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e Thisis a work in progress with G. Coraglia and D.
Castelnovo;

e again, this is a work in progress and not at all polished.

e Mostly, this talk is a request for help: we don’t know how
to finish a paper.



Motivation



The simple slice

We want to generalise the following example:
Proposition
Let C be a cartesian category; we can build the simple

. . s(C)
fibration [Jac99] [ !

] over C, where each fiber s(C); over an
c

object I has

e the same objects of C;

e morphisms X x I — Y.

Composition of intra-fiber arrows is

XxIXA xxIxI T yx1—8.7

The category s(C); is called the simple slice C/I.



Motivating examples

A more conceptual on s(C):

e Consider the comonad S; = — x IonC;
e the simple slice C/I is the coKleisli category of Sy;

e composition intra-fiber is coKleisli composition.

So, the simple fibration has some sort of universal property.

Similarly, one can collect the coEilenberg-Moore categories of
Sy and obtain a fibration: each coEM(S;) is just the slice
category over I.

So, the fibration of typical fiber coEM(S;) has an even more
straightforward universal property.



A few questions

When we started working on this project we had three
questions:

e Do we have a theory available of fibrations obtained
collecting ‘categories of algebras of parametric
endofunctors’?

e if not, can we write it, find more examples, outline what
properties are shared by all such fibrations?

e the simple fibration is useful in type theory; how to find a
type-theoretic interpretation for (at least some) fibrations
of algebras?



The fibration of algebras




The problem

Study and classify fibrations arising from a functor

F:AxX —X

e consider the prestack A — Alg(F,) as a contravariant
functor A°° — Cat;

e thisinduces a split fibration, under the Grothendieck

E(F)
correspondence, [ ) ] over the category of parameters.
A



A starting point

Problem

Study all fibrations pr arising as pullbacks from a universal
fibration of algebras:

E(F)——Alg

o 2
A—— (X, %]

e Uis the fibration arising from [X', X|°P — Cat;

e all properties of U that are pullback-stable are inherited by
pr, No matter the shape of F.



Define the following fibrations:

Alg
o U: [[ lX]] with fiber over F the category of endofunctor
XX

algebras for F;
Alg

o Up: [ f(’p ] with fiber over F the category of pointed
[X’X]P

endofunctor algebras for F;

Algy
o Un: { f } with fiber over a monad its category of
[X,X]m

Eilenberg-Moore algebras.

Morphisms change! [X, X, has natural transfor-
mations a : T = S compatible with units; [X, X]|n

has monad morphisms.



Fibrations of algebras

Consider [pi] appearing in a pullback like

E— Ang"D

i J e

A——[X, X],
We say that p is

e an (endofunctor) algebra fibration if it fits such a pullback where
Us =U;

e a pointed algebra fibration if it fits such a pullback where
UD = Up;

e an Eilenberg-Moore fibration if it fits such a pullback where
Us = Un



the Kleisli’s version

The case of Kleisli and coKleisli must be treated with a little bit
of more care...

...one would love to say that

K : Kly(T) — EMx(T)

Kly
assemble intoan.t. v: [X, X]|n /T Cat of sorts, maybe
S~
EM.
even fibered over [X, X ...

...but a moment of reflection shows that the statement doesn’t
even typechecks.



Examples




Examples zero

Clearly, our language is engineered to recover the starting
motivating examples:

e the simple fibration arises as the coKleisli fibration of the
functorC — [C,C]: A— — x A;

e the domain fibration arises as the coEilenberg-Moore
fibration of the same functor;

e When A runs over internal monoids in C, — x Ais also a
monad (with algebras A-modules); the associated
fibration is the fibration of modules over Mon(C), an old
friend of algebraic geometers/homotopists.



Topologies

e (toy) consider a set X and its poset T(X) of topologies;
7 +— Sh(X, 7) defines a fibration over T(X) collecting all
sheaves with respect to various topologies;

e (toy for grownups) same, but with Grothendieck sites and
site homomorphisms on a given small category C;

e consider the Kelly-Lawvere lattice Pk, of a topos £, whose
elements are called levels of £ in [KL89]; this defined a
fibration over Py; whose typical fiber is an essential
localization of £.



Polynomials i

There are two flavours of polynomial functors that our
formalism captures:

e ‘classic’ polynomials a la Moerdijk-Palmgren [MP0OO]:
given a locally cartesian closed pretopos £ and an object
f: X — Aof the slice £/A we can define a polynomial
endofunctoron &

<f’7>

Pr: E—"=E/A EIA—5¢E

where f plays the réle of a parameter.



Polynomials ii

e ‘new wave’ polynomials a la Gambino-Kock [GK13]: define
a category of polynomials having objects the diagrams
f

f: I<>-B A—Ltog

and suitable morphisms. To each such § one can associate
a polynomial endofunctor P; over £/I, with § as a
parameter.



A few structural observations




Fibrations of (co)algebras tend to have reindexing preserving
(co)limits; we can make this statement more precise by
resorting to a well-known set of results about algebraic and
presentable categories:

Theorem

Let X be x-presentable and assume that the fibration of
algebras is restricted to just the x-accessible functors
X — X; then, each reindexing o* has a left adjoint .

(dually for coalgebras)

Proof.
A clever application of a Freyd’s swindle. Ol



Monadicity

Theorem

A fibration [pi] is an EM-fibration if and only if there exists a
. . . & XxA . .
morphism of fibrations H : [pl] — {m l ] which is
A A
monadic as a 1-cell in Fib/A.
This in turn is equivalent to the fact that H

e has a left adjoint fibered over 4;

e the Eilenberg-Moore object [Str72] for the monad HL
induced by L H H is equivalent to p.

Proof.
Unwind the definition of monadic 1-cell in Fib/A. O



Monadicity

A more concrete reformulation of this criterion:

Fact

A fibration [pi] is an EM-fibration iff it can be presented via
a diagram of monadic categories

F: A—— (Cat/X)

where on RHS there is the full subcategory of Cat/X on
monadic functors U : A — X.



The link with graded monads

Graded monads [Smi08; MPS; FKM16; MU22; OWE20] are
another way to consider “monads varying according to a
parameter”.

Fact

A monad in Cat is a lax functor T : 1 — Cat.

Definition

A graded monad is a lax functor T : BM — Cat, where M is a
monoidal category regarded as a one-object bicategory.

The object of algebras [Str72] for a graded monad T consists of
its lax limit llimg T € Cat.



The link with graded monads

Our fibrations of EM-algebras can be seen as a generalization of
graded monads:

e No monoidality for F: A — [X, X]n; we do not ask the domain
of F to be a bicategory; a plain category will do;

e We do not consider algebras for all parameters at once (as in
[MPS; DMS18]), but instead for each object separately.

Theorem

There is a bicategory ¥4 such that
Cat(A, [, X],) = Lax(Z.A, Cat)

and the diagram A°P — Cat : A — Alg(F,) presents the lax limit of
F:¥YA — Cat.



What now?




We really don’t know!
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