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Goals : in the context of general differential 2-rigs (Loregian, Trimble,
[5]) :

Can we solve differential equations using the same techniques as for
combinatorial species ?
Can some theorems about combinatorial species be extended ?
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Definition, Loregian, [5].

A 2-rig is a category C with :
finite coproducts +, called the addition,
an other monoidal structure ⊗, called the multiplication,
natural isomorphisms :

X ⊗ Y + X ⊗ Z
δL→
∼
X ⊗ (Y + Z )

Y ⊗ X + Z ⊗ X
δR→
∼
(Y + Z )⊗ X
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Example

(Set,+,×, 1).
If R is a ring, then (ModR ,⊕,⊗,R) is an example.
If (A,⊕, j) is a monoidal category, then
([Aop, Set],+, ∗, I = A(j ,−)) is an example, where ∗ is the Day
convolution :

F ∗ G =

∫ U,V∈A
FU × GV ×A(U ⊕ V ,−)

If C is a 2-rig, then the category C[Y ] with objects finite families of
objects of C noted (A1, . . . ,An) =

∑n
i=0 Ai ⊗ Y i with

component-wise sum and Cauchy product :(
n∑

i=0

Ai ⊗ Y i

)
⊗

 m∑
j=0

Bj ⊗ Y j

 =

m+n∑
k=0

∑
i+j=k

Ai ⊗ Bj

⊗ Y k


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Definition, Loregian, [5].

A differential 2-rig is a 2-rig C with :
an endofunctor ∂, called the derivation,
natural isomorphisms :

∂X + ∂Y
∂iX+∂iY→

∼
∂(X + Y )

∂X ⊗ Y + X ⊗ ∂Y
l→
∼
∂(X ⊗ Y )

such that : naturality, compatibility with the left-/right-distributors,
compatibility with the ⊗-associator, compatibility with the
left-/right-⊗-unitors.
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Ex for naturality : for all morphisms u : X → X ′, v : Y → Y ′, we want
the following diagram to commute :

∂(X ⊗ Y ) ∂(X ′ ⊗ Y ′)

∂X ⊗ Y + X ⊗ ∂Y ∂X ′ ⊗ Y ′ + X ′ ⊗ ∂Y ′

∂(u⊗v)

∂u⊗v+u⊗∂v

lX,Y lX ′,Y ′
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Example

If we want to endow (C[Y ],+,⊗, I ) with a derivation satisfying
∂Y = I , the Leibniz rule impose to set :

∂
n∑

i=0

Ai ⊗ Y i =
n−1∑
i=0

(i + 1)Ai+1 ⊗ Y i

where (i + 1)Ai+1 is the sum of (i + 1) copies of Ai+1.
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Definition 1, Joyal, [3].

Let B be the category of finite sets, with morphisms being the bijections.
Define the category of combinatorial species Spc = [B,FinSet], which is
equivalent to [B,B].

Remark.

Decompose : B ≃
∐∞

n=0 Sn
So X : B → FinSet can be decomposed as :

a sequence of finite sets Xn, n ≥ 0,
a sequence of left actions of Sn on Xn, n ≥ 0.
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Example (species of trees)

Define the species of trees, by assigning to a finite set E the set of trees
on E :

4 7→

0

1 2

3

,

0

1 2

3

, . . .

and the action of Sn on Xn permutes the vertices of a tree chosen in the
set Xn.
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Structure of differential 2-rig on Spc : for species X ,Y and a finite set E
:

Sum :

(X + Y )(E ) = X (E ) + Y (E ) = X (E )
∐

Y (E )

Multiplication :

(X ⊗ Y )(E ) =
∑

E1+E2=E

X (E1)× Y (E2)

Derivation :

(∂X )(E ) = X (E + 1) = X (E + {∗})
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Additional structure on Spc : for species X ,Y and a finite set E :
Substitution :

(X ◦ Y )(E ) =
∑

π partition of E

X (π)×
∏
p∈π

Y (p)
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Example (derivative of the species of trees, Bergeron, [2])

If X is the species of trees, the species ∂X assigns to a finite set E the
set of trees on E + {∗} :

{∗}

So ∂X is the species of disjoint sets of rooted trees.
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First goal : can we solve (some) differential equations in general 2-rigs ?
Polynomial differential equations : finding fixed points of :

X 7→ A0 + A1 ⊗ ∂X + A2 ⊗ (∂2)X + · · ·+ An ⊗ (∂n)X

For instance :
X 7→ ∂X
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Technique : use initial algebras and terminal coalgebras to find fixed
points of functors.

Example

Take a set A. What are the fixed points of the following functor ?

TA : Set → Set
S 7→ 1 + (A× S)

Start from the initial object ∅ or the terminal object 1, and recursively
apply TA to the unique morphisms ∅ !1→ TA(∅) and 1 !2← TA(1) :
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Example

∅ !1→ 1 TA!1→ 1 + A
T2

A !1→ 1 + A+ A2 T3
A !1→ 1 + A+ A2 + A3 → . . .

1 !2← 1 + A
TA!2← 1 + A+ A2 T2

A !2← 1 + A+ A2 + A3 ← . . .

Taking :
the colimit of the first equation gives A∗, ie the initial algebra of TA,
the limit of the second equation gives A∗ + AN, ie the terminal
coalgebra of TA,

and they give solutions to TA(X ) ≃ X .
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Theorem, Trnokvá et al.
A set functor has an initial algebra if and only if it has a fixed point.

First Adámek’s theorem, [6].

If C has an initial object 0 and ω-composition, and F : C → C preserves
colimits of ω-chains, then the initial algebra of F is the colimit of :

0 !→ F0 F !→ F 20→ . . .

Second Adámek’s theorem, [1].

If C has colimits and F : C → C preserves colimits of λ-chains for some

infinite ordinal λ, then the initial algebra of F is Fλ0 Fλ!→ Fλ+10.

Lambek’s theorem.

If F : C → C has an initial algebra α : F (X )→ X , then α is an
isomorphism.

19 / 44



Introduction and goal
Background

Resolution of some differential equations
The number of solutions
Virtual differential 2-rigs

Former results to find fixed points of functors
Examples of equations

Remark.
Dual versions also work.

Remark.
If they exist :

the initial algebra is the smallest fixed point,
the terminal coalgebra is the largest fixed point.
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Difficult :
comodules : no
linear species ([GL(p),Vectk ],⊕,⊗) : no
etc.
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Idea : (N,+) and (N, ·) are monoidal categories.

Structure on [(N,+),Vectk ].

Consider [(N,+),Vectk ] with ’Day convolution’. That is, for objects F ,G :

F + G = (Fn ⊕ Gn)n∈N

F ∗ G =
(∫ p,q∈N

(F (p)⊗ G (q))⊙ N(p + q, n)
)
n∈N

=
(∑

p+q=n F (p)⊗ G (q)
)
n∈N

I = (k , 0, 0, . . . )

Derivation ? Copy polynomials :

∂F = ((n + 1)Fn+1)n∈N =

 ⊕
1≤k≤n+1

Fn+1


n∈N
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Structure on [(N, ·),Vectk ].
Consider [(N, ·),Vectk ] with ’Day convolution’. That is, for objects F ,G :

F + G = (Fn ⊕ Gn)n∈N

F ∗ G =
(∫ p,q∈N

(F (p)⊗ G (q))⊙ N(p · q, n)
)
n∈N

=
(∑

p·q=n F (p)⊗ G (q)
)
n∈N

I = (0, k , 0, 0, . . . )

Derivation ? For a prime number r :

∂F = ∂rF = 0⊕ (δnFr ·n)n≥1

for some coefficients δn. Only choice of coefficients :

∂F =
(
0, ((vr (n) + 1)Fr ·n)n≥1

)
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Can we use the initial algebra or coalgebra techniques to solve the
differential equation ∂V ≃ V in our two examples of structures ?

0 = (0, 0, . . . ) is both initial and terminal. We want to study :

0 !→ ∂0 ∂!→ ∂20→ . . .

0 !← ∂0 ∂!← ∂20← . . .

Issue : in our two structures we have ∂0 = 0.
We even have ∂I = 0.
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Let’s completely solve the differential equation ∂V ≃ V in our two
examples of structures.

Solutions in [(N,+),Vectk ].

The solutions of ∂V ≃ V are, up to isomorphism, the N-graded vector
spaces of the form V = (kα)n≥0 for an infinite cardinal α, and the trivial
space.

Proof.

∂V ≃ V ⇔ ∀n, Vn ≃ (n + 1)Vn+1
⇒ V0 ≃ V1 ≃ 2V2 ≃ 3!V3 ≃ · · · ≃ n!Vn ≃ . . .

3 steps :
except the trivial solution, the dimensions must be infinite,
assume V = (kαn)n,
equation on the dimensions αn :

∀n, αn ≃ (n + 1)αn+1
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Remark.
Imposing V0 = Λ for some infinite dimensional vector space Λ, we get
exactly one solution up to isomorphism :

V = (Λ,Λ, . . . )

Remark.
If Λ is a non-trivial finite dimensional vector space, there is no solution.

Is V0 = Λ a nice initial condition ? Like X [∅] = ∅ for species used by
Labelle in [4], in {

∂X = X
X [∅] = ∅
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Remark.
Similarly we can solve : {

∂V ≃ A⊗ V + B
V0 = Λ

but only under some conditions on A,B,Λ.
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Definition.
For n ∈ N, write the decomposition

n = wr (n)r
vr (n)

Solutions in [(N, ·),Vectk ].
The solutions of ∂V ≃ V are, up to isomorphism, the N-graded vector
spaces of the form V =

(
0, (Uwr (n))n≥1

)
, where, for w prime to r , Uw is

the trivial space or of the form kαw for an infinite cardinal αw .

28 / 44



Introduction and goal
Background

Resolution of some differential equations
The number of solutions
Virtual differential 2-rigs

Former results to find fixed points of functors
Examples of equations

Proof.

∂V ≃ V ⇔ V0 = 0 and ∀n ≥ 1, Vn ≃ (vr (n) + 1)Vrn

⇔ V0 = 0 and ∀w prime to r ,∀v ≥ 0, Vwr v ≃ (v + 1)Vwr v+1

⇔



V0 = 0
V1 ≃ Vr , Vr ≃ 2Vr2 , Vr2 ≃ 3Vr3 , Vr3 ≃ 4Vr4 . . .
V2 ≃ V2r , V2r ≃ 2V2r2 , V2r2 ≃ 3V2r3 , V2r3 ≃ 4V2r4 . . .
V3 ≃ V3r , V3r ≃ 2V3r2 , V3r2 ≃ 3V3r3 , V3r3 ≃ 4V3r4 . . .
. . .
Vw ≃ Vwr , Vwr ≃ 2Vwr2 , Vwr2 ≃ 3Vwr3 , Vwr3 ≃ 4Vwr4 . . .
. . .

Set U(w)
v = Vwr v for w prime to r , and use the fact that each n ∈ N has

a unique decomposition n = wr v with w prime to r .
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Remark.

Imposing Vw = Λ(w) for some infinite dimensional vector spaces Λ(w) for
w prime to r , we get exactly one solution up to isomorphism.

Is Vw = Λ(w) for w prime to r a nice initial condition ?
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Definition 2.1, Labelle [4].

Given species Fi,j , a solution of the differential problem{
∂Yi = Fi,j(X1, . . . ,Xk ,Y1, . . . ,Yp), 1 ≤ i ≤ p, 1 ≤ j ≤ k

Yi [∅, . . . ,∅] = ∅, 1 ≤ i ≤ p

is a family of species A = (Ai (X1, . . . ,Xk))1≤i≤p and natural
isomorphisms

θi,j : ∂Ai/∂Xj
∼→Fi,j(X1, . . . ,Xk ,A1, . . . ,Ap)

such that
Ai [∅, . . . ,∅] = ∅, 1 ≤ i ≤ p

Example {
∂X = A⊗ X + B

X [∅] = ∅
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Part of theorem A, Labelle [4].

If m is a finite (possibly null) cardinal number or m = 2ℵ0 , then there
exists a normalized compatible differential problem having exactly m
non-isomorphic combinatorial solutions. Moreover, no differential
problem can have exactly m = ℵ0 or m > 2ℵ0 non-isomorphic
combinatorial solutions.
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Lemma 2.6, Labelle [4].

For n = (n1, . . . , nk) ∈ Nk , there exists only a finite number µn > 0 of
non-isomorphic molecular species

M(i)
n = M(i)

n (X1, . . . ,Xk))

supported by multisets having multicardinality n.
Every species H = H(X1, . . . ,Xk) has a unique molecular decomposition
of the form

H =
∑

n∈Nk , 1≤i≤µn

C (i)
n (H)M(i)

n

where C
(i)
n (H) are natural integers.

Moreover, for any pair H,K of species we have

H ≃ K ⇔ ∀n,∀i ,C (i)
n (H) = C (i)

n (K )
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Conjecture.

If C is a monoidal category with initial object 0, such that the cardinality
of C0 is κ, and such that the 2-rig [Cop, Set] can be endowed with a
derivation ∂, then the differential problem :{

∂X ≃ X
X [0] = {∗}

has at most 2κ solutions.
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We want to replace [(N,+),Vectk ] with something of the form [Cop, Set]
:

Replace (N,+) by (N,≥,min) = (N,≤,max)op.
We want to replace Vectk by Set : same properties :

kα ⊕ kβ = kα+β

kα ⊗ kβ = kα×β
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Define the differential 2-rig [(N,≥,min), Set] :
Sum :

F + G = (Fn + Gn)n∈N

Multiplication :

F ∗ G =
(∫ p,q∈N

F (p)× G (q)× N(n,min(p, q))
)
n∈N

=
(∑

n≤p,q F (p)× G (q)
)
n∈N

Derivation :

∂F =

(∐
k∈ℵ0

Fn

)
n∈N

= (ℵ0Fn)n∈N
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Is ∂ really Leibniz ? For example for naturality.
On objects F ,G , at the level n ≥ 0 :

(∂(F ∗ G ))n =
∐

k∈ℵ0

∐
n≤p,q F (p)× G (q)

(∂F ∗ G + F ∗ ∂G )n =
∐

n≤p,q

(∐
k∈ℵ0

F (p)
)
× G (q)

+
∐

n≤p,q F (p)×
(∐

k∈ℵ0
G (q)

)
≃

∐
t∈{0,1}

∐
k∈ℵ0

∐
n≤p,q F (p)× G (q)

The above isomorphism is natural. If we fix a bijection ℵ0 ≃ {0, 1} × ℵ0,
independently of F ,G , we can show we have a natural isomorphism
between the two above expressions,by reindexing.
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Goal : solve ∂V ≃ V in this structure.

Solutions in [(N,≥,min), Set].

The solutions of ∂V ≃ V are, up to isomorphism, the objects
V = (Vn)n∈N such that each Vn is an infinite set or 0.

Proof.

∂V ≃ V ⇔ ∀n ≥ 0, Vn ≃ ℵ0Vn

So V0 = 0 or even V0 = Λ doesn’t fix a ’reasonable’ number of solutions
: (N,≥,min) has ℵ0 objects, but we have strictly more than 2ℵ0 solutions
even with the initial condition.
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Recall Labelle’s decomposition of combinatorial species :

H =
∑

n∈Nk , 1≤i≤µn

C (i)
n (H)M(i)

n

where C
(i)
n are natural integers and M

(i)
n are molecular species.

If we :
allow negative coefficients, writing H = Hp − Hn for two species
Hp,Hn,
quotient up to Hp − Hn = H ′

p − H ′
n ⇔ Hp + H ′

n ≃ H ′
p + Hn,

we get the virtual species.

It can give solutions to equations which otherwise wouldn’t have any.
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Definition.
A category C is cancellative if for every objects A,B,C , the property
A+ B ≃ A+ C implies B ≃ C .

Consider a cancellative differential 2-rig (C,+,⊗, ∂).

Definition.

Set (C2,⊞,⊠, ∂̄), where :

(A,B)⊞ (C ,D) = (A+ C ,B + D)

(A,B)⊠ (C ,D) = (A⊗ C + B ⊗ D,A⊗ D + B ⊗ C )

∂̄(A,B) = (∂A, ∂B)

Theorem.

(C2,⊞,⊠, ∂̄) is a differential 2-rig.
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Definition.

The virtual category V(C) is C2 quotiented by (A,B) ∼ (C ,D) if and
only if A+ D ≃ C + B, ie the category with :
- objects : C2

0 quotiented by ∼,
- morphisms [(A,B)]→ [(C ,D)] : the morphisms (A′,B ′)→ (C ′,D ′) for
all (A,B) ∼ (A′,B ′) and (C ,D) ∼ (C ′,D ′).

Theorem.

The virtual category V(C) is a differential 2-rig.

Theorem.

C quotiented by isomorphisms, can be embedded into V(C) as a
differential 2-rig.
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