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Introduction and goal

Goals : in the context of general differential 2-rigs (Loregian, Trimble,
[5]) :
o Can we solve differential equations using the same techniques as for
combinatorial species ?

o Can some theorems about combinatorial species be extended ?
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Introduction and goal

© Background
© Resolution of some differential equations
© The number of solutions

@ Virtual differential 2-rigs
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Background

Summary

© Background
o Differential 2-rigs
o Combinatorial species

Differential 2-rigs
Combinatorial species
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Background Differential 2-rigs

Combinatorial species

Definition, Loregian, [5].

A 2-rig is a category C with :
@ finite coproducts +, called the addition,
@ an other monoidal structure ®, called the multiplication,

@ natural isomorphisms :

L
X®Y+X®ZLHXQ (Y +2)

R
YOX+ZXB(Y+2)®X
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Background

Differential 2-rigs
@l ryierel| et

o (Set,+, x,1).
e If R is a ring, then (Modg, ®, ®, R) is an example.

o If (A,®,j) is a monoidal category, then
([A°P,Set], +, x, I = A(j, —)) is an example, where x is the Day
convolution :

U,veA
F*G:/ FUx GV x AUa V,-)

o If Cis a 2-rig, then the category C[Y] with objects finite families of
objects of C noted (Ar,...,A;) =Y.1 oA ®@ Y’ with
component-wise sum and Cauchy product :

n m m-+n
(ZA,-@Y’)@ gy |=|> | D> AcB|eYk
i=0 j=0 k=0 \i+j=k
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Background Differential 2-rigs

Combinatorial species

Definition, Loregian, [5].

A differential 2-rig is a 2-rig C with :
@ an endofunctor 0, called the derivation,

@ natural isomorphisms :

X + oYX + V)

XY +X@IYLIX®Y)

such that : naturality, compatibility with the left-/right-distributors,
compatibility with the ®-associator, compatibility with the
left-/right-®-unitors.
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Background

Ex for naturality : for all morphisms v: X — X', v:Y — Y’, we want
the following diagram to commute :

X ®Y) Oucy) X' @ Y')

/X,YT T’x’ y!

/ / !/ /!
X ® Y+X®8Yamv8X Y +X ®@0Y
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Background

o If we want to endow (C[Y],+,®, /) with a derivation satisfying
0Y = I, the Leibniz rule impose to set :

n n—1
aZA,- QY = Z(i +1)A1® Y
i=0 i=0

where (i + 1)A;+1 is the sum of (i + 1) copies of A;j11.
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Background

Definition 1, Joyal, [3].

Let B be the category of finite sets, with morphisms being the bijections.
Define the category of combinatorial species Spc = [B, FinSet], which is
equivalent to [B, B].

Decompose : B~ ][] ", S,
So X : B — FinSet can be decomposed as :

.

@ a sequence of finite sets X, n > 0,

@ a sequence of left actions of S, on X,,, n > 0.

A
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Background Differential 2-rigs

Combinatorial species

Example (species of trees)

Define the species of trees, by assigning to a finite set E the set of trees

on E :
w () @ - O @

and the action of S, on X, permutes the vertices of a tree chosen in the
set X,.
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Background

Structure of differential 2-rig on Spc : for species X, Y and a finite set E

@ Sum :
(X+ Y)E)=X(E)+ Y(E (Y]] Y(E)
o Multiplication :

X@Y)E)= Y X(E)x Y(E)
Ei+E>=E

@ Derivation :

(OX)(E) = X(E+1) = X(E + {+})
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Background Differential 2-rigs

Combinatorial species

Additional structure on Spc : for species X, Y and a finite set E :
@ Substitution :

XoV)E)= > X@x]] Y

7 partition of E pET
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Background Differential 2-rigs

Combinatorial species

Example (derivative of the species of trees, Bergeron, [2])

If X is the species of trees, the species X assigns to a finite set E the
set of trees on E + {x} :

So OX is the species of disjoint sets of rooted trees.
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. . . " Former results to find fixed points of functors
Resolution of some differential equations E I 3 N
xamples of equations

Summary

© Resolution of some differential equations
@ Former results to find fixed points of functors
@ Examples of equations
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Former results to find fixed points of functors
Examples of equations

Resolution of some differential equations

First goal : can we solve (some) differential equations in general 2-rigs ?
Polynomial differential equations : finding fixed points of :

X Ag+ AL @0X + A @ ()X + -+ A, ®(0")X

For instance :
X — 0X
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Former results to find fixed points of functors
Examples of equations

Resolution of some differential equations

Technique : use initial algebras and terminal coalgebras to find fixed
points of functors.

Take a set A. What are the fixed points of the following functor ?

Ta:Set — Set
S = 1+(AxYS)

Start from the initial object @ or the terminal object 1, and recursively
apply T, to the unique morphisms @& = Ta(2) and 1 2 Ta(l) :
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Former results to find fixed points of functors
Examples of equations

Resolution of some differential equations

2 3
s T AR AR A AL AR+ A

T2

1E1+AR I LA+ AR 214 A+ A2+ A .

Taking :
@ the colimit of the first equation gives A*, ie the initial algebra of T,

o the limit of the second equation gives A* + AV, ie the terminal
coalgebra of Ty,

and they give solutions to Tx(X) ~ X.
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Former results to find fixed points of functors
Examples of equations

Resolution of some differential equations

Theorem, Trnokva et al.

A set functor has an initial algebra if and only if it has a fixed point.

First Adamek’s theorem, [6].

If C has an initial object 0 and w-composition, and F : C — C preserves
colimits of w-chains, then the initial algebra of F is the colimit of :

05 FoE Fo .

.

Second Adamek’s theorem, [1].
If C has colimits and F : C — C preserves colimits of A-chains for some

A
infinite ordinal \, then the initial algebra of F is F0 &' FA*10.

\

Lambek’s theorem.

If F:C — C has an initial algebra a.: F(X) — X, then «is an
isomorphism.
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Former results to find fixed points of functors
Examples of equations

Resolution of some differential equations

Dual versions also work.

If they exist :

o the initial algebra is the smallest fixed point,

@ the terminal coalgebra is the largest fixed point.
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. . . " Former results to find fixed points of functors
Resolution of some differential equations

Examples of equations

Difficult :
@ comodules : no
o linear species ([GL(p), Vecty], ®,®) : no

@ etc.
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Former results to find fixed points
Examples of equations

Resolution of some differential equations

of functors

Idea : (N,+) and (N, -) are monoidal categories.

Structure on [(N, +), Vect].
Consider [(N, +), Vecty] with 'Day convolution’. That is, for objects F, G:

F+G:(Fn€9Gn)n€N

FiG = (J""(F(p) @ G(q) ©N(p+,n))
= (Zoran F(0) ® 6(9))
I = (k,0,0,...)

neN

Derivation ? Copy polynomials :

OF =((n+VFi1)nen=| P Forx

1<k<n+1 .

neN
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Former results to find fixed points of functors

Resolution of some differential equations e
Examples of equations

Structure on [(N,-), Vecty].

Consider [(N, -), Vecti] with 'Day convolution’. That is, for objects F, G:
F+G:(Fn@Gn)neN

Fi6 = (J"""(F(p)® G(q) ©N(p- g, n))

= (Zpen FP) G(9))

I = (0,k,0,0,...)

neN

neN

Derivation ? For a prime number r :
OF =0,F =08 ((5,7Fr.,,),,21

for some coefficients 6,. Only choice of coefficients :

OF = (0, (v (n) + 1)Frn) 1)
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. " . " Former results to find fixed points of functors
Resolution of some differential equations

Examples of equations

Can we use the initial algebra or coalgebra techniques to solve the
differential equation 9V ~ V in our two examples of structures ?

0=(0,0,...) is both initial and terminal. We want to study :

05002 520 — ...

0002 520 ...

Issue : in our two structures we have 90 = 0.
We even have 0/ = 0.
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Former results to find fixed points of functors
Examples of equations

Resolution of some differential equations

Let’'s completely solve the differential equation 9V ~ V in our two
examples of structures.

Solutions in [(N, +), Vect].

The solutions of 9V ~ V are, up to isomorphism, the N-graded vector
spaces of the form V = (k®),>o for an infinite cardinal «, and the trivial

space.

oV~=V & Vn V,~(n+1)V,
= W Vi~2V,~31V3~...~nplV,~. ..

A

3 steps :
@ except the trivial solution, the dimensions must be infinite,
@ assume V = (k),,

@ equation on the dimensions «, :

Vn, ap ~ (n+ 1)api
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Former results to find fixed points of functors
Examples of equations

Resolution of some differential equations

Imposing Vo = A for some infinite dimensional vector space A, we get
exactly one solution up to isomorphism :

V=(AA,...)

If A is a non-trivial finite dimensional vector space, there is no solution.

Is Vo = A a nice initial condition 7 Like X[&] = @ for species used by
Labelle in [4], in
oxX =X
{ Xlo] =2
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Former results to find fixed points of functors

Resolution of some differential equations e
Examples of equations

Similarly we can solve :

VARV +B
Vo =A

but only under some conditions on A, B, A.
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Former results to find fixed points of functors
Examples of equations

Resolution of some differential equations

Definition.

For n € N, write the decomposition

n = w,(n)r"

.

Solutions in [(N, -), Vect].

The solutions of 9V ~ V are, up to isomorphism, the N-graded vector
spaces of the form V' = (0, (Uy,(n))n>1), where, for w prime to r, U, is
the trivial space or of the form k® for an infinite cardinal .

.
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Former results to find fixed points of functors
Examples of equations

Resolution of some differential equations

oV~V & V=0 and VYn>1, V,~(v(n)+1)V,
< Vo =0 and Vw prime to r,Vv >0, Vv ~ (v +1)V,va

Vo =0

V1 = V,7 \/, = 2\/,27 Vrz = 3\/,3, Vrs = 4\/,4
Vo =2 Vo, Vo, =2V, Vo223V, Vo4V,
g V3~ V3, V3, = 2V32, V32 > 3V3,3, V3e > 4V3,4

VW =~ Vr, VW,— = 2VW,2, Vwrz = 3VW,3, VW,3 = 4VW,4

Set U‘SW) = Vv for w prime to r, and use the fact that each n € N has
a unique decomposition n = wr" with w prime to r.
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. . . " Former results to find fixed points of functors
Resolution of some differential equations

Examples of equations

Imposing Vi, = A(") for some infinite dimensional vector spaces A(*) for
w prime to r, we get exactly one solution up to isomorphism.

Is V,, = A) for w prime to r a nice initial condition ?
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Labelle's result about the number of solutions for combinatorial spe
A conjecture which would extend Labelle’s result
The number of solutions Examples of equations in the context of our conjecture

Summary

e The number of solutions
o Labelle's result about the number of solutions for combinatorial
species
@ A conjecture which would extend Labelle's result
@ Examples of equations in the context of our conjecture
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Labelle’s result about the number of solutions for combinatorial sp.
A conjecture which would extend Labelle’s result
The number of solutions Examples of equations in the context of our conjecture

Definition 2.1, Labelle [4].

Given species F; j, a solution of the differential problem

Y = Fij(Xi,o s Xe, Yi,.,Yp), 1<i<pl1<j<k
Wl -0 5 21 @, 1<i<p

is a family of species A = (A;(Xu, ..., Xk))1<i<p and natural
isomorphisms

9,')_,' o 8A,-/8XJ-:>F,-J(X1,...,Xk,Al,...,Ap)

such that
Alg,...,2l=2, 1<i<p

X = A®X+B
X[2] o

\.
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Labelle’s result about the number of solutions for combinatorial sp.
A conjecture which would extend Labelle’s result
The number of solutions Examples of equations in the context of our conjecture

Part of theorem A, Labelle [4].

If m is a finite (possibly null) cardinal number or m = 2%°, then there
exists a normalized compatible differential problem having exactly m
non-isomorphic combinatorial solutions. Moreover, no differential
problem can have exactly m = Xy or m > 2% non-isomorphic
combinatorial solutions.
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Labelle’s result about the number of solutions for combinatorial sp
A conjecture which would extend Labelle's result

The number of solutions Examples of equations in the context of our conjecture

Lemma 2.6, Labelle [4].

For n=(ny,...,nk) € N¥, there exists only a finite number p, > 0 of
non-isomorphic molecular species

MO = MD(Xy, ..., X))

supported by multisets having multicardinality n.
Every species H = H(Xi, ..., Xx) has a unique molecular decomposition
of the form

H= Y  c(H)MD

neNk, 1<i<u,

where C,Si)(H) are natural integers.
Moreover, for any pair H, K of species we have

H~K & VnVi,CO(H) = C(K)
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Labelle's result about the number of solutions for combinatorial spe
A conjecture which would extend Labelle’s result
The number of solutions Examples of equations in the context of our conjecture

If C is a monoidal category with initial object 0, such that the cardinality
of Cp is k, and such that the 2-rig [CP, Set] can be endowed with a
derivation 0, then the differential problem :

{ oX ~ X
X[0] = {+}

has at most 2 solutions.
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Labelle's result about the number of solutions for combinatorial spe
A conjecture which would extend Labelle's result

The number of solutions Examples of equations in the context of our conjecture

We want to replace [(N, +), Vectx] with something of the form [C°, Set]

@ Replace (N, +) by (N, >, min) = (N, <, max)°".

e We want to replace Vecty by Set : same properties :
k* @ kP = k>tP

k* @ kP = k<P
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Labelle's result about the number of solutions for combinatorial spe
A conjecture which would extend Labelle's result

The number of solutions Examples of equations in the context of our conjecture

Define the differential 2-rig [(N, >, min), Set] :

@ Sum :
F+G:(Fn+Gn)nEN

e Multiplication :

F«GC =— (fp,qGN F(p) % G(q) X N(n, min(p, q)))n
= (anmq F(p) X G(q))

€N
neN

@ Derivation :

kENg

OF = ( H Fn) = (NOFn)nGN
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Labelle's result about the number of solutions for combinatorial spe
A conjecture which would extend Labelle's result

The number of solutions Examples of equations in the context of our conjecture

Is O really Leibniz 7 For example for naturality.
On objects F, G, at the level n >0 :

(a(F * G))” = HkGNo Hngp,q F(p) X G(q)
(OF x G+ F x0G), | (Ixex, F(P)) x G(q)
+Hn§p,q F(p) X (HkEND G(q))
= Hte{o,l} erNo Hngp7q F(p) x G(q)

The above isomorphism is natural. If we fix a bijection Rg ~ {0,1} X Ry,
independently of F, G, we can show we have a natural isomorphism
between the two above expressions,by reindexing.
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Labelle's result about the number of solutions for combinatorial spe
A conjecture which would extend Labelle's result

The number of solutions Examples of equations in the context of our conjecture

Goal : solve OV ~ V in this structure.

Solutions in [(N, >, min), Set].

The solutions of 9V ~ V are, up to isomorphism, the objects
V = (V,)nen such that each V,, is an infinite set or 0.

Ve~V & VYn>0, V,~RV,

So Vo =0 or even Vy = A doesn’t fix a 'reasonable’ number of solutions
: (N, >, min) has X objects, but we have strictly more than 2% solutions
even with the initial condition.
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Virtual differential 2-rigs

Summary

@ Virtual differential 2-rigs
@ Virtual species
@ Generalization

Virtual species
Generalization
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Virtual species
Generalization

Virtual differential 2-rigs

Recall Labelle's decomposition of combinatorial species :

H= Y  CGHMD

neNk, 1<i<p,

()

i . .
where C,(,) are natural integers and M;’ are molecular species.

If we :
o allow negative coefficients, writing H = H, — H, for two species
Hp, Hp,
@ quotient up to H, — H, = H,, — H; < H, + H}, ~ H, + H,,

we get the virtual species.

It can give solutions to equations which otherwise wouldn't have any.
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Virtual species
Generalization

Virtual differential 2-rigs

Definition.

A category C is cancellative if for every objects A, B, C, the property
A+ B~ A+ C implies B ~ C.

Consider a cancellative differential 2-rig (C, +, ®, 9).

Definition.
Set (C?,8,X, d), where :

(A,B)E(C,D) = (A+ C,B + D)
(A,B)X (C,D)=(A® C+B®D,A® D+ B ()

(A, B) = (9A, 9B)

(C?,8,K,d) is a differential 2-rig.
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Virtual species
Generalization

Virtual differential 2-rigs

Definition.

The virtual category V(C) is C? quotiented by (A, B) ~ (C, D) if and
only if A+ D ~ C + B, ie the category with :

- objects : C3 quotiented by ~,

- morphisms [(A, B)] — [(C, D)] : the morphisms (A", B’) — (C’, D’) for
all (A,B) ~ (A',B’) and (C,D) ~ (C’', D’).

The virtual category V(C) is a differential 2-rig.

C quotiented by isomorphisms, can be embedded into V(C) as a
differential 2-rig.
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Virtual differential 2-rigs
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