Coends of higher arity

Fosco Loregian TALE

December 16, 2020

Overview

Recently appeared on arXiv @🔼

- j/w with Théo de Oliveira Santos
- stemmed from previous Itaca (thanks Alessio!)
- (but slight variation on his work, tweaks here and there)
- still an ongoing project (likely two spinoffs, "Diagonal category theory" and "Weighted coends")
- examples take a lot of space. Like, a lot. Let's discuss them later.

ltaCaiûr

Tensor calculus

In 1916 a modest employee at Bern's patent office has an interesting idea: many computations in differential geometry become simpler if we suppress the summation symbol, implicitly understood between a 'covariant' and a 'contravariant' index: terrifying expressions like

$$\begin{split} R_{ij} &= -\sum_{a,b} \frac{1}{2} \Big(\frac{\partial^2 g_{ij}}{\partial x^a \partial x^b} + \frac{\partial^2 g_{ab}}{\partial x^i \partial x^j} - \frac{\partial^2 g_{ib}}{\partial x^i \partial x^a} - \frac{\partial^2 g_{jb}}{\partial x^i \partial x^a} \Big) g^{ab} \\ &+ \frac{1}{2} \sum_{a,b,c,d} \Big(\frac{1}{2} \frac{\partial g_{ac}}{\partial x^i} \frac{\partial g_{bd}}{\partial x^j} + \frac{\partial g_{ic}}{\partial x^a} \frac{\partial g_{jd}}{\partial x^b} - \frac{\partial g_{ic}}{\partial x^a} \frac{\partial g_{jb}}{\partial x^d} \Big) g^{ab} g^{cd} \\ &- \frac{1}{4} \sum_{a,b,c,d} \Big(\frac{\partial g_{jc}}{\partial x^i} + \frac{\partial g_{ic}}{\partial x^j} - \frac{\partial g_{ij}}{\partial x^c} \Big) \Big(2 \frac{\partial g_{bd}}{\partial x^a} - \frac{\partial g_{ab}}{\partial x^d} \Big) g^{ab} g^{cd}. \end{split}$$

become more compact.

ItaCaí

Coend calculus

In category theory, "summing over repeated indices" corresponds to taking a coend of a functor

$$T: \mathcal{C}^{\mathsf{op}} \times \mathcal{C} \to \mathcal{D}$$

intended as the quotient of $\coprod_{C} T(C, C)$ by the equivalence relation generated by the action of T on arrows;

if $S:\mathcal{A}^{op}\times\mathcal{B}\to\mathsf{Set}$ and $T:\mathcal{B}^{op}\times\mathcal{C}\to\mathsf{Set}$ are two profunctors, their composition

$$(S \diamond T)(A,C) := \int^B S(A,B) \times T(B,C)$$

is akin to the matrix product of two matrices.

Ouestions

 What if we want to sum/integrate/coend over an "unbalanced tensor" like

$$T: (\mathcal{C}^{\mathsf{op}})^p \times \mathcal{C}^q = \mathcal{C}^{(p,q)} o \mathcal{D}$$

for p, q > 1?

Yes, there are coends for "higher arity" functors $\mathcal{C}^{(p,q)} \to \mathcal{D}$;

- Is the resulting theory well-behaved as the classical one? Yes and no; HA co/ends are particular instances of co/ends, where the integrand T has been "completely symmetrised";
- Is the resulting theory useful as the classical one? The resulting theory is kinda expressive, and captures some new phenomena.

A 1st example

Example (Street-Dubuc)

Let $F, G: \mathcal{C}^{op} \times \mathcal{C} \to \mathcal{D}$ be two functors; define

$$\mathsf{DNat}(\mathit{F}^{\uparrow}, \mathit{G}^{\downarrow}) : \mathcal{C}^{\mathsf{op}} \times \mathcal{C} \to \mathsf{Set}$$

sending (A, B) to $\mathcal{D}(F(B, A), G(A, B))$; then, the set of dinatural transformations $F \longleftrightarrow G$ is canonically isomorphic to the end of $\mathsf{DNat}(F^\uparrow, G^\downarrow)$, i.e. to the equaliser of the diagram

$$\prod_{C} \mathcal{D}(F(C,C),G(C,C)) \xrightarrow{u} \prod_{A \to B} \mathcal{D}(F(B,A),G(A,B))$$

Proposition

$$\mathsf{DNat}(F,G) \cong \int_{A} \mathsf{DNat}(F(A,A),G(A,A))$$

taCaiù

A notion of generalised dinaturality for $\varphi_{\underline{A},\underline{A}}: F(\underline{A},\underline{A}) \leadsto G(\underline{A},\underline{A})$ recently introduced by A. Santamaria.

Slightly too general for our purposes for two reasons

- naturality as a property of a single component (φ can be di/natural at an index i, but "unnatural" elsewhere).
- There are 'dinatural transformations' between functors of different arity, $F: \mathcal{C}^{(p,q)} \to \mathcal{D}, G: \mathcal{C}^{(r,s)} \to \mathcal{D}.$

ItaCa

Main ingredient

Functors $\mathcal{C}^{\alpha} \to \mathcal{B}$, where α is a "binary multi-index", i.e. a string of $\{\oplus,\ominus\}$'s, and we put $\mathcal{C}^{\varnothing}:=$, the terminal category, $\mathcal{C}^{\oplus}:=\mathcal{C}$, $\mathcal{C}^{\ominus}:=\mathcal{C}^{\operatorname{op}}$, and $\mathcal{C}^{\alpha \uplus \alpha'}:=\mathcal{C}^{\alpha}\times\mathcal{C}^{\alpha'}$.

Convention

A generic power \mathcal{C}^{α} is always "reshuffled" in order for all its minus and plus signs to appear on the same side, respectively on the left and on the right.

$$F: \mathcal{C}^{(p,q)} o \mathcal{D}$$
 is a functor of "type" $\left[egin{smallmatrix} p \\ q \end{smallmatrix}
ight]$

Notation

A generic tuple of objects,

$$\underline{A}:=(A_1,\ldots,A_n)$$

often split as the juxtaposition $\underline{A}'; \underline{A}''$ of two subtuples of length p, q,

$$\underline{A}' := (A_1, \ldots, A_q), \qquad \underline{A}'' := (A_{p+1}, \ldots, A_{p+q})$$

Contravariant components are always left in the typing

$$F: \mathcal{C}^{(p,q)} o \mathcal{D}$$

of a functor, and *up* in its action on objects.

• Evaluate a functor F of type $\begin{bmatrix} p \\ q \end{bmatrix}$ at a tuple of identical objects:

$$F_{\mathbf{A}}^{\mathbf{A}} := F_{A,\ldots,A}^{A,\ldots,A},$$

Definition

Let F, G be of type $\begin{bmatrix} p \\ q \end{bmatrix}$, $\begin{bmatrix} q \\ p \end{bmatrix}$. Then a (p,q)-to-(q,p)-dinatural transformation $\alpha : F \leadsto G$ is a collection

$$\left\{\alpha_{A}: F_{A,...,A}^{A,...,A} \longrightarrow G_{A,...,A}^{A,...,A} \mid A \in \mathcal{C}_{o}\right\}$$

of morphisms of \mathcal{D} indexed by the objects of \mathcal{C} such that, for each morphism $f: A \to B$ of \mathcal{C} , this diagram commutes:

ltaCa**t**i

10

Example

For (p,q)=(2,1), a (2,1)-dinatural transformation is a collection

$$\left\{ lpha_{\mathcal{A}}: \mathit{F}_{\mathcal{A}}^{\mathit{A},\mathit{A}}
ightarrow \mathit{G}_{\mathit{A},\mathit{A}}^{\mathit{A}} \, \middle| \, \mathit{A} \in \mathcal{C}_{\mathit{o}}
ight\}$$

of morphisms of $\mathcal D$ such that, for each morphism $f:A\to B$ of $\mathcal C$, the hexagon commutes:

taCa**ù**

What's with the (p,q)-to-(q,p)?

Santamaria's definition is "(p,q)-to-(r,s)" dinaturality; we could have stick to the stricter notion of (p,q)-to-(p,q) dinaturality.

But then some theorems would have been tricky to state.

Our definition sits in the middle:

the type of domain and codomain of a "higher arity" dinatural transformation $\alpha: F \longrightarrow G$ are different, but just swapped: the contravariant length of F is the covariant length of G, and vice-versa.

(wedges and cowedges are the same, tho)

taCaiir

No surprise

Definition

Let $D: \mathcal{C}^{(p,q)} \longrightarrow \mathcal{D}$ be a functor and let $X \in \mathcal{D}_o$.

- A (p,q)-wedge for D under X is a (p,q)-dinatural transformation $\theta: X \leadsto D$ from the constant functor of type $\begin{bmatrix} q \\ p \end{bmatrix}$ with value X to D;
- A (p,q)-cowedge for D over X is a (p,q)-dinatural transformation $\zeta: D \leadsto X$ from D to the constant functor of type $\begin{bmatrix} q \\ p \end{bmatrix}$ with value X.

$$\begin{array}{cccc}
X & \xrightarrow{\theta_B} & D_B^B & X & \xrightarrow{\zeta_B} & D_B^B \\
\theta_A \downarrow & & \downarrow D_B^f & & \zeta_A \uparrow & & \uparrow D_B^f \\
D_A^A & \xrightarrow{D_A^A} & D_B^A & & D_A^A & \xrightarrow{D_A^A} & D_B^A
\end{array}$$

taCaiù

No surprise, II

- The (p,q)-end of $T: \mathcal{C}^{(p,q)} \to \mathcal{D}$ if it exists, is the terminal object in the category of (p,q)-wedges;
- The (p,q)-coend of $T: \mathcal{C}^{(p,q)} \to \mathcal{D}$ if it exists, is the initial object in the category of (p,q)-cowedges;

taCaiûr 1

• Functoriality Let $D: \mathcal{C}^{(p,q)} \longrightarrow \mathcal{D}$ be a functor. Sending D to its co/end is a functor

$$\int_{\substack{(p,q)\\ (p,q)}} \int_{A\in\mathcal{C}} : \mathsf{Cat}\big(\mathcal{C}^{(p,q)},\mathcal{D}\big) \longrightarrow \mathcal{D},$$

taCa**ŭ**

• (p,q)-Wedges and (p,q)-diagonals For each $X \in \mathcal{C}_o$ we have natural bijections

$$\begin{split} \operatorname{Wd}_{(-)}^{(p,q)}({\mathbf D}) &\cong \operatorname{Wd}_{(-)}\big(\Delta_*^{(p,q)}({\mathbf D})\big), \\ \operatorname{CWd}_{(-)}^{(p,q)}({\mathbf D}) &\cong \operatorname{CWd}_{(-)}\big(\Delta_*^{(p,q)}({\mathbf D})\big). \end{split}$$

where $\Delta_{p,q}$ is the "twisted diagonal" functor

$$\Delta_{p,q} := \underbrace{\Delta^{\mathsf{op}} \times \cdots \times \Delta^{\mathsf{op}}}_{p \; \mathsf{times}} \times \underbrace{\Delta \times \cdots \times \Delta}_{q \; \mathsf{times}}.$$

and $\Delta: \mathcal{C} \to \mathcal{C} \times \mathcal{C}$ = diagonal.

taCair

• (p,q)-Ends as ordinary ends We have natural isomorphisms

$$\int_{A \in \mathcal{C}} \mathcal{D}_{\underline{A}}^{\underline{A}} \cong \int_{A \in \mathcal{C}} \Delta_*^{(p,q)}(D)_A^A,$$

$$(p,q) \int_{A \in \mathcal{C}} \mathcal{D}_{\underline{A}}^{\underline{A}} \cong \int_{A \in \mathcal{C}} \Delta_*^{(p,q)}(D)_A^A.$$

where $\Delta_{p,q}$ is the twisted diagonal functor. The (p,q)-end functor factors as

$$\operatorname{Fun}(\mathcal{C}^{(p,q)},\mathcal{D}) \xrightarrow{\Delta_*^{(p,q)}} \operatorname{Fun}(\mathcal{C}^{\operatorname{op}} \times \mathcal{C},\mathcal{D}) \xrightarrow{\int_A} \mathcal{D},$$
 and similarly so do (p,q) -coends.

taCath

• (p,q)-Ends as limits There are co/equaliser diagrams

$$\int_{A \in \mathcal{C}} D_{\underline{A}}^{\underline{A}} \longrightarrow \prod_{A \in \mathcal{C}_o} D_{\underline{A}}^{\underline{A}} \xrightarrow{\lambda} \prod_{\rho} D_{\underline{B}}^{\underline{A}}$$

$$\coprod_{A \to B} D_{\underline{B}}^{\underline{A}} \xrightarrow{\rho'} \coprod_{A \in \mathcal{C}_o} D_{\underline{A}}^{\underline{A}} \longrightarrow (p, q)^{A \in \mathcal{C}} D_{\underline{A}}^{\underline{A}}$$

for suitable maps $\lambda, \rho, \lambda', \rho'$, induced by the morphisms $\mathcal{D}_{\underline{u}}^{\underline{A}}, \mathcal{D}_{\underline{\underline{u}}}^{\underline{u}}$.

ItaCaiù

• (p,q)-Ends as limits, yet again There exists a category $\mathsf{Tw}^{(p,q)}(\mathcal{C})$ together with a universal fibration

$$\Sigma \colon \mathsf{Tw}^{(p,q)}(\mathcal{C}) \twoheadrightarrow \mathcal{C}^{(p,q)}$$

inducing natural isomorphisms

$$\int_{A \in \mathcal{C}} \mathcal{D}_{\underline{A}}^{\underline{A}} \cong \lim \Big(\mathsf{Tw}^{(p,q)}(\mathcal{C}) \overset{\Sigma}{\twoheadrightarrow} \mathcal{C}^{(p,q)} \overset{D}{\to} \mathcal{D} \Big),$$

$$(p,q) \int_{\underline{A}}^{A \in \mathcal{C}} \mathcal{D}_{\underline{A}}^{\underline{A}} \cong \text{colim} \Big(\mathsf{Tw}^{(p,q)}(\mathcal{C}) \overset{\Sigma}{\twoheadrightarrow} \mathcal{C}^{(p,q)} \overset{D}{\to} \mathcal{D} \Big).$$

ItaCaiù

• Commutativity of (p,q)-ends with homs We have isomorphisms

$$\mathcal{D}\left(X, \int_{(p,q)} \int_{A \in \mathcal{C}} \mathcal{D}_{\underline{A}}^{\underline{A}}\right) \cong \int_{(p,q)} \int_{A \in \mathcal{C}} \mathcal{D}\left(X, \mathcal{D}_{\underline{A}}^{\underline{A}}\right)$$
$$\mathcal{D}\left(\int_{A \in \mathcal{C}} \mathcal{D}_{\underline{A}}^{\underline{A}}, X\right) \cong \int_{(q,p)} \int_{A \in \mathcal{C}} \mathcal{D}\left(\mathcal{D}_{\underline{A}}^{\underline{A}}, X\right).$$

natural in $X \in \mathcal{D}$.

ItaCati

Theorem (Fubini, 1907)

Let $D: \mathcal{A}^{(p,q)} \times \mathcal{B}^{(r,s)} \longrightarrow \mathcal{D}$ be a functor. Then

$$(p+r,q+s)\int_{(A,B)} \mathcal{D}_{\mathbf{A},\mathbf{B}}^{\mathbf{A},\mathbf{B}} \cong \int_{(p,q)} \int_{A} (r,s) \int_{B} \mathcal{D}_{\mathbf{A},\mathbf{B}}^{\mathbf{A},\mathbf{B}} \cong \int_{(r,s)} \int_{B} (p,q) \int_{A} \mathcal{D}_{\mathbf{A},\mathbf{B}}^{\mathbf{A},\mathbf{B}},$$

$$(p+r,q+s)\int_{\mathbf{A},\mathbf{B}} (A,B) \mathcal{D}_{\mathbf{A},\mathbf{B}}^{\mathbf{A},\mathbf{B}} \cong \int_{\mathbf{A},\mathbf{B}} (p,q) \int_{\mathbf{A},\mathbf{B}} ($$

as objects of \mathcal{D} .

Proof.

Coending is a left adjoint; left adjoints compose. Dually for ends.

ItaCaille

Fubini does not reduce arity

Note that p, q, r, s can't be broken in the sum of smaller integers:

That is, the Fubini rule does not allow us to reduce the arity of a higher arity co/end when A = B:

$$\int_{A} \int_{A} \int_{A} D_{A,B}^{A,B} \cong \int_{(p+r,q+s)} \int_{(A,B)\in\mathcal{A}\times\mathcal{A}} D_{A,B}^{A,B} \ncong \int_{(p+r,q+s)} \int_{A\in\mathcal{C}} D_{A}^{A}.$$

the point being that we are integrating over a pair (A, B), and not over a single variable A.

ItaCa∰ 2

later Examples are for weaklings

Some (p,q)-co/ends are trivial for trivial reasons

• Let R be a ring;

$$\int_{A \in Mod_R} A \otimes A \cong 0, \qquad \int^{(0,2)} A \otimes A \cong 0$$

- Fact: If C is a sifted category, all diagonal functors ∆ : C → Cⁿ are
 final, because the product and composition of final functors is itself
 final.
- Fact: Let $X: \Delta^{op} \times \Delta \to \mathsf{Set}$ be a bisimplicial set; then

$$\int^{[n]\in\Delta} X_{n,n} \cong \pi_0(\mathsf{d}(X)), \qquad \int_{[n]\in\Delta} X_{n,n} \cong X_{0,0}.$$

• ((p,q)-Street-Dubuc) Let $F,G:\mathcal{C}^{(p,q)} o\mathcal{D}$; then

$$\mathsf{DiNat}^{(p,q)}(\mathit{F},\mathit{G}) \cong \int_{(p,q)} \int_{\mathit{C}} \mathcal{D}(\mathit{F}_{\mathit{C}}^{\mathit{C}},\mathit{G}_{\mathit{C}}^{\mathit{C}})$$

taCa**ii**r

Kusarigamas

Kusarigama

Kusarigamas are correspondences

$$egin{aligned} \mathbb{J}^{p,q} : \mathsf{Cat}ig(\mathcal{C}^{(p,q)}, \mathcal{D}ig) &\longrightarrow \mathsf{Cat}ig(\mathcal{C}^{(q,p)}, \mathcal{D}ig), \\ &\Gamma^{p,q} : \mathsf{Cat}ig(\mathcal{C}^{(p,q)}, \mathcal{D}ig) &\longrightarrow \mathsf{Cat}ig(\mathcal{C}^{(q,p)}, \mathcal{D}ig), \end{aligned}$$

that can be regarded as a universal way to 'switch' the type of a functor; more importantly, they connect naturality with dinaturality:

$$\mathsf{DiNat}^{(p,q)}\left(\mathit{F},\mathit{G}\right)\cong\mathsf{Nat}\left(\mathit{F},\Gamma^{p,q}(\mathit{G})\right)\cong\mathsf{Nat}\left(\mathtt{J}^{p,q}(\mathit{F}),\mathit{G}\right);$$
 (thus $\mathtt{J}^{p,q}\dashv\Gamma^{p,q}$)

taCatr

Kusarigama

The paramount property of the co/kusarigama functors is that given \mathcal{C} , the category of elements of $J^{p,q}(1)$, where $1:\mathcal{C}^{(p,q)} \to Set$ chooses 1, is the universal fibration building a higher-arity version of twisted arrow categories.

This makes it possible to express the (p,q)-co/end of $G: \mathcal{C}^{(p,q)} \to \mathcal{D}$ as a co/limit over the (p,q)-twisted arrow category of \mathcal{C} :

$$\int_{A\in\mathcal{C}} \textit{D}_{\underline{A}}^{\underline{A}} \cong \lim\Bigl(\mathsf{Tw}^{(p,q)}(\mathcal{C}) \xrightarrow{\Sigma_{(p,q)}} \mathcal{C}^{(p,q)} \xrightarrow{\mathcal{D}} \mathcal{D}\Bigr),$$

$$\int_{\underline{A}}^{(p,q)} D_{\underline{A}}^{\underline{A}} \cong \text{colim}\Big(\mathsf{Tw}^{(p,q)} (\mathcal{C}^{\mathsf{op}})^{\mathsf{op}} \xrightarrow{\Sigma_{(p,q)}} \mathcal{C}^{(p,q)} \xrightarrow{\underline{D}} \mathcal{D} \Big).$$

taCa**û**

...Why "kusarigama"?

Suppose that \mathcal{D} is cocomplete (resp., complete); then,

$$J^{p,q}(F)(\underline{X},\underline{Y}) \cong \int^{A \in \mathcal{C}} \left(h_{X_1}^A \times \cdots \times h_{X_p}^A \times h_A^{Y_1} \times \cdots \times h_A^{Y_q} \right) \odot F_{A,\dots,A}^{A,\dots,A}$$

$$\Gamma^{p,q}(G)(\underline{X},\underline{Y}) \cong \int_{A \in \mathcal{C}} \left(h_{X_1}^A \times \cdots \times h_{X_p}^A \times h_A^{Y_1} \times \cdots \times h_A^{Y_q} \right) \oplus G_{A,\dots,A}^{A,\dots,A}$$

$$\Gamma^{q,p}(G) := \int_{A \subset C} h_A \times \cdots \times h_A \times h^A \times \cdots \times h^A \pitchfork G_A^A.$$

taCa**ù**

Inductive definition

The cokusarigama

$$\mathbb{J}^{p,q}(F) \colon \mathcal{C}^{(q,p)} \longrightarrow \mathcal{D}$$

of a functor $F \colon \overline{\mathcal{C}^{(p,q)}} \longrightarrow \mathcal{D}$ is the left Kan extension of the (1,1)-cokusarigama of $\Delta_{p,q}^*(F)$ along $\Delta_{q,p}$:

$$egin{aligned} \mathbb{J}^{p,q}(extbf{F}) = extbf{Lan}_{\Delta_{q,p}}\left(\mathbb{J}ig(\Delta_{p,q}^*(extbf{F})ig)
ight) & & & & & \downarrow \mathbb{J}^{p,q}(extbf{F}) \ & & & & & & \downarrow \mathbb{J}^{p,q}(extbf{F}) \end{aligned}$$

 $C^{(q,p)}$

taCa**û**

Inductive definition

Dually, the kusarigama

$$\Gamma^{q,p}(G) \colon \mathcal{C}^{(p,q)} \longrightarrow \mathcal{D}$$

of $G\colon \mathcal{C}^{(q,p)} \longrightarrow \mathcal{D}$ is the right Kan extension of the (1,1)-kusarigama of $\Delta_{q,p}^*(G)$ along $\Delta_{p,q}$:

$$\Gamma^{q,p}(G) = \mathit{Ran}_{\Delta_{p,q}}\left(\Gammaig(\Delta_{q,p}^*(G)ig)ig) \qquad \qquad \qquad \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \Gamma^{q,p}(G) \ \mathcal{C}^\mathsf{op} imes \mathcal{C} \xrightarrow{\Gammaig(\Delta_{q,p}^*(G)ig)} \mathcal{D}.$$

 $C^{(p,q)}$

taCaiii 3

(p,q)-twisted category

Definition

The (p,q)-twisted arrow category is the category $\mathsf{Tw}^{(p,q)}(\mathcal{C})$ defined as the category of elements $\mathcal{C}^{(q,p)} \int \mathcal{I}^{p,q}(1)$ of $\mathcal{I}^{p,q}(1)$:

taCaiii 3

(p,q)-twisted category

If C has finite products and coproducts, we gain an additional equivalent description of $\mathsf{Tw}^{(p,q)}(C)$:

- 1. The category whose
 - Objects are morphisms $A_1 \coprod \cdots \coprod A_p \longrightarrow B_1 \times \cdots \times B_q$;
 - Morphisms are factorisations of the codomain through the domain, of the form

$$A_{1} \coprod \cdots \coprod A_{p} \xrightarrow{f} B_{1} \times \cdots \times B_{q}$$

$$\phi_{1} \coprod \cdots \coprod \phi_{p} \qquad \qquad \qquad \downarrow \psi_{1} \times \cdots \times \psi_{q}$$

$$A'_{1} \coprod \cdots \coprod A'_{p} \xrightarrow{q} B'_{1} \times \cdots \times B'_{q}.$$

taCaiiir

Future prospects

33

Where is this going?

Weighted coends stand to co/ends in the same relation as weighted co/limits stand to limits.

Definition (Weighted co/end)

Let $\mathcal C$ and $\mathcal D$ be $\mathcal V$ -enriched categories and $D\colon \mathcal C^{\mathsf{op}}\otimes_{\mathcal V}\mathcal C\longrightarrow \mathcal D$ a $\mathcal V$ -functor, and $W\colon \mathcal C^{\mathsf{op}}\times\mathcal C\to \mathcal V$ a $\mathcal V$ -presheaf.

1. The end of D weighted by W is such that

$$\hom_{\mathcal{D}}\left(X, \int_{A \in \mathcal{C}}^{W} \mathcal{D}_{A}^{A}\right) \cong \mathsf{DiNat}_{\mathcal{V}}(W, \mathsf{hom}_{\mathcal{C}}(X, \mathcal{D}))$$

2. The coend of D weighted by W is such that

$$\hom_{\mathcal{D}}\left(\int_{W}^{A\in\mathcal{C}} \mathcal{D}_{A}^{A}, Y\right) \cong \mathsf{DiNat}_{\mathcal{V}}(W, \mathsf{hom}_{\mathcal{C}}(D, Y))$$

ItaCa**ti**

34

Where is this going?

Turns out that:

- There are examples of this construction;
- the weighted end of $D \colon \mathcal{C}^{\mathsf{op}} \otimes_{\mathcal{V}} \mathcal{C} \longrightarrow \mathcal{D}$ by $W \colon \mathcal{C}^{\mathsf{op}} \times \mathcal{C} \to \mathcal{V}$ is the (2,2)-end

$$\int_{C} W(C,C) \, \cap \, T(C,C)$$

• One can define a whole new world of categorical concepts, weighing Kan extensions, natural transformations, monads...

taCa**ir**

Where is this going?

Diagonal category theory Replace 'natural' with 'dinatural' in most categorical concepts:

cons: dinaturals do not compose.

pros: you shouldn't care: one can exhibit 'weighted composition maps'

$$\mathsf{DiNat}(G,H) \times \mathsf{DiNat}(F,G) \longrightarrow \mathsf{Nat}^{[\mathsf{h},\mathsf{h}]}(F,H),$$

where the latter set is to dinatural transformations as dinatural transformations are to natural transformations! More generally, we have a diagonality hierarchy,

$$Nat(F,G)$$
, $DiNat(F,G)$, $Nat^{h,h}(F,G)$, $Nat^{h,h,h}(F,G)$, $Nat^{h,h,h,h}(F,G)$, . . .

together with compositions

$$\mathsf{Nat}^{\mathsf{h}^n}(\mathsf{G},\mathsf{H}) \times \mathsf{Nat}^{\mathsf{h}^m}(\mathsf{F},\mathsf{G}) \longrightarrow \mathsf{Nat}^{\mathsf{h}^{n+m}}(\mathsf{F},\mathsf{H}).$$

ItaCa**t**i

36