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Algebraic structures

A group is a set equipped with operations

• m : G×G → G

• i : G → G

• e : 1 → G

…

you know the drill



Algebraic structures

Theorem (Higman-Neumann 1953)
A group is a set equipped with a single binary operation
/ : G×G → G subject to the single equation

x/((((x/x)/y)/z)/(((x/x)/x)/z)) = y

for every x, y, z ∈ X.

Well.

This is awkward.



The theory of equationally definable classes of alge-
bras, initiated by Birkhoff in the early thirties, is […]
hampered in its usefulness by two defects. […T]he sec-
ond is the awkwardness inherent in the presentation of
an equationally definable class in terms of operations
and equations.

Quite recently, Lawvere, by introducing the notion -
closely akin to the clones P. Hall - of an algebraic the-
ory, rectified the second defect.



Definition
An operator domain is a sequence Ω = (Ωn | n ∈ N); the
elements of Ωn are called operations of arity n.

Definition
An interpretation E of an operator domain Ω consists of a
pair (E, (fω | ω ∈ Ωn, n ∈ N)) where fω : En → E is an n-ary
operation on the set E called the carrier of E.

An operator domain can be represented as a (rooted)
graph: for example, for groups
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Way better to use functors.



A Lawvere theory is an identity-on-objects functor
p : Fino → L that commutes with finite products.

Unwinding the definition:

• L is a category with the same objects as Fin, the
category of finite sets and functions;

• p is a functor that acts trivially on objects
• The only thing that can change between Fin and L is
the number of morphisms [n] → [m].

Equivalently: p is a promonad on the opposite of Fin,
regarded as an object of the bicategory of profunctors, that
preserves the monoidal structure. L is the Kleisli object of p.{ identity on obj

left adjoints
p:[L,Set]→[Fino,Set]

}
⇆

{
monads in Prof

p:Fino⇝Fino
}



• The trivial theory is the identity funtor 1Fin : Fino → Fino

• Since p preserves products, it is uniquely determined by
its value on [1]. This means that if p : Fino → L is a
Lawvere theory, then every object of L is Xn if p[1] = X.

• The only difference between Fin and L is thus the set of
morphisms [n] → [m].

The theory of groups is generated by

LGrp =

[1][0] [2]
e m

i

and their compositions/products.



A model for a Lawvere theory p is a product-preserving
functor ℓ : L → Set.

The category Mod(p) for a Lawvere theory is a full, reflective
subcategory of the category [L, Set] of all functors L → Set.

Theorem
The following conditions are equivalent (p : Fino → L a theory):

• ℓ is a model for a Lawvere theory L;
• The composition ℓ ◦ p : Fino → L preserves finite products;
• The composition ℓ ◦ p : Fino → L is J -representable (with
respect to the inclusion J : Fin → Set), i.e.

ℓ(X[n]) ∼= Set(J [n], A)

for some A ∈ Set.



As a consequence of the previous theorem, the square

Mod(p) r−−−−→ [L, Set]

u

y y_◦p

Set −−−−→
[J,1]

[Fino, Set]

is a pullback.

1. Mod(p) is a reflective subcategory of [L,Set]. We write
r! ⊣ r for the resulting adjunction.

2. The functor u is monadic, with left adjoint f .
3. This sets up a functor

M : ThL(Fin) → Mnd<ω(Set)

because the monad uf above is finitary.



1. Proof of reflectiveness

The category Mod(p) is reflective:

A functor F : L → Set preserves products if and only if it is
right orthogonal with respect to all σAB in

yA⨿ yB

∀σAB

��

∀t // F

y(A×B).

::

Indeed, F is orthogonal to σAB iff hom(−, F ) inverts σAB ;
now consider the chain

F (A×B) ∼= hom(y(A×B), F )

→ hom(yA⨿ yB, F )

∼= hom(yA, F )× hom(yB, F )

∼= FA× FB



Theorem (The small object argument)
Let E be a locally presentable category and Σ ⊂ hom(E) a set
of morphism with (finitely) presentable domain; then the
subcategory of Σ-orthogonal object is always reflective and
(finitely) accessibly embedded.

Proof.
Build a well pointed1 endofunctor R : E → E , with a natural
transformation η : X → RX; consider

X // RX // RRX // RRRX // · · ·

R∞(X) := colimRn(X) has a canonical X → R∞X, and it is
Σ-orthogonal by construction. It is the desired functor.

1Well-pointed means that ηRn = Rnη for all n.



Proof of monadicity

• Monadicity of u: a monadic functor has a left adjoint,
reflects isomorphisms, and creates u-split coequalizers
(those parallel pairs that u sends to split coequalizers,
have a coequalizer, that u preserves).
Apart from the existence of f , all properties are stable
under pullback.

• u commutes with filtered colimits: it is representable by
a finitely presentable object.

u(ℓ) = ℓ[1] ∼= [L, Set](y[1], ℓ)



Proof of monadicity

• Being conservative is stable under pullback: conservative
functors are a right orthogonal class,2 precisely ι⊥ where
ι : {0 → 1} → {0 ∼= 1}. Right orthogonal classes are closed
under limits, so under pullbacks.

• Creating coequalizers of u-split pairs is stable under pullback:

A
_�

s //

u

��

B

p∗

��
C

t
// L

if p∗ creates them, so does u.

• Every inverse image is monadic.

2If K is a category, and S ⊆ hom(K) a subset of its morphisms, an object
is right S-orthogonal if hom(−, A) inverts every arrow in S.



u has a left adjoint

The diagram
Mod(p) r−−−−→ [L, Set]

u

y y_◦p

Set −−−−→
[J,1]

[Fino, Set]

of which u : Mod(p) → Set is a pullback in the 2-category of
accessible right adjoints between locally presentable
categories; this category has finite limits, thus u is again an
accessible right adjoint between locally presentable
categories.



u has a left adjoint

A different construction for the free functor. Every set A
defines a unique ×-preserving A• : Fino → Set : [n] 7→ An.
The free functor for the theory p acts on objects and
morphisms as LanpA•:

Fino

p

��

A•
// Set

L
FA

<<
(FA)[m] ∼=

∫ n

An × L(m,n)

This is the composition of left adjoints

Set // [L, Set] // Mod(p)

A � // A× L([1],−) � // R(A× L([1],−))



ThL(Fin) ∼= Mnd<ω(Set)

Construct a functor in the opposite direction,

Z : Mnd<ω(Set) → ThL(Fin);

given T , we consider the composition Fin ↪→ Set FT

−−→ SetT

and its bo-ff factorization,

Lo ff //
OO

b

SetTOO
FT

Fin
J

// Set

• the left vertical arrow is a Lawvere theory.

• SetT ∼= L-models:
SetT

⌟
//

��

[L, Set]

[bo,Set]
��

Set
[J,1]

// [Fino, Set]

.



Theories as promonads

There is a 2-monad S̃ : Prof → Prof whose algebras are
exactly promonoidal categories.

Prof S̃−−−−→ Profx x
Cat −−−−→

S
Cat

If S is a monad on Cat such that the presheaf functor
P : cat → Cat lifts to the Eilenberg-Moore category of
S, then S lifts to the Kleisli category of P .



Theories as promonads

S is the free monoid monad, so it is defined as

SC =
⨿
n≥0

Cn

Now, an S̃-algebra consists of a 1-cell S̃A⇝ A satisfying
certain axioms. We claim that these axioms amount to the
request that A is a multicategory of some sort.

First: an S̃-algebra is a multicategory. It is enough to
expand the definition as follows: an S̃-algebra is a functor
SA×Ao → Set, and SA =

⨿
An.



Theories as promonads

Now, since products distribute over sums, we have

(⨿
n≥0A

n
)
×Ao ⊗n→ Set⨿

n≥0
(
An ×Ao) ⊗n→ Set∏

n≥0
(
An ×Ao ⊗n→ Set

)
This amounts to a family of arrows

⊗n : An ×Ao −−−−→ Set

such that certain assumptions (associativity and unitality)
are satisfied; so Ao is endowed with a multicategory
structure, whose set of n-ary multimorphisms is exactly
⊗n(a1, . . . , an; a0).



Theories as promonads

This is, however, a multicategory of a very special kind,
where all (⊗n | n ≥ 3) are determined by {⊗0,⊗1,⊗2}.

To prove this, the associativity axiom for the multiplication
comes now into play: every ⊗n can in fact be determined as
a composition of products

(w1 × · · · × wn) ◦ (w1 × · · · × wn−1) ◦ · · · ◦ (w1 × w2) ◦ ⊗2

where wi is either the identity of A or ⊗2 (the associativity
axiom implies that all such words are equal to ⊗n).



Theories as promonads

Given a profunctor p : A⇝ B between promonoidal
categories (A,P, JA), (B,Q, JB):

• p is a pseudo-S̃-algebra morphism;
• The cocontinuous left adjoint p̂ associated to p is strong
monoidal with respect to the convolution monoidal
product on presheaf categories;

If P,Q on A,B are representable then

• Both mates p◁ : A → PB che p▷ : B → P ∗A are strong
monoidal wrt convolution on their codomains.





Theorem
[Fin, Set] ∼= End<ω(Set)

Proof: use Yoneda lemma.

Just kidding!

The inclusion functor J : Fin → Set extends to

LanJ : [Fin, Set] → Set : A 7→
∫ n

Fn×Set(Jn,A) =

∫ n

Fn×An

(Yoneda lemma; this time for real). This functor has a right
adjoint J∗, and J is dense and fully faithful; this entails that
LanJ ⊣ J∗ is an equivalence on the subcategory End<ω(Set)
of finitary functors.



Theories as [Fin,Set]-categories

[Fin, Set] ∼= End<ω(Set)

Equivalence is monoidal; the ◦-transported structure is
called the substitution monoidal product of functors
F,G : Fin → Set:

F ⊖G : m 7→
∫ n

Fn× (Gm)n

Substitution is (highly!) non-symmetric, right closed
monoidal structure (not left closed).

The category [Fin, Set] works as base of enrichment.



From [Garner]

From now on we blur the distinction between the
categories [Fin, Set] ∼= End<ω(Set) = W :

• A finitary monad is a monoid inW , i.e. aW-category
with a single object;

• A Lawvere theory is aW-category that is absolute
(=Cauchy-, =Karoubi-)complete as an enriched category
and generated by a single object.

Lawvere theories form a reflective subcategory in finitary
monads; reflection is the enriched Cauchy completion
functor.



Theories asW-categories

In this perspective there is no difference between a Lawvere
theory and its associated monad: they are the very same
thing, up to a Cauchy-completion operation.

(The Cauchy completion of a monoid in Cat is rarely a
monoid: take the “generic idempotent”M = {1, e} and split
e : ∗ → ∗ as r : 0⇆ ∗ : s).

In order to add allW-absolute colimits, at least all tensors
y[n]⊙X must be added to the single object X.



Theories asW-categories

Equivalently,

• A LawvereW-category is an enriched category where
every object A is the tensor y[n]⊙X for a distinguished
object X ∼= y[1]⊙X. All such categories areW-absolute
complete.

• AW-category is a special kind of cartesian
multicategory: one where a multimorphism
f : X1 . . . Xn → Y is such that X1 = X2 = · · · = Xn.



Generalisations/extensions:

• let N be the discrete category over natural numbers;
• let P be the groupoid of natural numbers;

The categories [N, Set] and [P, Set] become monoidal with
respect to substitution products ⊖N ,⊖P :

F ⊖N G : n 7→
⨿
k∈N

Gk ×
⨿

n⃗:
∑

ni=n

Xn1 × · · · ×Xnk

F ⊖P G : n 7→
∫ k,n⃗

Yk ×Xn1 × · · · ×Xnk
×P

(∑
ni, n

)



PRO(P)S

⊖N and ⊖P -monoids are respectively non-symmetric and
symmetric operads.

• A PRO is an identity-on-objects strong monoidal functor
p : No → P . P is possibly non-cartesian.

• A PROP is an identity-on-objects strong monoidal
functor p : No → P . P is symmetric monoidal.

Still examples of promonoidal promonads and symmetric
promonoidal promonads.



PRO(P)s and operads

Every PRO p : No → T gives rise to the operad
O(T ) = (T (n, 1) | n ∈ N).

Conversely, any operad (O(n) | n ∈ N) gives rise to a pro
T (O), where

T (O)(n,m) =
⨿

k1+...+km=n

O(k1)× · · · × O(km).

(It would be helpful to imagine a picture ofm trees stacked
vertically.)

If we begin with an operad O, we have O = O(T (O)). (This is
because T (O)(n, 1) = O(n), according to the above formula.)



On the other hand, if we start with a PRO T , then there
exists a canonical map of PROs T (O(T )) → T , given by, for
each n andm, a canonical function⨿

k1+···+km=n

T (k1, 1)× · · · × T (km, 1) → T (n,m) (⋆)

induced from the monoidal product on T .

This sets up an adjunction

T : Opd[S]⇆ PRO[P] : O

with fully faithful left adjoint, so that [symmetric] operads
can be regarded as a PRO[P]s T such that each function (*)
is bijective.





The evil plan

Re-enact [Garner] away from Set.

Let V be a locally presentable base of enrichment; let F(V)
be the subcategory of finitely presentable objects:

• F(V) is the free finite weighted cocompletion of the
point;

• There is a strong monoidal equivalence of categories

[F(V),V] ∼= [V,V]<ω

between functors F(V) → V and finitary
endo-V-functors;



The evil plan

• V-substitution is

F ∗G = A 7→
∫ B

FB ⊗V (GA)B ←V-power

• Equivalence between finitary V-monads and
enriched-Cauchy-complete categories generated by a
single object under iterated finite powers.

• Models for a Lawvere theory correspond to algebras for
the associated finitary monad; free models are free
agebras are representables in

Alg(T, C) = [F(V),V]-Cat(T, C)
(Cauchy compl.) ∼= [F(V),V]-Cat(T̂ , C)

= Mod(T̂ , C)



The evil plan

class of lims finite × D-limts finite powers weighted D-limits bicat ×
basic theory Fino completion of {∗} completion of {∗} completion of {∗} completion of {∗}
semantics in Set Set V V Prof
eq. with _ monads finitary D-accessible [F(V ), V ]-monoids [?, V ]-monoids ???



Profunctorial semantics

• Characterise the free carbicat CB(∗) on a singleton: see
link here);

• Check if the univ property of Fin remains true for CB(∗);
• Take CB(∗) = F , and consider its free cocompletion in
the bicolimit sense

• Prove that

[PF, PF ] ∼= [CB(∗), PF ]

∼= PF

monoidally; ⊙-monoids := monoids in PF wrt
composition in [PF, PF ].

https://arxiv.org/pdf/1804.07626.pdf


Profunctorial semantics

• Prove that there is a syntax-VS-semantics adjunction
here: theories are promonoidal promonads T on (a
1-skeleton of) CB(∗), and models are carbicat
homomorphisms Kl(T ) → Prof. There is an equivalence

{theories} ∼= {??? monads}

• Let PROs come into play: analogue of the adjunction
between PROs and operads.
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