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The celebrated Stone duality asserts that there is an equivalence of
categories

Stoneop ⇆ BA

between Boolean algebras and Stone spaces

(totally disconnected,
compact, T2);

• The Boolean algebra corresponding to a Stone space consists
of its clopen sets.

• The Stone space associated to a Boolean algebra B is the set of
its ultrafilters, equipped with a topology having as basis{

Vb = {S ∈ F(B) | b ∈ S} | b ∈ B
}
.

This generates a ‘Zariski’ topology on the set of ultrafilters.
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Fun fact

The duality arises as ‘homming with a dualising object’, in the sense
that the two-element set 2 = {0, 1} carries

• a Boolean algebra structure, as a ring 2B = Z/2Z;

• a frame structure, given by its obvious order 2S = {0 < 1}.

Homming a topological space into 2S yields a functor
CHausop → BA that restricted to Stone spaces is an equivalence;

homming a Boolean algebra into 2B yields the set of ultrafilters, and
also the Zariski topology can be recovered from BA(E, 2B).
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Clearly, something is going on here;

the object 2 sits between the two categories BA and Stonemaking
them equivalent via an homming functor;

Definition (Dualising obect)
It is a set D that carries the structure of anA-object and a B-object,
turningA,B into equivalent categories via

A(−,DA) a B(−,DB)

(slightly imprecise↗)

Principle
Interesting dualities arise from dualising objects. (Name your
favourite one in your head, now)
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Question: is there a general categorical framework in which
dualities can be, if not subsumed, understood as parts of a general
theory?

Answer: yes.
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The Chu construction



Fre
e sp

ace
for

disc
uss

ion

Fre
e sp

ace
for

disc
uss

ion
• Introduced in joint work by M. Barr and P. H. Chu in 197?’s book
Chu spaces

• Introduced to find a natural place where a categoryA
equipped with a distinguished object can be

• fully faithfully embedded;
• coreflectively;
• with a dual copy…
• …found thanks to a self-involution of Chu(A,D);

Let’s unpack:

A
i //

Chu(A,D)

A Aop

Chu(A,D) Chu(A,D)op
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This construction is very general.

To fix ideas, we shall concentrate on the case whereA is the
category of sets, and D a generic set. (More than often, and surely
for all concrete models, D = {0, 1})
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The construction of Chu(Set,D): define a category having

• Objects, the triples 〈A, X, r : A× Y → D〉 of sets A, X and a
pairing function r; such a triple is a Chu space S = (A, X, r).

• morphisms the pairs

〈A
u∗ ��

× X r // D〉

〈B × Y
u∗
OO

s
// D〉

such that the diagram

A× Y B× Y

A× X D

is commutative.
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The structure of Chu(Set,D):

• Chu(Set,D) has a monoidal structure (complicated to
describe)

• Chu(Set,D) has internal homs (it is monoidal closed);
complicated to describe

• there is a monoidal functor

i : Set ↪→ Chu(Set,D)

sending a set A into A, X = DA, and X× DA → D is just
evaluation.1

1A Chu object of this form is called normal; we shall consider normal Chu spaces
over D = 2 where X ⊆ 2A.
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The universal property of Chu(Set,D):

• The functor i given by projection on the first factor has a right
adjoint R;

the coreflection is given by

〈A
u∗ ��

× DA e // D〉

〈A × X
u∗
OO

r
// D〉

where u∗ : A → A is the identity, and u∗ is the composition

X η→ (X× A)A rA→ DA
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We can represent a normal Chu space 〈X× A → 2〉 over 2 as a
certain kind of matrix:

• rows are in bijection with elements of A

• columns are in bijection with elements of X ⊆ 2A a
b
c

∣∣∣∣∣∣∣
0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1


an entry represents the value of r(a, E);

• Given that r(a, E) can be interpreted as ‘a ∈ E’ for E ⊆ A, the
columns represent the characteristic functions of subsets
E ∈ 2A.
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Theorem
IfS has all propermeets, the “transposed” spaceS t lacks at least one
proper join.

x y x ∧ y
a 1 0 0
b 0 1 0

a ∨ b 1 1 ?

A join is proper if a ∨ b is neither a or b.
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We say that a function f : A → B between sets is

• A homomorphism of Chu spaces (A, X, r), (B, Y, s) if the
associated function

f̂ : 2D
A → 2D

B
: U 7→ {g : B → D | gf ∈ U}

is such that f̂(im r̄) ⊇ im s̄where

r̄ : X → DA s̄ : Y → DB

• A continuous map if there exists a g = u∗ : Y → X lifting f = u∗
to a Chumorphism.

Theorem
f : A → B is a homomorphism if and only if it is continuous.
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A roundup of concrete

examples
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Sets

A Set is a normal Chu space image of the embedding

Set → Chu(Set, 2)

So, a set is represented as a |A| × |2A|-matrix of 0’s and 1’s, one
column for each subset of A.

This is just a verbose way to bookkeep the powerset of A in a table
whose columns are the characteristic functions χU : A → 2 of
subsets of A.



Fre
e sp

ace
for

disc
uss

ion

Fre
e sp

ace
for

disc
uss

ion
Sets

A Set is a normal Chu space image of the embedding

Set → Chu(Set, 2)

So, a set is represented as a |A| × |2A|-matrix of 0’s and 1’s, one
column for each subset of A.

This is just a verbose way to bookkeep the powerset of A in a table
whose columns are the characteristic functions χU : A → 2 of
subsets of A.



Fre
e sp

ace
for

disc
uss

ion

Fre
e sp

ace
for

disc
uss

ion
Pointed sets

A pointed set is a set Awith a distinguished element a ∈ A; given a
Chu space (A, X, r)we represent the pointed Chu space S+ as S
where we added a new row, constant at 0:

[ a
b
c

∣∣∣ 0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1

]
7→

[
⋆
a
b
c

∣∣∣∣ 0 0 0 0 0 0 0 0
0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1

]
Equivalently (!) we can pick an element ā ∈ A and remove from S
all the columns E ∈ |2A|for which r(a, E) 6= 0.
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Preorders

• The relation a ≤ b for rows of a Chu space S over 2 means that
∀E.r(a, E) ≤ r(b, E);

• a normal Chu space S(A, X ⊆ 2A, 2) realizes a preorder if and
only if the set of its columns is closed under arbitrary
pointwise joins andmeets;

• the property of being a partial order is a property of
separation: a ≤ b and b ≤ a implies a = b.



Fre
e sp

ace
for

disc
uss

ion

Fre
e sp

ace
for

disc
uss

ion
Preorders

• The relation a ≤ b for rows of a Chu space S over 2 means that
∀E.r(a, E) ≤ r(b, E);

• a normal Chu space S(A, X ⊆ 2A, 2) realizes a preorder if and
only if the set of its columns is closed under arbitrary
pointwise joins andmeets;

• the property of being a partial order is a property of
separation: a ≤ b and b ≤ a implies a = b.



Fre
e sp

ace
for

disc
uss

ion

Fre
e sp

ace
for

disc
uss

ion
Preorders

• The relation a ≤ b for rows of a Chu space S over 2 means that
∀E.r(a, E) ≤ r(b, E);

• a normal Chu space S(A, X ⊆ 2A, 2) realizes a preorder if and
only if the set of its columns is closed under arbitrary
pointwise joins andmeets;

• the property of being a partial order is a property of
separation: a ≤ b and b ≤ a implies a = b.



Fre
e sp

ace
for

disc
uss

ion

Fre
e sp

ace
for

disc
uss

ion
Frames (of opens)

A topological space is an extensional Chu space whose columns are
closed under arbitrary union and finite (including empty)
intersection.

The Chu homomorphisms between topological spaces
are exactly the continuous functions: whence the name continuous
for a homomorpism f : A → B.
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A generic recipe to build dualities in Chu(Set, 2)

Many categories of everyday use embed into Chu(Set, 2);

given that Chu(Set, 2) is equivalent to its opposite, a general recipe
to build a duality between C andD is to characteriseD as the image
of C under the self-equivalence of Chu(Set, 2).

This works for Stone (and Stone-like) duality!

It works in other examples too.
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ionIt does not work always: embedding (abelian) groups asks for ‘big’
representation alphabet.

In fact, there is no embedding of the category of groups in
Chu(Set,D) for any finite set D; (what about an infinite set?)

There are nice embedding results of categories relevant to topology
and QuantumMechanics into Chu(Set, I)where I is a closed interval
ofR.
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Wrap up

Is there a general theorem?

More a general principle; but let’s keep learning.

We can read the above positive and negative results ‘backwards’:
there is always a faithful functor

j : C → Chu(Set, 2) : C 7→ 〈UC,UC× C(C, 2) → 2〉

when C is concrete via a functor U : C → Set;

a sufficient condition for j to be also full is that the pair UC× C(C, 2)
‘completely determines’ the C-structure on C.
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Wrap up

This sheds a light on the counterexample of groups:

the carrier |G| and the set of group homomorphisms hom(G, 2)
does not determine the whole structure of G;

for example, it is impossible to decide whether G = C25 or
G = C5 × C5 from the fact that hom(G, C2) = 0 and |G| = 25
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