ (W,D) as a pair β : u → v (which is monoidal) and α is a
2-cell

u∗C

β∗ ""

f //

⇓α

D

v∗C
g

>>
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All the forgetful functors UV : V-Cat→ Cat glue together to form a
functor

U : EnCat→ Cat

defined by U(V, C) = UV(C) =the underlying unenriched category of C.
All the compatibility check are straightforward.
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Recall that a monoidal prederivator is a strict 2-functor E : Catop → Cat⊗.
A prederivator enriched over E is a 2-functor D such that p ◦ D = E.

The essential of this definition is: an enriched derivator specifies an
E(J)-enriched category D(J) for each J ∈ Cat, and this specification is
2-functorial in J. Graphically,

Catop

E ,,

D // EnCat
U //

p

��

CAT

Cat⊗

The composition U ◦ D is the prederivator underlying the enriched
prederivator D.
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Defining a morphism of enriched prederivators is notationally quite painful,
but the definition is clear: it’s a pseudonatural transformation between
2-functors Catop → EnCat.

From the definition of morphism in EnCat it follows that we have to
specify a pseudonatural transformation F : D→ D′ whose components
FI : D(I )→ D′(I ) satisfy the commutativity

E(u)∗D(K )

��

// E(u)∗D′(K )

��

⇒

D(J)
FJ

// D′(J)

for each u : J → K , where we exceptionally denoted E(u) the action of E
on u.
(the yoga is: as a monoidal functor, E(u) turns D(K ) into a E(J)-enriched
category, and then the square above is the only way to compare them
according to the def. of morphisms in EnCat).
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A general result in enriched stuff is:

Theorem

Given a 2v adjunction E × D y−→ D where E is monoidal and D is
E-tensored. Then D is also E-cotensored and canonically E-enriched.

We want to show that this is the base case of a theorem on derivators:

Theorem for derivators

Let E be a monoidal derivator, and bD tensored over E. If there is a 2v
adjunction inducing the tensoring,

(⊗, homl , homr ) : E× D→ D

then D is canonically E-enriched and cotensored.
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From the definition of an 2v adjunction for derivators we get that each
D(K ) is tensored over E(K ) and part of a 2v adjunction

(⊗,homl ,D(K),homr ,D(K)) : E(K )× D(K )→ D(K )

Using the result for plain categories we get that each D(K ) is enriched
over E(K ), and we prove that it is coherently so: homr will give all the
needed coherence.
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As a general tenet, if you can do something in model categories you can
do it in derivators:

If M,N are combinatorial model categories, M is also monoidal, and N
is M-tensored, then the derivator DN is canonically tensored, cotensored
and enriched over the monoidal derivator DM.

This applies to sSet-model categories, Sp-model categories, dgk -model
categories. . .
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The Grothendieck construction

The previous construction of p makes heavy use of the Grothendieck
construction for 2-categories. We recall it starting from its 0-dimensional
counterpart.

For a functor F : I → Set all you need to know is in any of these
equivalent universal properties:∫

0F

��

// Set∗

U
��

I
F
// Set

∫
0F

⇒

��

// I op

y

��

∗
dFe
// [I ,Set]

∫
0F

⇒
//

��

∗

d∗e
��

I // Set

There is a fibration p :
∫

0F → I such that p−1i is the set F (i).
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For a functor F : I → Cat we define
∫

1F as the category of pairs
(i ,X ∈ F (i)), and a morphism (i ,X )→ (j ,Y ) to be a pair (f , u) such
that f : i → j and u : F (f )X → Y in F (j). Composition is defined as

(i ,X )
(f ,u)→ (j ,Y )

(g ,v)→ (k ,Z )

(i ,X )
(g .f ,v .F (g)u)→ (k,Z )

Again there is a fibration p :
∫

1F → I such that p−1i is a category
isomorphic to F (i).
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For a 2-functor F : I → 2-Cat, things go as expected but the definition is
quite daunting:

∫
F has

∫
1F as underlying 1-category (in a similar manner,∫

1F had
∫

0F as set of objects); 2-cells and their two compositions
(horizontal and vertical) are defined as follows

A 2-cell (i ,X )

(f ,u)
++

(g ,v)
33��

a (j ,Y ) is a pair (α, θ) such that α : f → g is a

2-cell in I and θ : v .F (α)X → u is a 2-cell in F (j).

Reference Cards
Thursday 21st September, 2017 14:16 13

/ 15



Horizontal composition is defined for cells

(i ,X )

(f ,u)

%%�� a

99

(h,w)

�� b
(g,v) // (j ,Y )

i.e. for diagrams of 2-cells like

F (f )X
u //

F (α)X $$

Y

⇒θ

F (g)X

v

OO F (g)X
v //

F (β)X $$

Y

⇒σ

F (h)X

w

OO

as the pasting

F (f )X

''

u // Y

F (g)X

77

''

⇒σ
⇒θ

F (h)X

w

OO

giving that (β, σ) ◦v (α, θ) = (β ◦v α, (σ ∗ F (α)X ) ◦ θ).
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Vertical composition is defined for cells

(i ,X )

(f1,u1)
**

(f2,u2)

44�� a (j ,Y )

(g1,v1)
++

(g2,v2)

33�� b (k,Z)

i.e. for diagrams of 2-cells like

F (f1)X //

$$

Y

⇒θ

F (f2)X

OO F (g1)Y //

$$

Z

⇒σ

F (g2)Y

OO

as the pasting

F (g1f1)X
F (g1)u1 //

F (g1)F (α)X %%

F (g1)Y

⇒F (g1)θ

v1 //

&&��

Z

⇒σ

F (g1f2)X

F (β)f2X &&

nat F (g2)Y

v2

OO

F (g2f2)X .

F (g2)u2

OO
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