Reference Cards Monoidal and enriched derivators

Thursday 21st September, 2017 14:16

< ∃ > <

A nice feature of rings is that they behave like monoidal categories with one object (or vice versa).

Any monoidal functor F : V → W (lax is enough) induces a base change 2-functor

 $F_*:\mathcal{V}\text{-}\mathsf{Cat}\longrightarrow\mathcal{W}\text{-}\mathsf{Cat}$

that sends a \mathcal{V} -category \mathcal{C} into the \mathcal{W} -category having the same objects of \mathcal{C} and where $(F_*\mathcal{C})(X, Y) = F(\mathcal{C}(X, Y))$.

- The structural 2-cells of F induce the monoidal structure on F_*C .
- Monoidal transformations are induced accordingly (the definition is straightforward): a natural transformation β : F → G induces a 2-natural transformation between the 2-functors F_{*} and G_{*} with 'restricted' components.

It seems that this construction could be applied to $\mathcal{V} \to \mathbf{Set}$ to generate the underlying functor $U : \mathcal{V}\text{-}\mathsf{Cat} \to \mathsf{Cat}$, but the fact is that $\hom(J, -)$ is seldom monoidal.

イロト イ団ト イヨト イヨト 三日

The assignment described above that sends $\mathcal V$ into $\mathcal V\text{-}\mathsf{Cat},\,F$ to F_* and β to β_* is a 2-functor

$$(-)$$
-Cat : Cat $_{\otimes} \longrightarrow$ 2-Cat

A suitable 2-categorical Grothendieck construction gives rise then to a universal fibration

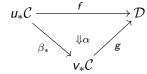
whose fiber over \mathcal{V} is the 2-category of \mathcal{V} -categories.

- This is no different from the construction of the fibration
 Mod → Ring whose fiber over the ring R is the category R-Mod of modules over R. This is the canonical fibration for F : Ring → Cat, and Mod = ∫₁F.
- General definitions pertaining the Grothendieck construction apply here and we have a definition on functors and natural transformations.

 A morphism (V, C) → (W, D) in EnCat is given by a pair u : V → W and a functor f : u_{*}C → D. Composition is given by

$$(vu)_*\mathcal{C} = v_*u_*\mathcal{C} \xrightarrow{v_*f} v_*\mathcal{D} \xrightarrow{g} \mathcal{E}$$

A 2-cell α : (u, f) → (v, g) is defined for two parallel 1-cells
 (V, C) → (W, D) as a pair β : u → v (which is monoidal) and α is a 2-cell



All the forgetful functors $\mathcal{U}_\mathcal{V}:\mathcal{V}\text{-}\mathsf{Cat}\to\mathsf{Cat}$ glue together to form a functor

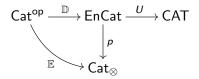
$$U: \mathsf{EnCat}
ightarrow \mathsf{Cat}$$

defined by $U(\mathcal{V}, \mathcal{C}) = U_{\mathcal{V}}(\mathcal{C})$ =the underlying unenriched category of \mathcal{C} . All the compatibility check are straightforward.

イロト イ団ト イヨト イヨトー

Recall that a monoidal prederivator is a strict 2-functor $\mathbb{E} : \mathsf{Cat}^{\mathsf{op}} \to \mathsf{Cat}_{\otimes}$. A prederivator enriched over \mathbb{E} is a 2-functor \mathbb{D} such that $p \circ \mathbb{D} = \mathbb{E}$.

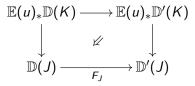
The essential of this definition is: an enriched derivator specifies an $\mathbb{E}(J)$ -enriched category $\mathbb{D}(J)$ for each $J \in Cat$, and this specification is 2-functorial in J. Graphically,



The composition $U \circ \mathbb{D}$ is the prederivator underlying the enriched prederivator \mathbb{D} .

Defining a morphism of enriched prederivators is notationally quite painful, but the definition is clear: it's a pseudonatural transformation between 2-functors $Cat^{op} \rightarrow EnCat$.

From the definition of morphism in EnCat it follows that we have to specify a pseudonatural transformation $F : \mathbb{D} \to \mathbb{D}'$ whose components $F_I : \mathbb{D}(I) \to \mathbb{D}'(I)$ satisfy the commutativity



for each $u: J \to K$, where we exceptionally denoted $\mathbb{E}(u)$ the action of \mathbb{E} on u.

(the yoga is: as a monoidal functor, $\mathbb{E}(u)$ turns $\mathbb{D}(K)$ into a $\mathbb{E}(J)$ -enriched category, and then the square above is the only way to compare them according to the def. of morphisms in EnCat).

・ロト・4日・4日・4日・ 日 うへの

A general result in enriched stuff is:

Theorem

Given a 2v adjunction $\mathcal{E} \times \mathcal{D} \xrightarrow{\sim} \mathcal{D}$ where \mathcal{E} is monoidal and \mathcal{D} is \mathcal{E} -tensored. Then \mathcal{D} is also \mathcal{E} -cotensored and canonically \mathcal{E} -enriched.

We want to show that this is the base case of a theorem on derivators:

Theorem for derivators

Let \mathbb{E} be a monoidal derivator, and *bD* tensored over \mathbb{E} . If there is a 2v adjunction inducing the tensoring,

 $(\otimes, \mathsf{hom}_I, \mathsf{hom}_r) : \mathbb{E} \times \mathbb{D} \to \mathbb{D}$

then $\mathbb D$ is canonically $\mathbb E\text{-enriched}$ and cotensored.

From the definition of an 2v adjunction for derivators we get that each $\mathbb{D}(K)$ is tensored over $\mathbb{E}(K)$ and part of a 2v adjunction

$$(\otimes, \operatorname{HOM}_{I,\mathbb{D}(K)}, \operatorname{HOM}_{r,\mathbb{D}(K)}) : \mathbb{E}(K) \times \mathbb{D}(K) \to \mathbb{D}(K)$$

Using the result for plain categories we get that each $\mathbb{D}(K)$ is enriched over $\mathbb{E}(K)$, and we prove that it is coherently so: hom_r will give all the needed coherence.

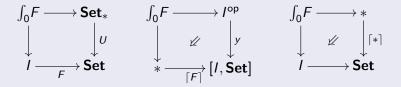
As a general tenet, if you can do something in model categories you can do it in derivators:

If \mathcal{M}, \mathcal{N} are combinatorial model categories, \mathcal{M} is also monoidal, and \mathcal{N} is \mathcal{M} -tensored, then the derivator $\mathbb{D}_{\mathcal{N}}$ is canonically tensored, cotensored and enriched over the monoidal derivator $\mathbb{D}_{\mathcal{M}}$.

This applies to **sSet**-model categories, **Sp**-model categories, dg_k -model categories...

The previous construction of p makes heavy use of the Grothendieck construction for 2-categories. We recall it starting from its 0-dimensional counterpart.

For a functor $F : I \rightarrow \mathbf{Set}$ all you need to know is in any of these equivalent universal properties:



There is a fibration $p: \int_0 F \to I$ such that $p^{-1}i$ is the set F(i).

《曰》《圖》《臣》《臣》 三臣

For a functor $F : I \to \mathbf{Cat}$ we define $\int_1 F$ as the category of pairs $(i, X \in F(i))$, and a morphism $(i, X) \to (j, Y)$ to be a pair (f, u) such that $f : i \to j$ and $u : F(f)X \to Y$ in F(j). Composition is defined as

$$(i, X) \stackrel{(f, u)}{\rightarrow} (j, Y) \stackrel{(g, v)}{\rightarrow} (k, Z)$$

 $(i, X) \stackrel{(g, f, v, F(g)u)}{\rightarrow} (k, Z)$

Again there is a fibration $p : \int_1 F \to I$ such that $p^{-1}i$ is a category isomorphic to F(i).

<ロト < 聞 > < 臣 > < 臣 > 二 臣

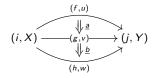
For a 2-functor $F: I \to 2$ -**Cat**, things go as expected but the definition is quite daunting: $\int F$ has $\int_1 F$ as underlying 1-category (in a similar manner, $\int_1 F$ had $\int_0 F$ as set of objects); 2-cells and their two compositions (horizontal and vertical) are defined as follows

• A 2-cell
$$(i, X) \xrightarrow[(g,v)]{(g,v)} (j, Y)$$
 is a pair (α, θ) such that $\alpha : f \to g$ is a

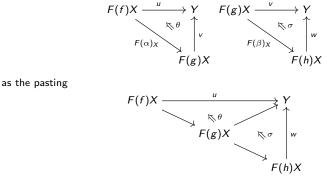
2-cell in I and θ : $v.F(\alpha)_X \to u$ is a 2-cell in F(j).

▲口> ▲圖> ▲注> ▲注> 三注

Horizontal composition is defined for cells



i.e. for diagrams of 2-cells like



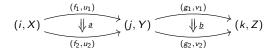
giving that $(\beta, \sigma) \circ_{v} (\alpha, \theta) = (\beta \circ_{v} \alpha, (\sigma * F(\alpha)_{X}) \circ \theta).$

A B >
 A B >
 A

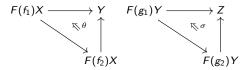
- 金田 - 金田 - 二

3

Vertical composition is defined for cells



i.e. for diagrams of 2-cells like



as the pasting

