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Prolegomena

record MealyObj I 0 : Set (o U 1 U e) where
field
E : O0bj

cE®I =>E
cE®I =0

{J Mealy.agda {7 XMealy.agda {7 Mealy/Bicategory.agda


https://github.com/iwilare/agda-categories/blob/mealy/src/Mealy.agda
https://github.com/iwilare/agda-categories/blob/mealy/src/XMealy.agda
https://github.com/iwilare/agda-categories/blob/mealy/src/Mealy/Bicategory.agda

Mealy and Moore

Definition
The category of Mealy machines? has objects the Mealy

machines as above, (E, d,s), and morphisms
(E,d,s) — (F,d',s’) the f: E — F such that

E<4 FI-*>0

e
dl

F<—F®IT>O

LAl definitions from now on can be Moore-ified without effort.
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Let P be an monoidal monad on K; the Kleisli category of P
becomes monoidal; dually, if Pis opmonoidal, Elienberg-Moore
( ) becomes monoidal.

Definition
A Py-machine is a Mealy machine in KI(P); a P-machine is a
Mealy machine in EM(P).

Why care?

e nondeterminism (if P =powerset, KI/(P) = Rel);

e additional structure on objects (they are P-algebras).
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Theorem
The category of Mealy machines fits into a (strict, 2-)pullback in

Cat
Mly(I,0) —— Alg(- ® 1)

| 2

(=®1)/0) K

(A similar result holds for Moore: replace the comma
((— ® I)/0) with the slice £/0.)
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(cf. Adamek-Trnkova)

Instead of considering a span
E<L EQI—°-0
consider the action of a generic endofunctor X : K — K:
E<—XE——=O0

SN

X-algebra obj. of comma

which yields at once a pullback characterization of
X-automata, ...
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X-Mly fits in a strict 2-pullback
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| - v

Alg(X) K

u

...and in particular when X 4 R

Theorem

The category of X-automata is cocomplete when K is, with
colimits created by a canonical functor X-Mly — K; it is
complete when K is.
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From [Mac Lane, V.6, Ex. 3]: in every strict pullback of
categories

A-Y.B
v’i | lv

if U creates, and V preserves, limits of a given shape 7, then U’
creates limits of shape 7.

But Alg(X) — K creates all limits, and X/O — K all connected
limits; thus the problem boils down to find a terminal object
(products follow).
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Claim: the terminal object of X-Mly is the terminal coalgebra
for the functor
A— RAXxO

which (Adamek theorem) is O, = [ [n=1 RO, with structural
morphisms given by deletion of first factor, and projection over
first factor:

do :X( [Tns1 R”O) — [[=1 RO
Soo :X( Hn>1 R”O) — 0

A similar line of reasoning leads to the terminal object in X-Mre



How to induce a terminal morphism
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How to induce a terminal morphism

d _XE—S .0

I

Oz < — X0 >0

e : E — Oy is defined as

do : mate(- - - — XXXE X% xxe X% XE 5 0)

S, - mate( - — XXXE 2% xxE X% xE =, 0)
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Products are computed as pullbacks along terminal maps:

Pp—>F

N2
E—— Oy

SE, 0

The pullback Py can be thought as the bisimulation object for
X-machines. As a corollary,

e Mly(I,0) complete with terminal object [IT, O] (« free
semigroup).

e Mre(I,0) complete with terminal object [I*, O] (« free
monoid).
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Behaviour as an adjunction

Assume the forgetful U : Alg(X) — K has a lef adjoint F.

There is a composite of adjoint functors

F L
Ko z ALE(X) /(0.0.dr) ? X-Mre
U

where B is a ‘behaviour’ functor defined as
(E,d,s) — (g : E— Oy)

and its left adjoint L is determined through the ‘free’ Moore
machine on a X-algebra over the terminal O..
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Bicategories

So far so good.

It’s all fun and games until someone toses-an-eyeuses a
bicategory.

e under which assumptions is Mly(I, O) the hom-category of
a bicategory?

e similar question for Mealy.

o A monoidal category is just™ a bicategory with a single

object; but then what is a Mealy automaton in a
bicategory B?
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The bicategory Mly

Let K be a Cartesian category. Define a bicategory LWK as follows

1.
2.

its objects are the same objects of £;

its 1-cells I — O are the Mealy machines (E, d,s), i.e. the
objects of the category Mly,-(I, 0);

its 2-cells are Mealy machine morphisms defined ibid.;

. the composition of 1-cells — o — is defined as [postponed];

the vertical composition of 2-cells is the composition of Mealy
machine morphisms f: E — F;

the horizontal composition of 2-cells is the operation defined
thanks to bifunctoriality of — o —;

. the associator and the unitors are inherited from .
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Composition of 1-cells

Given two Mealy machines (E,d,s) : I —- Jand
(F,d',s"):J— K,

E<% ExI—5>7

F<L FxJ—sk

define their composition (E x F,d’ {d, s’ $s) : I — Kas

SOs=5-(Exs):FxExI—>FxJ—K
dod=(d nr,d - (ExS)y:FxExI—>FxE

where E~ 4 Ex I~ ExFxIESoFxg 4 o F




Composition of 1-cells

Proof of associativity is bureaucracy:

(d1 QO da) O ds
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Composition of 1-cells

Proof of associativity is bureaucracy:

(d1 QO da) O ds

<d3 . 7T12,<d2 ° G4 ° (E:L x Ey x S3)~,d1 : (El X (52 . (EZ X S3)))>>

d1 $(dy O dz) =

= {d3 - m12,{d> - (E2 x S3) - m1,d1 - (Ex x (S2 - (E2 X S3)))))
S1O (5240 83) =

:51'(E1><52)-(E1><E2><53)
(51052)053151-(E1 XSz)-(ElXEz ><53)

Unitality follows a similar (simpler) strategy.
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Corollar(ies)

e there are bicategories
MSet’ MCat’ M"yTop’ Mlypos’ M"yMon’ e

e if Cis Cartesian closed, all right/left Kan extensions/lifts
exist;

e as a corollary, the terminal objects [I*, O], [I*, O] (and
also, I't, I*) can be characterised as Kan extensions (and
also, free monads/semigroups)!

? the assignment K — M/{, is (2-)functorial CCat — 2-Cat
(careful with the 2-cells, Eugene).

? Guitart defines a ‘bicategory of Mealy machines’ as
Spn:(Mon), spans in Cat between monoids whose left leg
is a fibration. Interesting adjunctions with our Mly’s?
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A monoidal category is just a bicategory with a single object.
What is a machine inside a bicategory B with objects
A,B,C...? Abicategorical Moore machine consists of a span of

2-cellsin B
e<:6€o[0:>o

or rather a diagram of 2-cells

&
e[& A =)o
;

for objects A, B € B.
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e the mere fact that the 2-cells ¢, o exist implies that i is an
endomorphism;

e so, iterated compositionsio --- o i make sense as much as
iterated tensor powers I ® - - - ® I made sense in K;
e one can find examples in
e categories, functors and natural transformations;
e categories, functors and lax transformations;
e categories, profunctors and 2-cells (a fortiori, in Rel);
e sets and metric relations;
e topological, approach, closure spaces,...
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Behaviour as a Kan extension

A bicategorical Moore machine in B of fixed input and output i, 0 is a
diagram

The ‘terminal way’ of filling such a span is the right extension of the
output cell along the free monad i# on the input:

e fromthe unitn: 1, = i, get Ran; = Ran; = 1,4, and thus
o : Ran;o = o;
e from the multiplication p : if o i* = i get Rany = Rany o Rany,

and thus

. Rangoxn )
6 : Ran;0 o | ==—= Ran0 o i =——=>Ran;0
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Definition
An intertwiner (u,v) : (e,0,0)ag ¢ (€/,9’,0")a g consists of a pair of
1-cellsu: A — A’,v: B — B and atriple of 2-cells ¢, ¢, w disposed as

follows:
AL N /Y -y
zl /L l[, el /6 \Le’ O\L /w io’
A—sA B——B B——B
such that:
1 b
) =l € |8 and |o =| w |,
& w
L L
o = € ) and |o = w o
€ w
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Definition

Let (u,v), (u,V) : (e,d,0) B (€/,¢,0") be two parallel
intertwiners between bicategorical Mealy machines; a 2-cell
(p, 1) : (u,v) = (U, V) consists of a pair of 2-cells ¢ : u = U/,
¥ : v =V such that the following identities hold true:

P> P> P>
P> P> P>
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Specialized to the monoidal case, the previous two definitions
become

e morphisms of type
1:T'QU->VRILe: QU —->VREwWw: 00U — VRO,

e such that

o(d@U) = (VR d)o(e®) o (E ®1)
wo(s'@U)=(V®s)o(e®I)o(E®¢)

e pairsf: U — U andg: V — V' such that

E’®I’®U E®U V®E®I VR E
E’®I'®fl i E'®f g®E®Il ig®f
E’®I’®U/ ERU V/®E®IWv’®E



Open problems



Of other bicategories

In 1974 Guitart defined a bicategory of Mealy machines:

e the objects are categories M, N, ... (actually, monoids);
e the 1-cells are spans

D S

M<—& —=N

where D is a fibration and S is a functor.

e composition of 1-cells is as in Span.

e G then proves that MAC is the Kleisli bicategory of the
diagram monad C — Cat/C;

We conjecture the existence of a left pseudo-adjoint L in

L:Mly_, _1 MAC:G



Nondeterminism in equipments

e InRel, R = Ranj0 is the relation defined as
(a,b)e R «— Vd' € A.((d',a) e F = (d',b) € 0).
This relation expresses reachability of b from a:
aRb < ((a’ —avdSab.. Sa,ba)= a’Ob)

e Passing from automata in Cat to automata in Prof
accounts for a form of nondeterminism; one can
conjecture to be able to address nondeterministic BA in B
as deterministic BA in a proarrow equipment.
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Thanks!

We're still in the process of finishing this up.

Get in touch if you have ideas / want to join!
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