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Algebraic structures

A group is a set equipped with operations

*m:GxG—= G
c1:G— G
ce:l1 =G

you know the drill



Algebraic structures

Theorem (Higman-Neumann 1953)
A group is a set equipped with a single binary operation

/ : G x G — G subject to the single equation

z/((((z/2)/y)/2)/((z/2)/x)/2)) = y

forevery z,y,z € X.

Well.

This is awkward.



The theory of equationally definable classes of alge-
bras, initiated by Birkhoff in the early thirties, is [...]
hampered in its usefulness by two defects. [...Tlhe sec-
ond is the awkwardness inherent in the presentation of
an equationally definable class in terms of operations
and equations.

Quite recently, Lawvere, by introducing the notion -
closely akin to the clones P. Hall - of an algebraic the-
ory, rectified the second defect.



Definition
An operator domain is a sequence Q = (2, | n € N); the

elements of 2,, are called operations of arity n.

Definition
An interpretation E of an operator domain Q consists of a

pair (E, (f, | w € Q,,n € N)) where f, : E" — E is an n-ary
operation on the set F called the carrier of E.

An operator domain can be represented as a (rooted)
graph: for example, for groups
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Way better to use functors.




A Lawvere theory is an identity-on-objects functor
p: Fin® — £ that commutes with finite products.

Unwinding the definition:

+ L is a category with the same objects as Fin, the
category of finite sets and functions;

+ pis a functor that acts trivially on objects

* The only thing that can change between Fin and L is
the number of morphisms [n] — [m].

Equivalently: p is a promonad on the opposite of Fin,
regarded as an object of the bicategory of profunctors, that
preserves the monoidal structure. £ is the Kleisli object of p.

identity on obj i
left adjoints = { mo.r;ia:wos Irllii:’Of }
[, Set]—[Fin® Set] P



* The trivial theory is the identity funtor 1g, : Fin® — Fin®

* Since p preserves products, it is uniquely determined by
its value on [1]. This means thatif p : Fin® — Lis a
Lawvere theory, then every object of £ is X" if p[1] = X.

+ The only difference between Fin and L is thus the set of
morphisms [n] — [m)].

The theory of groups is generated by
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and their compositions/products.



A model for a Lawvere theory p is a product-preserving
functor ¢ : £ — Set.

The category Mod(p) for a Lawvere theory is a full, reflective
subcategory of the category [£, Set] of all functors £ — Set.

Theorem
The following conditions are equivalent (p : Fin° — L a theory):

* (is a model for a Lawvere theory L;
* The composition ¢ o p : Fin° — L preserves finite products;

* The composition ¢ o p : Fin° — L is J-representable (with
respect to the inclusion .J : Fin — Set), i.e.

¢(X[n]) = Set(J[n], A)

for some A € Set.



As a consequence of the previous theorem, the square

Mod(p) —— [, Set]

ul l_op

Set —— [Fin®, Set]
(/1]

is a pullback.

1. Mod(p) is a reflective subcategory of [L, Set]. We write
ry - r for the resulting adjunction.

2. The functor « is monadic, with left adjoint f.

3. This sets up a functor
M : Thr(Fin) — Mnd,(Set)

because the monad uf above is finitary.



1. Proof of reflectiveness

The category Mod(p) is reflective:

A functor F : £ — Set preserves products if and only if it is
right orthogonal with respectto all 645 in

yAIlyB i;F
VO‘ABi VV
y(A x B).

Indeed, F is orthogonal to o 45 iff hom(—, F') inverts o 4p;
now consider the chain

F(A x B) 2 hom(y(A x B), F)
— hom(yAllyB, F)
=~ hom(yA, F') x hom(yB, F)
=2 FAXFB



Theorem (The small object argument)
Let £ be a locally presentable category and ¥ C hom(€) a set

of morphism with (finitely) presentable domain; then the
subcategory of X-orthogonal object is always reflective and
(finitely) accessibly embedded.

Proof.
Build a well pointed’ endofunctor R : £ — &, with a natural

transformation n : X — RX; consider

X RX RRX RRRX —---

R>*(X) := colim R"(X) has a canonical X — R*X, and itis
Y-orthogonal by construction. It is the desired functor. [

"Well-pointed means that nR™ = R™n for all n.



Proof of monadicity

+ Monadicity of u: a monadic functor has a left adjoint,
reflects isomorphisms, and creates u-split coequalizers
(those parallel pairs that « sends to split coequalizers,
have a coequalizer, that u preserves).

Apart from the existence of f, all properties are stable
under pullback.

« u commutes with filtered colimits: it is representable by
a finitely presentable object.

u(l) = L[1] = [L, Set](y[1], ¢)



Proof of monadicity

* Being conservative is stable under pullback: conservative
functors are a right orthogonal class,? precisely .- where
t:{0 = 1} — {0 = 1}. Right orthogonal classes are closed
under limits, so under pullbacks.

+ Creating coequalizers of u-split pairs is stable under pullback:

A—>

iJ

[
t

if p* creates them, so does .

*

p

D=<—

* Every inverse image is monadic.

2If K is a category, and S C hom(K) a subset of its morphisms, an object
is right S-orthogonal if hom(—, A) inverts every arrow in S.



u has a left adjoint

The diagram
Mod(p) —— [L£,Set]

ul l_Op

Set —— [Fin°, Set]
[J,1]

of which u : Mod(p) — Set is a pullback in the 2-category of
accessible right adjoints between locally presentable
categories; this category has finite limits, thus « is again an
accessible right adjoint between locally presentable
categories.



u has a left adjoint

A different construction for the free functor. Every set A
defines a unique x-preserving A® : Fin® — Set : [n] — A",
The free functor for the theory p acts on objects and
morphisms as Lan, A®:

Fin® 4% Set
=7 n
pl (FA)[m] = / A" X L(m,n)
FA
'

This is the composition of left adjoints

Set

£, Set] Mod(p)
Ar—— Ax L([1], =) — R(A x L([1],-))



Th,(Fin) = Mnd_,(Set)

Construct a functor in the opposite direction,
3 : Mnd,(Set) — Thy(Fin);

T
given T, we consider the composition Fin — Set I set”
and its bo-ff factorization,

o 1 getT

Ik

Fin —— Set
J

+ the left vertical arrow is a Lawvere theory.

Set? — > [, Set]

 Set” =~ £-models: J/ : i[w,seq.

Set ——— [Fin°, Set]
[7,1]



There is a 2-monad S : Prof — Prof whose algebras are
exactly promonoidal categories.

Prof ————>§ Prof

| |

Cat T) Cat

If S is @ monad on Cat such that the presheaf functor
P : cat — Cat lifts to the Eilenberg-Moore category of
S, then S lifts to the Kleisli category of P.



S is the free monoid monad, so it is defined as

sc=]Jc"

n>0

Now, an S-algebra consists of a 1-cell SA ~ A satisfying
certain axioms. We claim that these axioms amount to the
request that A is a multicategory of some sort.

First: an S-algebra is a multicategory. It is enough to
expand the definition as follows: an S-algebra is a functor
SA x A° — Set,and SA =] A™.



Now, since products distribute over sums, we have

(11,0 A™) x A° “e Set

S
[T,50 (A" x A°) ©e Set

[T,0 (A" x A° %5 Set)

This amounts to a family of arrows
®Rp : A" x A° —— Set

such that certain assumptions (associativity and unitality)
are satisfied; so A° is endowed with a multicategory
structure, whose set of n-ary multimorphisms is exactly

®n(ay,...,an;ap).



This is, however, a multicategory of a very special kind,
where all (®,, | n > 3) are determined by {®g, ®1, ®2}.

To prove this, the associativity axiom for the multiplication
comes now into play: every ®,, can in fact be determined as
a composition of products

(w1 X -+ Xwp)o(wy X -+ Xwp_1)0--+0(w X wg) oo

where w; is either the identity of A or ®, (the associativity
axiom implies that all such words are equal to ®,,).



Given a profunctor p : A ~» B between promonoidal
categories (A,B, Ja), (B, Q, Jp):
« pis a pseudo-S-algebra morphism;

* The cocontinuous left adjoint p associated to p is strong
monoidal with respect to the convolution monoidal
product on presheaf categories;

If 3,9 on A, B are representable then

* Both mates p : A — PB che p* : B— P*A are strong
monoidal wrt convolution on their codomains.






Theorem
[Fin, Set] = End,,(Set)

Proof: use Yoneda lemma.
Just kidding!

The inclusion functor J : Fin — Set extends to
Lany : [Fin,Set] — Set: A — / FnxSet(Jn, A) :/ FnxA"

(Yoneda lemma; this time for real). This functor has a right
adjoint J*, and J is dense and fully faithful; this entails that
Lan; - J* is an equivalence on the subcategory End_(Set)
of finitary functors.



Theories as [Fin, Set|-categories

[Fin, Set] = End,,(Set)

Equivalence is monoidal; the o-transported structure is
called the substitution monoidal product of functors
F,G : Fin — Set:

n
FoG:mw— / Fn x (Gm)"

Substitution is (highly!) non-symmetric, right closed
monoidal structure (not left closed).

The category [Fin, Set] works as base of enrichment.



From [Garner]

From now on we blur the distinction between the
categories [Fin, Set] = End_,,(Set) = W:

+ Afinitary monad is a monoid in W, i.e. a W-category
with a single object;

+ A Lawvere theory is a W-category that is absolute
(=Cauchy-, =Karoubi-)complete as an enriched category
and generated by a single object.

Lawvere theories form a reflective subcategory in finitary
monads; reflection is the enriched Cauchy completion
functor.



Theories as )V-categories

In this perspective there is no difference between a Lawvere
theory and its associated monad: they are the very same
thing, up to a Cauchy-completion operation.

(The Cauchy completion of a monoid in Cat is rarely a
monoid: take the “generic idempotent” M = {1, e} and split
e:*x —*xasr:05 x: ).

In order to add all W-absolute colimits, at least all tensors
y[n] ® X must be added to the single object X.



Theories as )V-categories

Equivalently,

* A Lawvere YW-category is an enriched category where
every object A is the tensor y[n] ® X for a distinguished

object X = y[1] ® X. All such categories are W-absolute
complete.

+ A W-category is a special kind of cartesian
multicategory: one where a multimorphism
f:X1...X, —»Yissuchthat X; = X, = --. = X,,.



Generalisations/extensions:

* let N be the discrete category over natural numbers;
* let P be the groupoid of natural numbers;

The categories [N, Set] and [P, Set]| become monoidal with
respect to substitution products oy, Op:

F@NG:nHHka H Xny X X Xy,
keN Yy ni=n
ki

FopG:n— YkXXmX---xXnkxP(Zni,n)



On and ©p-monoids are respectively non-symmetric and
symmetric operads.

+ APRO is an identity-on-objects strong monoidal functor
p: N° — P. P is possibly non-cartesian.

« A PROP is an identity-on-objects strong monoidal
functor p : N® — P. P is symmetric monoidal.

Still examples of promonoidal promonads and symmetric
promonoidal promonads.



PRO(P)s and operads

Every PRO p : N° — T gives rise to the operad
O(T)=(T(n,1) | n € N).

Conversely, any operad (O(n) | n € N) gives rise to a pro
T(O), where

TO)n,m)= [  Ok) x - x Okm).
ki+...4+km=n

(It would be helpful to imagine a picture of m trees stacked
vertically.)

If we begin with an operad O, we have O = O(T(0)). (This is
because T'(O)(n,1) = O(n), according to the above formula.)



On the other hand, if we start with a PRO T, then there
exists a canonical map of PROs T(O(T)) — T, given by, for
each n and m, a canonical function

I 7Gx X Tk, 1) > T(n,m) (%)
kit-+km=n
induced from the monoidal product on 7.

This sets up an adjunction
T : Opd[S] = PROIP] : O

with fully faithful left adjoint, so that [symmetric] operads
can be regarded as a PRO[P]s 7 such that each function (*)
is bijective.






The evil plan

Re-enact [Garner] away from Set.

Let V be a locally presentable base of enrichment; let F(V)
be the subcategory of finitely presentable objects:

* F(V) is the free finite weighted cocompletion of the
point;
* There is a strong monoidal equivalence of categories

[S(V)* V] = [V7 V]<w

between functors F(V) — V and finitary
endo-V-functors;



The evil plan

e V-substitution is
B
F*G:AH/ FB ®y (GA)B < V-power

* Equivalence between finitary V-monads and
enriched-Cauchy-complete categories generated by a
single object under iterated finite powers.

* Models for a Lawvere theory correspond to algebras for
the associated finitary monad; free models are free
agebras are representables in

Alg(T,C) = [§(V), V]-Cat(T,C)
(Cauchy compl.) = [§(V), V]-Cat(T,C)
— Mod(T',C)



The evil plan

class of lims finite x | D-limts finite powers weighted D-limits | bicat x
basic theory Fin® completion of {x} | completion of {x} | completion of {*} | completion of {x}
semantics in Set Set 14 v Prof

eq. with _monads

finitary

D-accessible

[§(V), V]-monoids

[?, V]-monoids

7?




Profunctorial semantics

+ Characterise the free carbicat CB(x) on a singleton: see
link here);

* Check if the univ property of Fin remains true for CB(x);

« Take CB(x) = F, and consider its free cocompletion in
the bicolimit sense

* Prove that

[PF, PF] = [CB(), PF]
~ PF

monoidally; ©-monoids := monoids in PF wrt
composition in [PF, PF.


https://arxiv.org/pdf/1804.07626.pdf

Profunctorial semantics

* Prove that there is a syntax-VS-semantics adjunction
here: theories are promonoidal promonads T on (a
1-skeleton of) CB(x), and models are carbicat
homomorphisms KI(T') — Prof. There is an equivalence

{theories} = {??? monads}

*+ Let PROs come into play: analogue of the adjunction
between PROs and operads.
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