Some remarks on the fibration of algebras

Fosco Loregian TAL

Ita <u>↓</u> Ca

December 21, 2022

This is a work in progress with G. Coraglia and D. Castelnovo;

- again, this is a work in progress and not at all polished.
- Mostly, this talk is a request for help: we don't know how to finish a paper.

Motivation

The simple slice

We want to generalise the following example:

Proposition

Let $\mathcal C$ be a cartesian category; we can build the simple fibration [Jac99] $\begin{bmatrix} \mathbf s(\mathcal C) \\ \downarrow \mathcal C \end{bmatrix}$ over $\mathcal C$, where each fiber $\mathbf s(\mathcal C)_I$ over an object I has

- the same objects of C;
- morphisms $X \times I \rightarrow Y$.

Composition of intra-fiber arrows is

$$X \times I \xrightarrow{X \times \Delta} X \times I \times I \xrightarrow{f \times I} Y \times I \xrightarrow{g} Z$$

The category $\mathbf{s}(\mathcal{C})_I$ is called the simple slice $\mathcal{C}/\!\!/I$.

Motivating examples

A more conceptual on $\mathbf{s}(\mathcal{C})$:

- Consider the comonad $S_I = \times I$ on C;
- the simple slice $C/\!\!/I$ is the coKleisli category of S_I ;
- composition intra-fiber is coKleisli composition.

So, the simple fibration has some sort of universal property.

Similarly, one can collect the coEilenberg-Moore categories of S_I and obtain a fibration: each $\mathbf{coEM}(S_I)$ is just the slice category over I.

So, the fibration of typical fiber $\mathbf{coEM}(S_I)$ has an even more straightforward universal property.

A few questions

When we started working on this project we had three questions:

- Do we have a theory available of fibrations obtained collecting 'categories of algebras of parametric endofunctors'?
- if not, can we write it, find more examples, outline what properties are shared by all such fibrations?
- the simple fibration is useful in type theory; how to find a type-theoretic interpretation for (at least some) fibrations of algebras?

The fibration of algebras

The problem

Study and classify fibrations arising from a functor

$$F: \mathcal{A} \times \mathcal{X} \longrightarrow \mathcal{X}$$

-or its mate $F: \mathcal{A} \to [\mathcal{X}, \mathcal{X}]$ of which we consider objectwise categories of algebras $\mathbf{Alg}(F_I)$, or more precisely:

- consider the prestack $A \mapsto \mathbf{Alg}(F_A)$ as a contravariant functor $\mathcal{A}^{op} \to \mathbf{Cat}$;
- this induces a split fibration, under the Grothendieck correspondence, $\begin{bmatrix} \mathcal{E}(F) \\ \downarrow \end{bmatrix}$ over the category of parameters.

A starting point

Problem

Study all fibrations p_F arising as pullbacks from a universal fibration of algebras:

- *U* is the fibration arising from $[\mathcal{X}, \mathcal{X}]^{op} \to \mathbf{Cat}$;
- all properties of *U* that are pullback-stable are inherited by p_F, no matter the shape of *F*.

Define the following fibrations:

- $U: \begin{bmatrix} \mathsf{Alg}_{\mathcal{X}} \\ \downarrow \\ [\mathcal{X},\mathcal{X}] \end{bmatrix}$ with fiber over F the category of endofunctor algebras for F;
- $U_p: \begin{bmatrix} \mathsf{Alg}_{\mathcal{X},p} \\ \downarrow \\ [\mathcal{X},\mathcal{X}]_p \end{bmatrix}$, with fiber over F the category of pointed endofunctor algebras for F;
- $U_m : \begin{bmatrix} \mathsf{Alg}_{\mathcal{X},m} \\ \downarrow \\ [\mathcal{X},\mathcal{X}]_m \end{bmatrix}$ with fiber over a *monad* its category of Eilenberg-Moore algebras.

Morphisms change! $[\mathcal{X}, \mathcal{X}]_p$ has natural transformations $\alpha : T \Rightarrow S$ compatible with units; $[\mathcal{X}, \mathcal{X}]_m$ has monad morphisms.

Fibrations of algebras

Consider $\begin{bmatrix} \rho \downarrow \\ A \end{bmatrix}$ appearing in a pullback like

We say that p is

- an (endofunctor) algebra fibration if it fits such a pullback where $U_n = U$; dualize for coalgebras
- a pointed algebra fibration if it fits such a pullback where $U_{\text{p}} = U_{\text{p}}$; dualize for copointed coalgebras
- an Eilenberg-Moore fibration if it fits such a pullback where $U_n = U_m$ dualize for coEilenberg-Moore.

the Kleisli's version

The case of Kleisli and coKleisli must be treated with a little bit of more care...

...one would love to say that

$$K_T: \mathbf{Kl}_{\mathcal{X}}(T) \to \mathbf{EM}_{\mathcal{X}}(T)$$

assemble into a n.t. $\nu: [\mathcal{X}, \mathcal{X}]_m$ $\stackrel{\mathbf{Kl}_{\mathcal{X}}}{\biguplus}$ **Cat** of sorts, maybe even fibered over $[\mathcal{X}, \mathcal{X}]_m$...

...but a moment of reflection shows that the statement doesn't even typechecks.

Examples

Examples zero

Clearly, our language is engineered to recover the starting motivating examples:

- the simple fibration arises as the coKleisli fibration of the functor $\mathcal{C} \to [\mathcal{C}, \mathcal{C}] : A \mapsto \times A$;
- the domain fibration arises as the coEilenberg-Moore fibration of the same functor;
- When A runs over internal monoids in C, x A is also a monad (with algebras A-modules); the associated fibration is the fibration of modules over Mon(C), an old friend of algebraic geometers/homotopists.

Topologies

- (toy) consider a set X and its poset T(X) of topologies;

 ⊤ → Sh(X, τ) defines a fibration over T(X) collecting all sheaves with respect to various topologies;
- (toy for grownups) same, but with Grothendieck sites and site homomorphisms on a given small category C;
- consider the Kelly-Lawvere lattice P_{KL} of a topos \mathcal{E} , whose elements are called levels of \mathcal{E} in [KL89]; this defined a fibration over P_{KL} whose typical fiber is an essential localization of \mathcal{E} .

Polynomials i

There are two flavours of polynomial functors that our formalism captures:

• 'classic' polynomials à la Moerdijk-Palmgren [MP00]: given a locally cartesian closed pretopos $\mathcal E$ and an object $f: X \to A$ of the slice $\mathcal E/A$ we can define a polynomial endofunctor on $\mathcal E$

$$P_f: \mathcal{E} \xrightarrow{\pi} \mathcal{E}/A \xrightarrow{\langle f, - \rangle} \mathcal{E}/A \xrightarrow{s} \mathcal{E}$$

where f plays the rôle of a parameter.

Polynomials ii

 'new wave' polynomials à la Gambino-Kock [GK13]: define a category of polynomials having objects the diagrams

$$f: I \stackrel{s}{\longleftrightarrow} B \stackrel{f}{\longrightarrow} A \stackrel{t}{\longrightarrow} I$$

and suitable morphisms. To each such $\mathfrak f$ one can associate a polynomial endofunctor $P_{\mathfrak f}$ over $\mathcal E/I$, with $\mathfrak f$ as a parameter.

A few structural observations

Adjoints

Fibrations of (co)algebras tend to have reindexing preserving (co)limits; we can make this statement more precise by resorting to a well-known set of results about algebraic and presentable categories:

Theorem

Let $\mathcal X$ be κ -presentable and assume that the fibration of algebras is restricted to just the κ -accessible functors $\mathcal X \to \mathcal X$; then, each reindexing α^* has a left adjoint \sum_{α} .

(dually for coalgebras)

Proof.

A clever application of a Freyd's swindle.

Monadicity

Theorem

A fibration $\begin{bmatrix}
ho_{\mathcal{A}}^{\mathcal{E}} \end{bmatrix}$ is an EM-fibration if and only if there exists a morphism of fibrations $H: \begin{bmatrix}
ho_{\mathcal{A}}^{\mathcal{E}} \end{bmatrix}
ightarrow \begin{bmatrix} \pi_{\mathcal{A}}^{\mathcal{X} \times \mathcal{A}} \\ \pi_{\mathcal{A}}^{\mathcal{A}} \end{bmatrix}$ which is monadic as a 1-cell in **Fib**/ \mathcal{A} .

This in turn is equivalent to the fact that *H*

- has a left adjoint fibered over A;
- the Eilenberg-Moore object [Str72] for the monad HL induced by L → H is equivalent to p.

Proof.

Unwind the definition of monadic 1-cell in **Fib**/ \mathcal{A} .

Monadicity

A more concrete reformulation of this criterion:

Fact

A fibration $\begin{bmatrix} \mathcal{E} \\ \rho \downarrow \\ A \end{bmatrix}$ is an EM-fibration iff it can be presented via a diagram of monadic categories

$$\hat{F}: \mathcal{A} \longrightarrow (\mathbf{Cat}/\mathcal{X})_m^{\mathsf{op}}$$

where on RHS there is the full subcategory of \mathbf{Cat}/\mathcal{X} on monadic functors $U: \mathcal{A} \to \mathcal{X}$.

The link with graded monads

Graded monads [Smi08; MPS; FKM16; MU22; OWE20] are another way to consider "monads varying according to a parameter".

Fact

A monad in **Cat** is a lax functor $T: 1 \rightarrow \text{Cat}$.

Definition

A graded monad is a lax functor $T: B\mathcal{M} \to \mathbf{Cat}$, where \mathcal{M} is a monoidal category regarded as a one-object bicategory.

The object of algebras [Str72] for a graded monad T consists of its lax limit $\lim_{BM} T \in \mathbf{Cat}$.

The link with graded monads

Our fibrations of EM-algebras can be seen as a generalization of graded monads:

- No monoidality for $F : \mathcal{A} \to [\mathcal{X}, \mathcal{X}]_m$; we do not ask the domain of F to be a bicategory; a plain category will do;
- We do not consider algebras for all parameters at once (as in [MPS; DMS18]), but instead for each object separately.

Theorem

There is a bicategory $\Sigma \mathcal{A}$ such that

$$Cat(\mathcal{A}, [\mathcal{X}, \mathcal{X}]_m) \cong Lax(\Sigma \mathcal{A}, Cat)$$

and the diagram $\mathcal{A}^{op} \to \mathbf{Cat} : A \mapsto \mathbf{Alg}(F_A)$ presents the lax limit of $\bar{F} : \Sigma \mathcal{A} \to \mathbf{Cat}$.

What now?

Bibliography i

References

- [DMS18] Ulrich Dorsch, Stefan Milius, and Lutz Schröder.

 "Graded Monads and Graded Logics for the Linear
 Time Branching Time Spectrum". In: International
 Conference on Concurrency Theory. 2018.
- [FKM16] Soichiro Fujii, Shin-ya Katsumata, and Paul-André Melliès. "Towards a Formal Theory of Graded Monads". In: Foundations of Software Science and Computation Structures. Ed. by Bart Jacobs and Christof Löding. 2016, pp. 513–530.

Bibliography ii

- [GK13] N. Gambino and J. Kock. "Polynomial functors and polynomial monads". In: *Mathematical Proceedings of the Cambridge Philosophical Society* 154.1 (2013), pp. 153–192.
- [Jac99] B. Jacobs. *Categorical Logic and Type Theory*. SLFM 141. Elsevier, 1999.
- [KL89] G.M. Kelly and F.W. Lawvere. On the Complete Lattice of Essential Localizations. University of Sydney. Department of Pure Mathematics, 1989.
- [MP00] I. Moerdijk and E. Palmgren. "Wellfounded trees in categories". In: *Annals of Pure and Applied Logic* 104.1 (2000), pp. 189–218. ISSN: 0168-0072.

Bibliography iii

- [MPS] Stefan Milius, Dirk Pattinson, and Lutz Schröder.

 "Generic Trace Semantics and Graded Monads". In:
 6th Conference on Algebra and Coalgebra in
 Computer Science (CALCO2015). LIPIcs 2015,
 pp. 253–269.
- [MU22] Dylan McDermott and Tarmo Uustalu. "Flexibly Graded Monads and Graded Algebras". In:

 Mathematics of Program Construction. Cham:

 Springer International Publishing, 2022,
 pp. 102–128.
- [OWE20] Dominic A. Orchard, Philip Wadler, and Harley D. Eades. "Unifying graded and parameterised monads". In: MSFP@ETAPS. 2020.

Bibliography iv

- [Smi08] A. L. Smirnov. "Graded monads and rings of polynomials". In: *Journal of Mathematical Sciences* 151.3 (June 2008), pp. 3032–3051. ISSN: 1573-8795.
- [Str72] R. Street. "The formal theory of monads". In: Journal of Pure and Applied Algebra 2.2 (July 1972), pp. 149–168. ISSN: 0022-4049.