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Prolegomena

Fix a monoidal category pK,bq.

Definition
A Mealy machine (of input I and output O) in K is a span

E E b I s //doo O

Definition
A Moore machine (of input I and output O) in K is a span

E E b I , E s //doo O
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Mealy and Moore

Definition

The category of Mealy machines1 has objects the Mealy
machines as above, pE,d, sq, and morphisms
pE,d, sq Ñ pF,d1, s1q the f : E Ñ F such that

E

f
��

E b Idoo

fbI
��

s // O

F F b Id1
oo

s1
// O

1All definitions from now on can be Moore-ified without effort.



Mealy and Moore

Let P be an monoidal monad on K; the Kleisli category of P
becomes monoidal; dually, if P is opmonoidal, Elienberg-Moore
(not the same Moore!) becomes monoidal.

Definition
A Pλ-machine is a Mealy machine in KlpPq; a P-machine is a
Mealy machine in EMpPq.

Why care?

‚ nondeterminism (if P “powerset, KlpPq “ Rel);
‚ additional structure on objects (they are P-algebras).
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Mealy and Moore

Theorem
The category of Mealy machines fits into a (strict, 2-)pullback in
Cat

MlypI,Oq //

��

Algp´ b Iq

��
pp´ b Iq{Oq // K

(A similar result holds for Moore: replace the comma
pp´ b Iq{Oq with the slice K{O.)
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X-automata

(cf. Adámek-Trnková)

Instead of considering a span

E E b I s //doo O

consider the action of a generic endofunctor X : K Ñ K:

E XE //oo O

X-algebra obj. of comma

which yields at once a pullback characterization of
X-automata, …
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X-automata

X-Mly fits in a strict 2-pullback

X-Mly U1
//

V1

��

pX{Oq

V
��

AlgpXq
U

// K

…and in particular when X % R

Theorem
The category of X-automata is cocomplete when K is, with
colimits created by a canonical functor X-Mly Ñ K; it is
complete when K is.
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X-automata

From [Mac Lane, V.6, Ex. 3]: in every strict pullback of
categories

A U1
//

V1

��

B

V
��

C
U

// K

if U creates, and V preserves, limits of a given shape J , then U1

creates limits of shape J .

But AlgpXq Ñ K creates all limits, and X{O Ñ K all connected
limits; thus the problem boils down to find a terminal object
(products follow).
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X-automata

Claim: the terminal object of X-Mly is the terminal coalgebra
for the functor

A ÞÑ RA ˆ O

which (Adámek theorem) is O8 “
ś

ně1 RnO, with structural
morphisms given by deletion of first factor, and projection over
first factor:

d8 : X
`

ś

ně1 RnO
˘

Ñ
ś

ně1 RnO
s8 : X

`
ś

ně1 RnO
˘

Ñ O

A similar line of reasoning leads to the terminal object in X-Mre
being O8 “

ś

ně0 RnO.
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X-automata

How to induce a terminal morphism

E
!E
��

XE s //doo

X!E
��

O

O8 XO8 s8

//
d8

oo O

!E : E Ñ O8 is defined as

d8 : mate
`

¨ ¨ ¨ Ñ XXXE XXd
ÝÝÑ XXE Xd

ÝÑ XE s
ÝÑ O

˘

s8 : mate
`

¨ ¨ ¨ Ñ XXXE XXd
ÝÝÑ XXE Xd

ÝÑ XE s
ÝÑ O

˘
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X-automata

Products are computed as pullbacks along terminal maps:

P8
//

��

F
s̄F,8
��

E
s̄E,8

// O8

The pullback P8 can be thought as the bisimulation object for
X-machines. As a corollary,

‚ MlypI,Oq complete with terminal object rI`,Os (Ð free
semigroup).

‚ MrepI,Oq complete with terminal object rI˚,Os (Ð free
monoid).
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Behaviour as an adjunction

Assume the forgetful U : AlgpXq Ñ K has a lef adjoint F.

There is a composite of adjoint functors

K{O8

F̃ //
K AlgpXq{pO8,dTq

Ũ
oo

L //
K X-Mre
B

oo

where B is a ‘behaviour’ functor defined as

pE,d, sq ÞÑ p!E : E Ñ O8q

and its left adjoint L is determined through the ‘free’ Moore
machine on a X-algebra over the terminal O8.
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Bicategories

So far so good.

It’s all fun and games until someone loses an eyeuses a
bicategory.

‚ under which assumptions isMlypI,Oq the hom-category of
a bicategory?

‚ similar question for Mealy.
‚ A monoidal category is justTM a bicategory with a single

object; but then what is a Mealy automaton in a
bicategory B?
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Bicategories
of Automata



The bicategory Mly

Let K be a Cartesian category. Define a bicategoryMlyK as follows

1. its objects are the same objects of K;

2. its 1-cells I Ñ O are the Mealy machines pE,d, sq, i.e. the
objects of the categoryMlyKpI,Oq;

3. its 2-cells are Mealy machine morphisms defined ibid.;

4. the composition of 1-cells ´ ˝ ´ is defined as [postponed];

5. the vertical composition of 2-cells is the composition of Mealy
machine morphisms f : E Ñ F;

6. the horizontal composition of 2-cells is the operation defined
thanks to bifunctoriality of ´ ˝ ´;

7. the associator and the unitors are inherited from K.
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Composition of 1-cells

Given two Mealy machines pE,d, sq : I Ñ J and
pF,d1, s1q : J Ñ K,

E E ˆ I s //doo J

F F ˆ J s1
//d1

oo K

define their composition pE ˆ F,d1 ♢ d, s1 ♢ sq : I Ñ K as

s1 ♢ s “ s1 ¨ pE ˆ sq : F ˆ E ˆ I Ñ F ˆ J Ñ K
d1 ♢ d “ xd ¨ πF,d1 ¨ pE ˆ sqy : F ˆ E ˆ I Ñ F ˆ E

where E E ˆ Idoo E ˆ F ˆ IπFoo Eˆs // F ˆ J d1
// F
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Composition of 1-cells

Proof of associativity is bureaucracy:

pd1 ♢ d2q ♢ d3 “ xd3 ¨ π12, xd2 ¨ π1,d1 ¨ pE1 ˆ s2qy ¨ pE1 ˆ E2 ˆ s3qy

“ xd3 ¨ π12, xd2 ¨ π1 ¨ pE1 ˆ E2 ˆ s3q,d1 ¨ pE1 ˆ s2q ¨ pE1 ˆ E2 ˆ s3qyy

“ xd3 ¨ π12, xd2 ¨ π1 ¨ pE1 ˆ E2 ˆ s3q,d1 ¨ pE1 ˆ ps2 ¨ pE2 ˆ s3qqqyy

d1 ♢ pd2 ♢ d3q “ xxd3 ¨ π2,d2 ¨ pE2 ˆ s3qy ¨ π1,d1 ¨ pE1 ˆ ps2 ¨ pE2 ˆ s3qqqy

“ xxd3 ¨ π2 ¨ π1,d2 ¨ pE2 ˆ s3q ¨ π1y,d1 ¨ pE1 ˆ ps2 ¨ pE2 ˆ s3qqqy

“ xd3 ¨ π12, xd2 ¨ pE2 ˆ s3q ¨ π1,d1 ¨ pE1 ˆ ps2 ¨ pE2 ˆ s3qqqyy

s1 ♢ ps2 ♢ s3q “ s1 ¨ pE1 ˆ ps2 ¨ pE2 ˆ s3qqq

“ s1 ¨ pE1 ˆ s2q ¨ pE1 ˆ E2 ˆ s3q

ps1 ♢ s2q ♢ s3 “ s1 ¨ pE1 ˆ s2q ¨ pE1 ˆ E2 ˆ s3q

Unitality follows a similar (simpler) strategy.
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Corollar(ies)

‚ there are bicategories
MlySet,MlyCat,MlyTop,MlyPos,MlyMon, . . .

‚ if K is Cartesian closed, all right/left Kan extensions/lifts
exist;

‚ as a corollary, the terminal objects rI`,Os, rI˚,Os (and
also, I`, I˚) can be characterised as Kan extensions (and
also, free monads/semigroups)!

? the assignment K ÞÑ MlyK is (2-)functorial CCat Ñ 2-Cat
(careful with the 2-cells, Eugene).

? Guitart defines a ‘bicategory of Mealy machines’ as
SpnFpMonq, spans in Cat between monoids whose left leg
is a fibration. Interesting adjunctions with ourMly’s?
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Automata in bicategories



A monoidal category is just a bicategory with a single object.
What is a machine inside a bicategory B with objects
A,B,C . . . ?

A bicategorical Moore machine consists of a span of
2-cells in B

e e ˝ i σ +3δks o

or rather a diagram of 2-cells

A

A

B

e o

i

e

δ
σ

for objects A,B P B.
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Examples

‚ the mere fact that the 2-cells δ, σ exist implies that i is an
endomorphism;

‚ so, iterated compositions i ˝ ¨ ¨ ¨ ˝ imake sense as much as
iterated tensor powers I b ¨ ¨ ¨ b Imade sense in K;

‚ one can find examples in
‚ categories, functors and natural transformations;
‚ categories, functors and lax transformations;
‚ categories, profunctors and 2-cells (a fortiori, in Rel);
‚ sets and metric relations;
‚ topological, approach, closure spaces,…
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Behaviour as a Kan extension

A bicategorical Moore machine in B of fixed input and output i, o is a
diagram

A
i

����
��
��
��

e
��

o

��

~~~~
;Cσ

A e
//

____ +3δ

B

The ‘terminal way’ of filling such a span is the right extension of the
output cell along the free monad i6 on the input:

‚ from the unit η : 1A ñ i6, get Rani ñ Ran1 “ 1A, and thus
σ : Ranio ñ o;

‚ from the multiplication µ : i6 ˝ i6 ñ i6 get Rani6 ñ Rani6 ˝ Rani6 ,
and thus

δ : Rani6o ˝ i
Rani6o˚η

+3 Rani6o ˝ i6 +3 Rani6o
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Intertwiners

Definition
An intertwiner pu, vq : pe, δ, σqA,B í pe1, δ1, σ1qA1,B1 consists of a pair of
1-cells u : A Ñ A1, v : B Ñ B1 and a triple of 2-cells ι, ϵ, ω disposed as
follows:

A
����{� ι

u //

i
��

A1

i1
��

A
����{� ϵ

u //

e
��

A1

e1

��

A
����{� ω

u //

o
��

A1

o1

��
A u

// A1 B v
// B1 B v

// B1

such that:

“δ δ1ϵ
ϵ

ι
“δ δ1ω

ω

ι
and ;

“σ σ1ϵ
ϵ

ι
“σ σ1ω

ω

ι
and .
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Intertwiners

Definition
Let pu, vq, pu1, v1q : pe, δ, σq í pe1, δ1, σ1q be two parallel
intertwiners between bicategorical Mealy machines; a 2-cell
pφ,ψq : pu, vq ñ pu1, v1q consists of a pair of 2-cells φ : u ñ u1,
ψ : v ñ v1 such that the following identities hold true:

ι

φ

ι

φ

“ ϵ

φ

ϵ

ψ

“ ω

φ

ω

ψ

“
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Intertwiners

Specialized to the monoidal case, the previous two definitions
become

‚ morphisms of type
ι : I1 b U Ñ V b I, ϵ : E1 b U Ñ V b E, ω : O1 b U Ñ V b O;

‚ such that

ϵ ˝ pd1 b Uq “ pV b dq ˝ pϵb Iq ˝ pE1 b ιq

ω ˝ ps1 b Uq “ pV b sq ˝ pϵb Iq ˝ pE1 b ιq

‚ pairs f : U Ñ U1 and g : V Ñ V1 such that

E1 b I1 b U d1bU //

E1bI1bf
��

E1 b U

E1bf
��

V b E b I Vbd //

gbEbI
��

V b E

gbE
��

E1 b I1 b U1

d1bU1
// E1 b U1 V1 b E b I

V1bd
// V1 b E
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Open problems



Of other bicategories

In 1974 Guitart defined a bicategory of Mealy machines:

‚ the objects are categories M,N, . . . (actually, monoids);
‚ the 1-cells are spans

M E S //Doooo N

where D is a fibration and S is a functor.
‚ composition of 1-cells is as in Span.
‚ G then proves thatMAC is the Kleisli bicategory of the

diagram monad C ÞÑ Cat{{C;

We conjecture the existence of a left pseudo-adjoint L in

L : MlyCat K
//
MAC : Goo



Nondeterminism in equipments

‚ In Rel, R “ RanI6O is the relation defined as

pa,bq P R ðñ @a1 P A.ppa1,aq P I6 ñ pa1,bq P Oq.

This relation expresses reachability of b from a:

aRb ðñ

´

pa1 “ aq_pa1 I
ÝÑ a1

I
ÝÑ . . .

I
ÝÑ an

I
ÝÑ aq ñ a1 Ob

¯

‚ Passing from automata in Cat to automata in Prof
accounts for a form of nondeterminism; one can
conjecture to be able to address nondeterministic BA in B
as deterministic BA in a proarrow equipment.



Thanks!

We’re still in the process of finishing this up.

Get in touch if you have ideas / want to join!

iwilare@gmail.com
fosco.loregian@gmail.com
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