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The celebrated Stone duality asserts that there is an equivalence of
categories
Stone®” = BA

between Boolean algebras and Stone spaces (totally disconnected,
compact, T2);

« The Boolean algebra corresponding to a Stone space consists
of its clopen sets.

+ The Stone space associated to a Boolean algebra B is the set of
its ultrafilters, equipped with a topology having as basis

{Vb:{SGF(B)|bES}|b€B}.

This generates a ‘Zariski’ topology on the set of ultrafilters.
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The duality arises as ‘homming with a dualising object’, in the sense
that the two-element set 2 = {0, 1} carries

+ aBoolean algebra structure, as aring 2; = Z/27Z;

« aframe structure, given by its obvious order 25 = {0 < 1}.
Homming a topological space into 25 yields a functor

CHaus°P — BA that restricted to Stone spaces is an equivalence;

homming a Boolean algebra into 25 yields the set of ultrafilters, and
also the Zariski topology can be recovered from BA(E, 2;).
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Clearly, something is going on here;

the object 2 sits between the two categories BA and Stone making
them equivalent via an homming functor;

Definition (Dualising obect)

Itis a set D that carries the structure of an .4-object and a -object,
turning A, B into equivalent categories via

'A(_v DA) B B(_7DB)

(slightly imprecise )

Principle
Interesting dualities arise from dualising objects. (Name your

favourite one in your head, now)



Question: is there a general categorical framework in which
dualities can be, if not subsumed, understood as parts of a general
theory?



Question: is there a general categorical framework in which
dualities can be, if not subsumed, understood as parts of a general
theory?

Answer: yes.
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« Introduced in joint work by M. Barr and P. H. Chu in 197?’s book
Chu spaces
« Introduced to find a natural place where a category A
equipped with a distinguished object can be
« fully faithfully embedded;
« coreflectively;

« with a dual copy...
« ...found thanks to a self-involution of Chu(.A4, D);

Let’s unpack:

i

A _L~ Chu(A,D) e —

-

‘ @)
>
c

(A, D) = Chu(A, D)



This construction is very general.



This construction is very general.

To fix ideas, we shall concentrate on the case where A is the
category of sets, and D a generic set. (More than often, and surely
for all concrete models, D = {0, 1})
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+ Objects, the triples (A, X,r : A x Y — D) of setsA, Xand a
pairing function r; such a triple is a Chu space S = (A, X, r).

» morphisms the pairs

such that the diagram

AXY——=BXY

L

AXX——D

is commutative.
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The structure of Chu(Set, D):

+ Chu(Set, D) has a monoidal structure (complicated to
describe)

+ Chu(Set, D) has internal homs (it is monoidal closed);
complicated to describe

« there is a monoidal functor
i: Set — Chu(Set,D)

sendingasetAintoA, X = D", and X x D* — Dis just
evaluation.!

A Chu object of this form is called normal; we shall consider normal Chu spaces
over D = 2 where X C 2°.
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The universal property of Chu(Set, D):

» The functor / given by projection on the first factor has a right
adjoint R; the coreflection is given by

(A x D" 45 D)

U*\L Tu*
(A x X—D)

where u, : A — Ais the identity, and u* is the composition

X (X x A T pA
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We can represent a normal Chu space (X x A — 2) over2asa
certain kind of matrix:

» rows are in bijection with elements of A

« columns are in bijection with elements of X C 24

a0 1 01 0 1 0 1

b0 01100 11

c{00O0O01 111
an entry represents the value of r(a, E);

+ Given thatr(a, E) can be interpreted as ‘a € E’ for E C A, the
columns represent the characteristic functions of subsets
Ee 2
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Weirdly enough,

Theorem
If S has all proper meets, the “transposed” space St lacks at least one

proper join.

X Yy XAy
(o] 1 0 0]
b 0] 1 0]
aVvb 1 1 ?
Ajoinis properifa Vv b is neither a or b.
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We say that a function f: A — B between sets is

« Ahomomorphism of Chu spaces (A, X, r), (B,Y,s) if the
associated function

Fi2” 52 U {g:B—D|gfeU}
is such that f(im7) D im s where
F:X—D" s:v—DP

« Acontinuous map if there existsag = u* : Y — Xlifting f = u.
to a Chu morphism.

Theorem
f: A — Bisahomomorphism if and only if it is continuous.



A roundup of concrete
examples
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A Set is a normal Chu space image of the embedding
Set — Chu(Set,?2)

So, a set is represented as a |A| x [24|-matrix of 0’s and 1’s, one

column for each subset of A.

This is just a verbose way to bookkeep the powerset of Ain a table
whose columns are the characteristic functions yy : A — 2 of
subsets of A.
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alo 01 i
|:b 0 1 li| — b
clo 11 c

1010
0110
0001

O




Pointed sets

A pointed set is a set A with a distinguished element a € A; given a
Chu space (A, X, r) we represent the pointed Chu space S as S
where we added a new row, constant at 0:

a 00000000
b 01010101
¢ 00110011

00001111

Equivalently (!) we can pick an element a € Aand remove from S
all the columns E € |24|for which r(a, E) # 0.

01010101 o
00110011+ |p
0001111 2

0
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Preorders

» The relation a < b for rows of a Chu space S over 2 means that
VE.r(a,E) <r(b,E);

+ anormal Chu space S(A,X C gA,;) realizes a preorder if and
only if the set of its columns is closed under arbitrary
pointwise joins and meets;

« the property of being a partial order is a property of
separation: a < band b < aimpliesa = b.
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Frames (of opens)

A topological space is an extensional Chu space whose columns are
closed under arbitrary union and finite (including empty)
intersection. The Chu homomorphisms between topological spaces
are exactly the continuous functions: whence the name continuous
for a homomorpismf: A — B.
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Many categories of everyday use embed into Chu(Set, 2);

given that Chu(Set, 2) is equivalent to its opposite, a general recipe
to build a duality between C and D is to characterise D as the image
of C under the self-equivalence of Chu(Set, 2).

This works for Stone (and Stone-like) duality!

It works in other examples too.



It does not work always: embedding (abelian) groups asks for ‘big’
representation alphabet.

In fact, there is no embedding of the category of groups in
Chu(Set, D) for any finite set D; (what about an infinite set?)

There are nice embedding results of categories relevant to topology
and Quantum Mechanics into Chu(Set, /) where / is a closed interval
of R.
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Is there a general theorem?

More a general principle; but let’s keep learning.

We can read the above positive and negative results ‘backwards’:
there is always a faithful functor

j:C = Chu(Set,2) : C— (UC,UC x C(C,2) — 2)

when C is concrete via a functor U : C — Set;

a sufficient condition forj to be also full is that the pair UC x C(C, 2)
‘completely determines’ the C-structure on C.
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This sheds a light on the counterexample of groups:

the carrier |G| and the set of group homomorphisms hom(G, 2)
does not determine the whole structure of G;

for example, it is impossible to decide whether G = Cy5 or
G = Cs x Cs from the fact that hom(G, C;) = 0 and |G| = 25


















