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Abstract

We study fibrations arising from indexed categories of the following form: fix a
functor F : AˆX ÝÑ X, so that to each FA “ F pA, ´q one can associate a category of
algebras AlgXpFAq – or Eilenberg–Moore, or a Kleisli category if each FA is a monad,
coEilenberg–Moore if it’s a comonad, and so on. We call the functor pF :

ş

AlgpF‚q ↠ A

over A having typical fiber over A the category AlgXpFAq the fibration of algebras of F .
Examples of such construction arise in disparate areas of mathematics, such as

representation theory of Lie algebras, category-theoretic study of computational effects
in programming language design, topos theory, algebraic geometry, categorical logic,
just to list a few.

Such a variety of examples calls for a general theory: outlining its essential features
is the purpose of this work and, in doing so, many perspectives prove themselves useful.
On one side, fibrations of algebras are all classified by pulling back along a universal
one; our theory can be regarded as arising when a category is acted on by a free
monoidal category – so as a categorified ‘semiautomaton’ – and, as a consequence, as
a special kind of actegory. On the other, we will show that the total categories of such
fibrations can be regarded as categorified semidirect products A ˙F X of A acting on
X through the endomorphisms FA; a fibration p : E ↠ A is a fibration of algebras for
F : AˆX ÝÑ X if and only if p is monadic over the trivial fibration π : AˆX ↠ A, and
these monads can in turn be characterised locally, as monads in the slice 2-category
Cat{A, or globally, as monads in a 2-category pCat ˙ Catqℓ which is itself a semidirect
product of sorts.

Building on these two perspectives we present some results regarding both fibrations
of algebras individually, and as a whole.
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Chapter 1

Introduction

Summary of chapter

We organise our exposition in chapters, each of which starts with a brief
summary of its content. For this reason, the customary ‘structure of the paper’
in §1.1 is less of a road-map, and more of a discussion on why we organise the
exposition in this way.

After the introduction, in §1.2 we recall some basic properties of fibrations
that we will need throughout the paper. A thorough presentation of the theory
of fibrations is the scope of [Jac98, Ch. 1], [Joh02, B1], [Str23]; a survey swiftly
getting to the heart of the theory is [LR20]: our aim here is to give a self-
contained overview of the main concepts and ideas in the topic, building the
terminology that we will adopt from that point on. The reader who is fluent in
the matter might want to skip this section entirely.

1.1 Towards a general theory of parametricity
The purpose of the present paper is to give a uniform account of a phenomenon spanning from
logic, to geometry, to abstract algebra and algebraic topology. The spirit of the enterprise
is best appreciated enumerating a few telling examples.

Discussion 1.1.1 (The simple fibration). Let A be a category with finite products. Each
object A P A induces a comonad TA “ ˆ A : A ÝÑ A, the so-called coreader comonad
[AU19, p. 3]. The coKleisli category coKlpTAq of this comonad consists of what is called the
simple slice category A{{A over A, described in [Jac98, Exercise 1.3.4.(ii)] with type-theoretic
applications in mind.

The objects of A{{A are the same of A, and a coKleisli map is a morphism f : XˆA Ñ Y
in A. In particular, each such morphism can be regarded as an family of maps fa : X Ñ Y ,
‘abstractly parametrised’ by A (this is precisely what happens if A “ Set, because f :
X ˆA Ñ Y transposes to a function A Ñ Y X). Let it be noted that the full slice category
A{A, too, can be recovered in a similar fashion: it is the entire category of Eilenberg–Moore
coalgebras coEMpTAq.

Our interest in this classical construction stems from the fact that we can collect all
such simple slices A{{A in a single category, fibred over A, and build a (cloven) fibration
spAq ↠ A, cf. again [Jac98, Exercise 1.3.4.(ii)].
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CHAPTER 1. INTRODUCTION

This ‘simple slice’ construction is important in categorical logic because of its role in
finding categorical semantics for simple type theory, a framework introduced by Church in
[Chu40]; see also [Far23, Hin97, nLa23].

Moving to a different example, recall that every monoid (say, in Set) gives rise to a
monad M ˆ ; the category of Eilenberg–Moore algebras of such a monad is the category
of representations of M . It has been known since the early days of fibered category theory,
by algebraic geometers, that we can package into a single functor the information about ‘all
actions of all monoids’ at the same time.

Discussion 1.1.2 (The fibration of modules). Let A be a category with finite products.
Any internal monoid M in A defines a monad Mˆ on A, whose Eilenberg–Moore category
is precisely the category AM of objects carrying an action of M . For example, if A “ Set
is the category of sets and functions, SetM is the category of M -sets, or in other words, the
category of functors M ÝÑ Set from the one-object category M . If A “ Ab is the category of
Abelian groups, and we let M vary over the entire category MonpAq of internal monoids R in
A (i.e., unital rings), we recover what algebraic geometer and algebraic topologists [Qui70]
call the fibration of modules Mod ↠ MonpAq, the typical fiber of which is the category
R-Mod of modules over R, as R varies over A-monoids.

Evidently, Discussion 1.1.2 works the same for b-modules over a more general monoidal
base pA,b, Iq. But also, the simple shape of the coreader comonad obscures that it is a
particularly straightforward example of a polynomial functor.

Another extremely simple example, also quite well studied, is the functor defined on
Set, or for that matter on another distributive category [Coc93], FA : X ÞÑ 1 ` A ˆ X.
Instead of focusing on a single parameter A at a time, in order to classify the polynomial, it
would be convenient to study its general shape, i.e. the anonymous functor λA.FA : Set Ñ

rSet,Sets. Whenever a ‘simple polynomial’ functor FX –
ř

iPI Ai ˆXi is considered, there
is a functorial dependence on X as well as on the Ai’s, which as a consequence define ‘the
polynomial’ as an anonymous functor SetI ÝÑ rSet,Sets depending on a family pAi | i P

Iq P Seti “
ś

iPI Set.

Discussion 1.1.3 (The fibration of cocommutative Hopf algebras). Consider, now, an alge-
braically closed field k of characteristic zero; an important theorem of Cartier, Gabriel and
Kostant [Kos77], [EGNO15, 5.10.2] asserts that every cocommutative Hopf algebra H over k
arises from a semidirect product of a group G (or rather, its group algebra krGs) acting on a
Lie algebra L over k. More formally, the correspondence G ÞÑ krGs-Liek sending a group to
the category of Lie algebras with an action of krGs is a (contravariant) functor defining, in
a similar fashion as Discussion 1.1.2, a fibred category collecting Eilenberg–Moore algebras
of the monad krGs b . If we denote the total category of such fibration as Grp ˙EM Liek
and write the fibration associated to G ÞÑ krGs-Liek as a ‘first projection’ map

Grp ˙EM Liek
p // Grp (1.1.1)

we can reformulate the CGK theorem as a fibered equivalence of categories: call p qg :
CCHopf ÝÑ Grp the functor sending a cocommutative Hopf algebra H to its set Hg of
group-like elements, then CGK states that p qg – p in FibpGrpq.

Remark 1.1.4. The notation in (1.1.1) is motivated by the intuition that each fiber has
something to do with semidirect products, as stated before, but this is only a suggestion for
now. We will soon adopt such notation in §2.1, fully motivating our choice only in Chapter
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1.1. TOWARDS A GENERAL THEORY OF PARAMETRICITY

4. The idea, however, can already be explained: we would like to treat Grp as a category
acting on Liek, via the functor sending G to krGs-Liek. The result of collating together the
various categories krGs-Liek with the reindexing functors induced by group homomorphisms
shall be thought as the semidirect product of the categories Grp and Liek. It is fruitful to see
this as a micro-macrocosm principle at work: a category where each object can be presented
as a semidirect product is itself a semidirect product, made of simpler categories acting one
over the other.

There is another instance of the same micro-macrocosm principle, arising in categorical
algebra: every category B acts on itself giving rise to its fibration of points, and the situation
in which this fibration arises as a family of Eilenberg–Moore algebras deserves a name in
category theory: when it happens that PtpBq – B ˙EM B, the category B is protomodu-
lar. And when B is protomodular, it supports an operation of semidirect product between
objects.

Discussion 1.1.5 (The fibration of points). For every object B of a pointed category B

with finite coproducts, denote by PtBpBq the category of points of B, i.e. the category of
split epimorphisms with codomain B (implicitly considered together with a prescribed right
inverse). This is the typical fiber of a fibration called the fibration of points, PtpBq ↠ B;
a specific branch of categorical algebra (the theory of protomodular categories) is occupied
with finding reasonable conditions so that, in the category B, an operation akin to the
semidirect product in Grp can be performed.

Under suitable such assumptions, each fiber PtBpBq can be regarded as the category of
Eilenberg–Moore algebras for a monad B 5 depending on a parameter object B, so that
there is an action 5 : B ˆ B ÝÑ B such that PtpBq – B ˙EM

5
B.

The present paper aims at providing a common framework in which all these examples,
and many others, fit naturally and can be studied in a uniform way, and where Remark 1.1.4
can be explained and formalised. Evidently, one major feature shared by all these construc-
tions is that we have considered a ‘bundle’ (i.e., a fibration) over a category A whose fiber
over an object A is the category of algebras of an endofunctor FA : X ÝÑ X depending on
the parameter A.

For this reason, we want to consider a general theory of parametric endofunctors A ÞÑ FA,
arising from functors of type

F : A ÝÑ rX,Xs (1.1.2)

or, equivalently, and up to currying, of type A ˆ X ÝÑ X, and the way we associate to
FA a category of algebras. Of course, by the word we can mean algebras as broadly as the
structure on FA allows: if FA is a co/monad, it will be natural to attach a co/Eilenberg–
Moore (or Kleisli) category to it; if FA is a mere pointed endofunctor, it will be natural to
consider its pointed endofunctor algebras, and so on. The context will determine in basically
every concrete case what notion of algebra is attached to a specific functor, but we have to
establish a notation in order to avoid confusion.

Notation 1.1.6. When we write A ˙ X we are considering a category, equipped with a
functor into A, and obtained from an action of A on another category X, embodied in a
functor F : A ˆ X ÝÑ X (or, which is equivalent under currying, F : A ÝÑ rX,Xs). When
we want to make the dependence from F explicit, we write A ˙F X. The fiber over A P A

of A ˙ X is the category of endofunctor algebras AlgpFAq.
When the parametric functor is a parametric monad, by which we mean a functor such

that teach FA “ F pA, q is a monad, we usually write it as T , as it is customary, and we
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CHAPTER 1. INTRODUCTION

can build a category A˙EMX, fibered over A and whose fiber over A is the Eilenberg–Moore
category EMpTAq (or A ˙EM

T X when we want to make the dependence on T explicit). If T
is a parametric monad, it is then clear what we mean by A ˙Kl X, at least at an informal
level: we are collecting all Kleisli categories of the various TA as fibers of a fibration.

The dual constructions must also be taken into account, if we want to build a complete
theory of these objects:1

• A iF X collects the endofunctor coalgebras of F : A ˆ X ÝÑ X;
• A iEM

S X collects the coEilenberg–Moore categories of a parametric comonad S : A ˆ

X ÝÑ X and A iKl
S X collects its coKleisli categories.

So, the subject of our study can be summarised in a single sentence: we aim to taxonomise
fibrations and opfibrations associated with parametric endofunctors of sorts.

Our claim is that all instances we have listed so far, the simple fibration, the fibration
of points for a protomodular category, the CGK theorem,. . . are instances of a general
phenomenon. We aim to build a theory taxonomising the expressions of this overarching
concept. To the untrained eye, it might seem that very little unites the representation theory
of Lie algebras and categorical logic. Yet, they arise from a similar procedure, applied to
different initial data.

Our scope here is to clarify this situation and outline the common properties shared by a
seemingly scattered variety of examples, and what structural theorems one can have available
assuming just a bit more about A, X, or the subcategory of rX,Xs which F factors through
(for example: the category of parameters A, or the category X, might be κ-accessible, or
cocomplete, and each FA an endofunctor commuting with κ-filtered colimits; or we can
consider only additive functors X ÝÑ X of an abelian category A; or strong monoidal ones,
and so on).

Moreover, a number of structural results can be quite easily proved, now that we estab-
lished the nomenclature to refer to the problem. Not only are all the functors that we call
fibrations of algebras classified by pulling back along a universal such fibration of algebras
(of the same type), but our theory can be regarded as arising when a category is acted on by
a free monoidal category – so as a categorified ‘semiautomaton’ in the sense of [EKKK74] –
and, as a consequence, as a special kind of actegory ([Bén67] and [McC00], see [CG22] for a
survey). The parallel with semidirect products is particularly fruitful here, considering the
extensive relation that has been drawn between the semidirect product operation and the
Grothendieck construction [BW90, 12.2.4], [Wel80, Man22].

Studying parametric functors is a branch of category theory that has a long history and
plenty of applications, and in fact the part of the present work where we struggled the least
was finding examples. However, we feel like a general theory that unifies and clarifies the
nature of some results, while at the same time building a language to classify the objects
attached to a parametric functor, is lacking.

Filling this gap and bridging between different areas of category theory, all using para-
metric endofunctors, has been our guide in writing the present note. Overall, we would
like to provide additional evidence to a well-established operative principle allowing to ma-
nipulate variable categories: that parametricity as intended by French category theorists
between the 50s and the 80s (‘a family of categories continuously varying over a category of

1If F is a parametric endofunctor the association A ÞÑ AlgpFAq, as well as all the others mentioned above,
is a pseudofunctor A ÝÑ Cat, and as such it defines a fibration (if AlgpFAq depends contravariantly on A) or
an opfibration (if covariantly) over A, whose typical fiber is exactly the category of ‘FA-algebras’ intended
in one of the above senses.
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1.1. TOWARDS A GENERAL THEORY OF PARAMETRICITY

indices’, a point of view championed, among others, by A. Grothendieck and J. Bénabou),
and studied by computer scientists (the ‘nontrivial dependence of a functor from a set of
states’ whence different outcomes of a computation arise), can be reconciled easily when
regarded as two manifestations of the same general principle.

All along chapter 3 we recollect instances of fibrations of algebras arising from a variety of
fields: type theory (various classes of fibrations in categorical logic [Jac98] arise as fibrations
of algebras, and polynomial functors [GK13] all give rise to a fibration of their endofunctor
algebras), topos theory, representation theory (the aforementioned CGK theorem [Kos77]),
algebraic topology [Qui70], categorical algebra (the fibration of points of [Bou17, BB04],
see Example 3.3.17; Beck modules, in Example 3.3.7), linking it to computer science (with
particular attention to dinatural parametricity explored in [Atk09b, Atk09a]; see §3.5), and
more. Technicalities aside, our hope is to involve different communities in a fertile ground for
improvement and generalisation: the growing boundary region between computer science,
categorical logic, and pure category theory will hopefully fruitfully exploit the consequences
of our investigation.

Structure of the paper.

As category theorists, we believe the most fruitful way to present this story is providing two
different keys to the reader.

The analytic perspective focuses on the specifics of the fibrations of algebras, on concrete
examples, and on structural theorems largely relying on fibred category theory, and occupies
§2.1 and chapter 3. All fibrations of algebras of a given type (we outline three: mere
endofunctor algebras, pointed algebras, and Eilenberg-Moore –plus, obviously, their duals)
arise pulling back along a universal one, and thus all properties of such a universal fibration
of algebras defined in Definition 2.1.2 (and its dual in Definition 2.1.4) that are stable under
pullback transfer to each fibration of algebras for a specific parametric endofunctor. The
existence of limits and colimits in fibers, and in the total categories, can be analyzed, and
the existence of adjoints to reindexings can be proved.

The synthetic perspective, on the other hand, adopts a more algebraic style, akin to
formal category-theoretic methods [SW78], and is based on the micro/macro-cosmic intuition
that a parametric endofunctor F : A ˆ X ÝÑ X can evidently be thought of as an algebra
in its own right, for the endo-2-functor A ˆ : Cat ÝÑ Cat or, which is equivalent, as an
Eilenberg–Moore algebra for the monad A˚ ˆ induced by the free monoidal category on
A. This will be the intuition guiding the beginning of our chapter 4. As such, the operation
of forming A ˙ X out of F : A ˆ X ÝÑ X is itself a functor of type

˙ : pCat ˙ Catqℓ // Cat (1.1.3)

where pCat ˙ Catqℓ is a suitable 2-dimensional, oplax version of A ˙ X.
In this regard, of particular interest is Theorem 3.3.6, where this is phrased in terms of

an example.
The ‘free monoidal category acting on a category’ perspective provides a clear connection

with the theory of graded monads of [Smi08, MPS15, FKM16, MU22, OWE20]: the theory of
fibrations of algebras can be thought of as the theory of graded monads over a ‘free grading
monoid’ A˚, in the same way a (set-based) semiautomaton is but an object with an action
of the free monoid A˚ on the input alphabet A. We explore this point of view to a certain
depth, as well as its relations with the state of the art, in Remark 4.1.5.
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Far from being the only formal consideration in this respect, this shift on perspective
provides a useful further abstraction of our theory: a parametric endofunctor F : AˆX ÝÑ X

can be thought of as an abstract way in which A acts on X, and thus the fibration of algebras
arising from can be thought of as a categorified semidirect product A ˙F X; we explore
this point of view in §4.3, with particular focus on the possibility of building a category
ExtpA,Xq of ‘extensions of X by A’, in which fibrations of Eilenberg–Moore algebras form a
well-behaved subcategory. The heart of the matter is that a fibration p : E ÝÑ A gives rise
to a span

X E
p //Voo A (1.1.4)

i.e. to a unique functor xp, V y : E ÝÑ A ˆ X into the product, and one can prove (cf.
Theorem 4.2.1 and its dual) that p is a fibration of (co)Eilenberg–Moore algebras of a
parametric (co)monad F : A ÝÑ rX,Xs if and only if xp, V y is (co)monadic. This can
be seen very easily: since both p, V have left adjoints separately, the left adjoint to xp, V y

consists of the pointwise coproduct of the respective left adjoints.
A diagram similar to (1.1.4) can be considered in such a 2-category, and a ‘fibration of

(co)algebras’ for a parametric 1-cell f : AˆX ÝÑ X can be defined as a (co)monadic 1-cell
p : E ÝÑ AˆX. Moreover, (1.1.4) can be extended to a diagram of adjoints

X
//

oo
V

K E

p //
oo K A (1.1.5)

under mild assumptions on A,X, and this turns (1.1.5) into a short exact sequence to all
intents and purposes.

It is to be noted that this strategy is very pliable and ‘formal’, as the main results of
§4.3 concerning ‘exact sequences’ of functors export without much effort to the fibrations in
an abstract Cartesian 2-category K, with some additional assumptions: this is done at the
end of Chapter 4.

The interest in developing the theory so formally resides, evidently, in the desire to
restrict the domain in which adjunctions like (1.1.4) are considered: for example, A,X could
be pointed, Abelian, accessible, or monoidal categories, while p, V and their adjoints might
suitably preserve these additional properties/structure.

Notation and conventions.

For most of our discussion, a category A of ‘parameters’ and categories X,Y, . . . ‘acted on by
A’ will be fixed. This action is embodied in a ‘parametric endofunctor’, i.e. into a functor
F : A ˆ X ÝÑ X. When the functor is a monad, we write T : A ˆ X ÝÑ X instead,
and when it’s a comonad, we write S : A ˆ X ÝÑ X. A monad structure will usually
be denoted xTA, µ

A, ηAy, and a comonad structure xSA, δ
A, ϵAy; clearly, µA, ηA, δA, ϵA are

natural maps in A. We say that a parametric endofunctor F : AˆX ÝÑ X admits parametric
free algebras if each forgetful functor UA : AlgXpFAq ÝÑ X has a left adjoint. Clearly, if
the (parametric) endofunctor is a monad and we consider its Kleisli or Eilenberg–Moore
categories it admits parametric free algebras. It is clear what we mean when we say that a
parametric endofunctor admits (parametric) cofree coalgebras. In each of the cases we study,
the parametric endofunctors, monads, comonads F, T, S, . . . embody the abstract action of
A on X; the total category of the fibration of algebras p they generate will be denoted as a
semidirect product A ˙F X,A ˙EM

T X, etc. to stress the intuition that a monoid A is acting
on another monoid X through monoid homomorphisms. In this perspective, we occasionally
use the notation tAu ˙ X to refer to the fiber of the fibration p over A; clearly, tAu ˙ X is
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1.2. FIBRATIONS AND UNIVERSAL FIBRATIONS

just AlgXpFAq. It will be of particular interest to study how t∅u ˙ X, t1u ˙ X interact with
X and with the other algebras (for example, every TA-algebra pX,xqA is also a T∅-algebra
via reindexing along ∅ Ñ A). Along the whole paper, we employ basic terminology from
2-dimensional category theory (such as: the definition of pseudofunctor, [Gra66, Gra74], see
also [Lac10, JY21] for introductory texts) and in §4.6.2 we freely employ terminology and
results about 2-dimensional limits and colimits; the go-to reference for such constructions
are is classical [Kel89] (the notation and nomenclature of which we adopt mostly in full),
a nicely written overview is in John Bourke’s PhD thesis [Bou11, Ch. 2], and a concrete
description of some bilimits is in [MP89, Ch. 5] tied to the completeness theorem for the
2-category of accessible categories.

1.2 Fibrations and universal fibrations

The notion of fibration originated in the context of topology and is based on an old idea of
Grothendieck [GAV72, Vis05], that the correspondence between sheaves and local homeo-
morphisms on a space X can be generalised to non-thin categories. In fact, Grothendieck’s
work shows that every small category B shall be thought of as some sort of ‘generalised
space’ [JT91, HS01]; in this perspective, every functor F : Bop Ñ Cat – not only those
defined over a category of open subsets – might be thought of as a certain generalised fibre
bundle over B whose fibres are exactly the various categories FB.

A complementary take on fibrations stems from the work of F.W. Lawvere [Law63], where
it was observed that such an object could quite appropriately represent key behaviours of
logical systems, as one is usually inclined to consider formulas or types in a given context (an
object Γ of a base category of contexts, usually freely generated), and to collect all of those
over a given fixed context into a set, poset, space, or category (interpreting the judgment
Γ $ t). In this perspective, the reader can consider B to be a category of contexts and
substitutions, and the functor F : Bop ÝÑ Cat to be this process of collection.

One of the fundamental results in the theory of fibrations is the Grothendieck construc-
tion, which substantiates the idea that a given (pseudo)functor taking values in Cat can
be thought of a bundle-like structure, and ultimately the theory of fibrations provides an
analogue for the notion of a space/category ‘spreading’ (étalé, cf. [Ten75]) over another and
for the notion of local homeomorphism.

1.2.1 Main definitions

In differential geometry and algebraic topology, it is common to denote p : E Ñ B a fiber
bundle; the topological spaces E,B are respectively thought as the total space (E stands for
espace) and the base of the bundle. We maintain such an intuition here.

Definition 1.2.1 (Cartesian morphism). Let p : E ÝÑ B a functor and f : E1 Ñ E a
morphism in E. We say that f is p-Cartesian or Cartesian over u if ppfq “ u and for any
other g : Z Ñ E and w such that pg “ u ˝ w there is a unique h : Z Ñ E1 in E such that

10



CHAPTER 1. INTRODUCTION

pphq “ w and f ˝ h “ g. The situation is conveniently depicted in the following diagram:

Z
g

��
h
~~

E1

f
// E

pZ
pg

  
w

~~
˚

u“pf
// ˚

E

B

(1.2.1)

In such a situation, we say that f is a (p-)Cartesian lifting (also called a prone morphism
in [Joh02]) of u.

Remark 1.2.2. As it is the case for every universal property, a p-Cartesian lifting for a
given morphism is essentially unique: from the uniqueness of h above we deduce that two
Cartesian liftings of a given u : B Ñ pE are isomorphic in the slice E{E.

Definition 1.2.3 (Fibration). A functor p : E Ñ B is a fibration if for all E in E, each
u : B Ñ pE has a Cartesian lifting. We also say that E is fibered over B or that E is over B.

Building on the topological intuition hinted above, oftentimes B is called the base category
and E the total category of p.

Definition 1.2.4 (Vertical morphism, fibers). A morphism f : E1 Ñ E such that ppfq

is an identity in the base is called a vertical morphism. For B in B we write EC for the
subcategory of E of objects and vertical maps over B: this is the fiber over B. We might
also denote Eu the subcategory of E of objects and maps that are over u in B.

Many properties that one usually lists of both Cartesian and vertical maps, such as that
of being classes that are closed under composition, are contained in the following result (see
[Jac98, Exercise 1.1.3.(i)]).

Proposition 1.2.5 (Vertical-Cartesian factorisation system). Consider p : E Ñ B a fibra-
tion. The classes of vertical and Cartesian morphisms form a orthogonal factorisation system
on E.

Proposition 1.2.5 entails at once a number of corollaries, that follow from the general
calculus of factorisation systems [FK72, §2], [Bor94a, §5.5]:

c1) if g and gf are vertical, then so is f ; dually, if gf and f are Cartesian, so is g;

c2) pullbacks of vertical maps along Cartesian ones exist and are vertical; dually, pushouts
of Cartesian maps along vertical one exist and are Cartesian

c3) the classes of vertical arrows and Cartesian arrows determine each other under the
relation of orthogonality.

11



1.2. FIBRATIONS AND UNIVERSAL FIBRATIONS

Example 1.2.6 (The fundamental fibration). One of the main examples of fibration is
that related to the slice construction. Consider a category B and the codomain functor
cod : B2 Ñ B: the universal property of Cartesian liftings becomes that of pullbacks, so
that a square over a map in B is cod-Cartesian if and only if it is a pullback. In fact, the
term Cartesian in Definition 1.2.3 is inspired by this example.

More generally, it is possible to show that

• cod is an opfibration (the dual of a fibration: see Definition 1.2.16), and
• cod is a fibration if and only if B has pullbacks.

Dual results hold for the domain functor dom. In fact, we can present the functors dom and
cod together, in a span called a two-sided fibration

B B2 dom //codoo B (1.2.2)

The slice category B{B is the fiber over B of the codomain functor cod; dually, the coslice
B{B is the fiber of dom.

Example 1.2.7 (The simple slice, [Jac98, 1.3]). Another slice-like fibration is the so called
simple slice, which is of much interest to the study of simple type theory, and will be
thoroughly discussed in Chapter 3.

Let B be a category with products, and consider the category spBq whose

• objects are pairs pI,Xq of objects in B;
• arrows pJ, Y q Ñ pI,Xq are pairs pu, fq of maps in B, with u : J Ñ I and f : JˆY Ñ X.

Composition can be defined using the universal property of products, meaning that the
composite of maps

pK,Zq
pv,gq // pJ, Y q

pu,fq // pI,Xq (1.2.3)

is defined as the pair pu ˝ v, f ˝ xg, v ˝ pr1yq, and identities are of the form pid, pr2q. The
obvious projection functor spBq ÝÑ B sending

pI,Xq ÞÑ I, pu, fq ÞÑ u (1.2.4)

is a fibration. Its fibers are also denoted spBqI , they have objects X in B and maps X 1 Ñ X
are f : I ˆ X 1 Ñ X in B: one can think of these as I-indexed families fi : X 1 Ñ X with
fixed domain and codomain.

Definition 1.2.8 (Cleavage). A cleavage S for a fibration p : E Ñ B is a choice for each E
in E and u : C 1 Ñ pE of a Cartesian lifting of u at E. We denote it sE,u : SpE, uq Ñ E. A
cleavage induces for each u : B1 Ñ B in B a functor EB Ñ EB1 by Cartesianity of sE,u.

When no explicit definition of a cleavage is made, one can also write u˚ for Sp´, uq.
Although this process might seem strictly functorial, it is not always the case that for

composable morphisms u and v one has

Sp´, u ˝ vq “ Sp´, vq ˝ Sp´, uq. (1.2.5)

However, one can show that the two are uniquely isomorphic. One can see such a behavior
in Example 1.2.7 and in many other examples that occur naturally in the mathematical
practice. Similarly, one does not necessarily have Sp´, idq “ id, but only a canonical iso-
morphism.

12
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Definition 1.2.9 (Split fibration). A cleavage S for p is called split or splitting if the
following properties are satisfied:

• sE,idB “ idE;
• sE,u˝v “ sE,u ˝ sSpE,uq,v.

A fibration is called split if it is endowed with a split cleavage.

Theorem 1.2.10 ([Gra66, Theorem 2.10]). The following conditions are equivalent for a
functor p : E ÝÑ B

1. p is a fibration;

2. for each E in E, p{E : E{E ÝÑ B{pE has a right adjoint right inverse (rari).

Intuitively, the right adjoint performs the action of picking a lifting (the perceptive reader
will have noticed that the choice involved in setting the rari for p is fixing a cleavage, and
vice versa, a cleavage determines a rari for p).

1.2.2 2-categorical properties of fibrations
Fibrations, and morphisms of the slice Cat{B, organise into objects and morphisms of a
2-category.

Definition 1.2.11 (The 2-category of fibrations). Call Fib the 2-category having

• for 0-cells fibrations;
• for 1-cells strict fibration morphisms p Ñ p1 i.e. pairs of functors pH,Kq making the

square
E

H //

p

��

E1

p1

��
B

K
// B1

(1.2.6)

commute and such that if a map s is p-Cartesian over u, then Hpsq is p1-Cartesian
over Kpuq;

• for 2-cells pH1,K1q Ñ pH2,K2q pairs of natural transformations pϕ, ψq with ϕ : H1 ñ

H2 and ψ : K1 ñ K2 such that p1 ˚ ϕ “ ψ ˚ p.

Most of the times one is particularly interested in categories over a fixed base B, for
instance in Theorem 1.2.13. We denote with FibpBq the resulting 2-category.

One can quickly see that Fib is a 2-full subcategory of the arrow category CatÑ. Not
only that, but the composition of such inclusion with cod : CatÑ

ÝÑ Cat yields a fibration
itself, with fibers precisely the categories FibpBq.

Proposition 1.2.12 (The fibration of fibrations, [Jac93, Prop. 2.6]). The functor that
sends each fibration p : E ÝÑ B to its base B is itself a fibration

Fib // Cat (1.2.7)

such that the fiber FibB is FibpBq.

One could of course consider the 2-subcategories of all fibrations that are discrete or split
– in this case we additionally ask that Cartesian functors preserve the cleavage.
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1.2.3 The Grothendieck construction
Let us assume from now on that each fibration comes equipped with its own cleavage –
this can be achieved either by adding strong choice axioms, or by slightly extending the
definitions.

Theorem 1.2.13 (Grothendieck construction, [Gro71]). There exists a 2-equivalence

FibpBq – PsdrBop,Cats (1.2.8)

between the 2-category of fibrations (with base B), Cartesian functors, and natural transfor-
mations, and that of contravariant pseudofunctors (from B), pseudonatural transformations,
and modifications. Here Cat stands for the 2-category of categories, functors and natural
transformations.

The reader is invited to consult [JY21, Chapter 10] for a thorough immersion in the for-
malism of the Grothendieck construction, and ibid., §4.1 for the definition of a pseudofunctor
(as specialisation of the notion of a lax 2-functor).

Provided a fibration E ÝÑ B, we can define a pseudofunctor Bop ÝÑ Cat mapping each
B in B to its fiber category, and each B1 Ñ B to the functor EB ÝÑ E1

B . The universal
property of Cartesian liftings provides functoriality only up to isomorphism.

Conversely, a pseudofunctor F : Bop ÝÑ Cat gives rise to a fibration p :
ş

F ÝÑ B, where
we denote

ş

F (or
ş

B
F when the domain of F is not clear from the context) the category of

elements of F , i.e. the category where

ce1) objects are pairs pB,Xq with B in B and X in F pBq in an object,

ce2) arrows pB1, Y q Ñ pB,Xq are pairs pu, sq with u : B1 Ñ B in B and s : Y Ñ F puqpXq

in F pY q,

and p is the projection on the first component.
Cartesian functors are in a 1-to-1 correspondence with natural transformations between

the relative pseudofunctors, since for a given context we have a functor between the respec-
tive fibers if and only if the functor between the total categories is Cartesian.

One can read a full proof in [Bor94b, Sec. 8.3], or learn more on the original work from
Grothendieck in [Vis05, Section 3.1].

Remark 1.2.14 (Cartesian maps for a Grothendieck fibration). With respect to p :
ş

F Ñ

B, Cartesian maps are precisely those pu, fq where f is an isomorphism.

Of course, additional properties of fibrations translate to properties of the correspond-
ing pseudofunctors, and one could almost trivially restrict the 2-equivalence above to the
respective 2-subcategories.

1.2.4 Opfibrations, bifibrations
A dual theory for covariant pseudofunctors B ÝÑ Cat gives rise to the notion of an
opfibration. OpCartesian liftings are now initial as arrows with a given domain, and so
on.

Definition 1.2.15 (OpCartesian morphism). Let p : E ÝÑ B be a functor and f : A1 Ñ A
a morphism in E. We say that s is p-opCartesian or opCartesian over u : C 1 Ñ C if
it is Cartesian over u for the opposite functor pop : Eop ÝÑ Bop.We say that f is a (p-
)opCartesian lifting of u.

14
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Dualising Theorem 1.2.10 one can say that a functor is an opfibration if and only if each
A{p has a lali (left adjoint left inverse).

Definition 1.2.16 (Opfibration). A functor p : E ÝÑ B is an opfibration if for all B in E

we have that each u : pB Ñ C has a opCartesian lifting.

Clearly, p is an opfibration if and only if pop is a fibration.

Theorem 1.2.17 (Grothendieck construction). There is an equivalence of categories

opFibpBq – PsdrB,Cats. (1.2.9)

Remark 1.2.18. The category
ş

F , image of an F : B ÝÑ Cat through the isomorphism
above, fits into a strict 2-pullback of categories and (pseudo)functors

ş

F //

��

1{{Cat

U

��
B

F
// Cat

(1.2.10)

where 1{{Cat is the lax slice [Kel74, §4] of ‘laxly pointed categories’, meaning of pairs pA, Aq

with A a category and A one of its objects, and of morphisms laxly preserving the points.
The Grothendieck construction asserts that all opfibrations over B arise by pulling back
along U .

A dual notion of this result holds for fibrations: they are all pullbacks along the opposite
of the forgetful from the colax slice into Cat.

Functors that are both fibrations and opfibrations are particularly well-behaved:

Definition 1.2.19 (Bifibration). A functor p : E ÝÑ B is an bifibration if it is both a
fibration and an opfibration.

Lemma 1.2.20 (Characterizing bifibrations, [Jac98, 9.1.2]). A fibration is a bifibration if
and only if each reindexing Sp´, uq has a left adjoint Σu.

15



Chapter 2

Fibrations of algebras

Summary of chapter

Once we fix a functor F : A ˆ X ÝÑ X so that FA : X ÝÑ X for every A,
naturally in A, the functor

Aop // Cat
A � // AlgpFAq

has an associated split fibration, which we study together with all other possible
variations on this theme (if F is a monad, take its categories EMpFAq, or the
Kleisli categories KlpFAq, and dually if it is a comonad). We build a general the-
ory of such constructions and define a ‘fibration of algebras’ in Definition 2.1.1.
All fibrations of algebras arise pulling back along a universal one, cf. Defini-
tion 2.1.2. In §2.2 we move to study the ‘analytic’ properties of such fibrations:
preservation of limits by the reindexing functors α˚ : AlgXpFA1 q ÝÑ AlgXpFAq,
and their failure to preserve colimits; existence of adjoints to reindexings.

The basic theory of endofunctor algebras is a pretty standard part of category
theory that we adopt without much introduction; the reader in need of a reference
will find the best one in [Jac16] as well as in many of the works of Jacobs [Jac06],
and Adàmek, on the subject. For example, a comprehensive monography geared
towards applications to abstract state machines, that regards an endofunctor
algebra as an abstraction of a dynamical system, is in [AT90]

2.1 Fibrations of co/algebras

2.1.1 Universal fibrations of co/algebras
Definition 2.1.1 (The category of endofunctor algebras). Let X be a category. Define the
category of (endofunctor) algebras

ş

AlgX as follows:

• objects are pairs pF, xq where F is an endofunctor X ÝÑ X and x : FX Ñ X an
F -algebra;1

1Here and from now on we commit the small abuse of notation to write x : F X Ñ X for what in fact is
the pair pX, x : F X Ñ Xq of a carrier X and an algebra map x.

16



CHAPTER 2. FIBRATIONS OF ALGEBRAS

• an arrow pF, xq Ñ pG, yq is a pair pα, fq given by a natural transformation α : F ñ G
and an arrow f : X Ñ Y , making the following diagram in X commute.

FX

x

��

Ff // FY
αX // GY

y

��
X

f
// Y

(2.1.1)

Composition is performed componentwise, while identities are idpF, xq “ pidF, idXq for
x : FX Ñ X.

One can see that a morphism in
ş

AlgX is just a homomorphism of F -algebras from
x : FX ↠ X to α˚y : GY ↠ Y “ y ˝ αX : FY ↠ Y .

Definition 2.1.2 (The universal fibration of endofunctor algebras). The fibration of algebras

U :
ş

AlgX
// rX,Xs (2.1.2)

is the functor which sends pF, xq and pα, fq to X and α respectively.

The fibration of algebras is precisely the functor obtained by applying the Grothendieck
construction of §1.2.3 to the pseudofunctor

AlgXp q : rX,Xsop // Cat (2.1.3)

sending F to AlgXpF q and α : F ñ G to α˚ : AlgXpGq ÝÑ AlgXpF q : x : GX ↠ X ÞÑ

x ˝ αX : FX ↠ X.

Remark 2.1.3. Since AlgX : rX,Xsop ÝÑ Cat is a functor, not only a pseudofunctor,
U :

ş

AlgX ÝÑ rX,Xs is not only a fibration, but a split (1.2.9) one.

As it always happens, we can dualise the previous definition as follows.

Definition 2.1.4 (The universal opfibration of endofunctor coalgebras). Define the category
of (endofunctor) coalgebras

ş

coAlgX as follows:

• objects are pairs pF, xq where F is a functor X ÝÑ X and x : X Ñ FX an F -coalgebra;
• an arrow pF, xq Ñ pG, yq is a pair pα, fq given by a natural transformation α : F ñ G

and an arrow f : X Ñ Y , making the following diagram in X commute.

FXOO

x

αX // GX
Gf // GYOO

y

X
f

// Y

(2.1.4)

The opfibration of coalgebras U 1 :
ş

coAlgX ↠ rX,Xs is the functor which sends pF, xq and
pα, fq to F and α respectively.

As it is the case for algebras, we can characterise the opfibration of coalgebras as the
functor obtained applying the (covariant) Grothendieck construction to the pseudofunctor
sending F P rX,Xs to coAlgXpF q and α : F ñ G to α˚ : coAlgXpF q ÝÑ coAlgXpGq sending
pX,xq to pX,αX ˝ xq.
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2.1.2 Main definitions
Definition 2.1.5. A fibration of endofunctor algebras modeled on a parametric endofunctor
F : A ÝÑ rX,Xs is a fibration resulting as the pullback of F along the universal fibration of
algebras of Definition 2.1.2.

Therefore, a fibration of endofunctor algebras modeled on F is the left vertical leg of the
strict pullback of categories below.

A ˙F X //

pF

��

ş

AlgX

U

��
A

F
// rX,Xs

(2.1.5)

Remark 2.1.6. This entire work attempts to make a point that a good intuition for the
category at the upper left corner of (2.1.5) is as a semidirect product of the category of
parameters A, acting on the category X via the parametric endofunctor F : A Ñ rX,Xs;
after all, when curried, F : AˆX ÝÑ X is exactly an action of A on X: whence our choice of
a notation, for the fibration of algebras modeled on F , that is reminiscent of the semidirect
product operation in group or monoid theory. If, as it often happens, it is clear from the
context which functor F will be considered, we will drop the subscript F from A ˙F X.

Remark 2.1.7. Unwinding the above definition, a fibration of algebras pF has domain the
category defined as follows:

• the objects are triples pA;X,xq where A P A is an object (intuitively the ‘parameter’)
and xA : FAX Ñ X is an algebra for FA “ F pA,´q; we will freely employ concise
notations to denote an object of A ˙ X, such as pX,xAq or pX,xqA;

• morphisms pu, fq : pA;X,xq Ñ pA1;Y, yq consist of pairs pu, fq P ApA,A1q ˆ XpX,Y q

such that the following diagram commutes.

FAX
FAf //

xA

��

FAY
FuY // FA1Y

yA1

��
X

f
// Y

(2.1.6)

Clearly, the reindexing functors u˚ : AlgXpFA1 q ÝÑ AlgXpFAq carry the A1-algebra FA1Y ↠
Y to the A-algebra u˚pY, yq “ y ˝ FuY : FAY ↠ Y , and the commutativity condition
in (2.1.6) (which is simply the same commutativity condition of (2.1.1), just now it is
parametric in A) expresses the fact that f : X Ñ Y is a morphism of algebras pX,xq Ñ

u˚pY, yq.

We can give a similar definition for a fibration of endofunctor coalgebras modeled on F ;
it is an opfibration obtained pulling back U 1 in Definition 2.1.4 along F : A ˆ X ÝÑ X.

Unwinding such a dualisation yields the following:

Definition 2.1.8. An opfibration of coalgebras qF modeled on F : A ÝÑ rX,Xs has domain
the category defined as follows:

• the objects are triples pA;X,xAq where A P A is an object (the ‘parameter’) and
xA : X Ñ FAX is a coalgebra for FA “ F pA,´q;
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• morphisms pu, fq : pA;X,xq Ñ pA1;Y, yq consist of pairs pu, fq P ApA,A1q ˆ XpX,Y q

such that the following diagram commutes,

FAX
FuX //

OO
x

FA1X
FA1f // FA1YOO

y

X
f

// Y

(2.1.7)

in such a way that f : X Ñ Y is a morphism of coalgebras u˚pX,xq Ñ pY, yq.

Using a similar approach, we can define other kinds of classifying fibrations: we replace
the fibration of endofunctor algebras U of Definition 2.1.2 with suitable sub-fibrations

ş

AlgX˚

Uη

��

ş

EMX

Uµ

��
rX,Xsη rX,Xsµ

(2.1.8)

defined as follows:

• the subcategory rX,Xsη Ď rX,Xs to be the category of pointed endofunctors pF, ηq, i.e.
those F : X ÝÑ X equipped with a natural transformation ηF : idX ñ F from the
identity functor, and Uη arises pulling back U ;

• the subcategory rX,Xsµ Ď rX,Xsη to be the category of monads pT, µ, ηq, where the
pointed endofunctor pT, ηq is also equipped with an associative multiplication µT :
TT ñ T having ηT : idX ñ T as unit; Uµ arises pulling back Uη.

Hence, we can arrange these classifying fibrations as vertical maps in a diagram of pullbacks
ş

EMX

��

//
ş

AlgX˚

��

//
ş

AlgX

��
rX,Xsµ // rX,Xsη // rX,Xs

(2.1.9)

where the lower horizontal maps are the obvious inclusions.

Remark 2.1.9. The inclusions above are faithful, but clearly not full functors: we restrict
a natural transformation to be compatible with the additional structure on endofunctors
T, S, and in particular to be compatible

mh1) with the units, for pointed endofunctors; this means that α : T ñ S is such that
α ˝ ηT “ ηS ;

mh2) with the multiplication and the unit, for monads; this means that α : T ñ S is such
that α ˝ ηT “ ηS and in addition, α ˝ µT “ µS ˝ pα ˚ αq.

Remark 2.1.10. The morphisms of monads that we consider are monad morphisms (inter-
twiners, or ‘monad opfunctors’ in the terminology of [Str72]) over the identity functor (for
the obvious forgetful functor MndpCatq ÝÑ Cat : pX, T q ÞÑ X); in simpler terms, in mh1 and
mh2 we are considering monoid homomorphisms, if we recognise MndpXq as the category of
internal monoids in prX,Xs, ˝q in the well-known way.
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Definition 2.1.11. Consider a fibration p : E ↠ A obtained as pullback

E //

p

��

‚

Γ
��

A // ‚

(2.1.10)

along another fibration Γ. We say that p is

• an (endofunctor) algebra fibration if Γ “ U in (2.1.5);
• a pointed algebra fibration if Γ “ Uη in (2.1.8);
• an Eilenberg–Moore fibration if Γ “ Uµ in (2.1.8).

Similar refinements apply to the endofunctor coalgebra opfibration of Definition 2.1.8, and
we define opfibrations of coalgebras, of copointed coalgebras, and of coEilenberg–Moore
coalgebras as fitting in a diagram below.

ş

coAlgX

U

��

ş

coAlgX˚
oo

Uϵ

��

ş

coEMX
oo

Uδ

��
rX,Xs rX,Xsϵoo rX,Xsδ.oo

(2.1.11)

From this, we can define an opfibration of coalgebras, copointed coalgebras, or a coEilen-
berg–Moore opfibration as a functor fitting, respectively, in the following kinds of pullback:

A i X //

��

ş

coAlgX

U

��

A i˚ X //

��

ş

coAlgX˚

Uϵ

��

A iEM X //

��

ş

coEMX

Uδ

��
A

F
// rX,Xs A

F
// rX,Xsϵ A

T
// rX,Xsδ

(2.1.12)
(Recall our informal convention that the letter F denotes a parametric, possibly pointed
endofunctor, and S a parametric comonad.)

2.1.3 Kleisli’s version
The attentive reader will have noticed that we didn’t mention Kleisli categories KlpTAq of a
parametric monad T : A ˆ X ÝÑ X in our oterwise comprehensive taxonomy above. The
present section takes care of doing it, as it turns out that capturing the general structure of
which Discussion 1.1.1 is a specific example of is not completely straightforward.

Let us follow the notation in (2.1.8) that considers the category rX,Xsµ of monads
T : X ÝÑ X and natural transformations compatible with the monad structure (=monoid
homomorphisms). We then have the following.

Proposition 2.1.12. There exists a pseudofunctor KlX : rX,Xsµ Ñ Cat which sends a
monad pT, η, µq to its Kleisli category, defined on morphisms α : T ñ S as follows:

• each α˚ : KlXpT q ÝÑ KlXpSq is the identity on objects;
• on morphisms a Kleisli map f : X Ñ TY goes to αY ˝ f : X Ñ TY Ñ SY .
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Functoriality follows from the fact that α makes diagrams mh1 and mh2 commute: the fact
that α˚ ˝ηTX “ ηSX is precisely condition mh1, and composition is easily seen to be preserved.

Dualising this line of reasoning, we obtain the following result.

Proposition 2.1.13. There exists a functor KlX : rX,Xs
op
δ ÝÑ Cat which sends a comonad

pS, ϵ, δq to its Kleisli category.

Each reindexing α˚ in this case is the identity on objects, and acts on coKleisli maps by
composition on the other side: f : SX Ñ Y goes to f ˝ αX : TX Ñ Y .

Note that the correspondence for free algebras is covariant, and the one for free coalgebras
is contravariant, dual to the case of Eilenberg–Moore. Motivated by this definition, we can
mimic what we have done in Definition 2.1.5 and Definition 2.1.8.

Definition 2.1.14. The universal opfibration of Kleisli categories is the total category
ş

KlX
over rX,Xsµ having:

• as objects the pairs pT,Xq where T is a monad and X an object of the category KlpT q;
• as morphisms pT,Xq Ñ pS, Y q the pairs α : T ñ S, a monad homomorphism, and
f P KlpSqpα˚X,Y q.

Dually,

Definition 2.1.15. The universal fibration of coKleisli categories is the total category
ş

coKlX over rX,Xsδ having:

• as objects the pairs pT,Xq where T is a comonad and X an object of the category
coKlpT q;

• as morphisms pT,Xq Ñ pS, Y q the pairs α : T ñ S, a comonad homomorphism, and
f P coKlpSqpX,α˚Y q.

Definition 2.1.16. Let T : A Ñ rX,Xsµ be a parametric monad. The opfibration of free
algebras modeled on T is the category having

• as objects the pairs pA,Xq where A P A is an object and X P KlpTAq;
• as morphisms pu, fq : pA,Xq Ñ pA1, Y q the pairs u : A Ñ A1 and f : u˚X Ñ Y (a

Kleisli morphism in KlpTA1 q).

(The functor u˚ : KlpTAq ÝÑ KlpTA1 q acts as Tu,˚, in the notation of Proposition 2.1.12.)

Dually,

Definition 2.1.17. Let T : A Ñ rX,Xsµ be a parametric monad. The fibration of cofree
coalgebras modeled on T is the category having

• as objects the pairs pA,Xq where A P A is an object and X P coKlpTAq;
• as morphisms pu, fq : pA,Xq Ñ pA1, Y q the pairs u : A Ñ A1 and f : X Ñ u˚Y (a

coKleisli morphism in coKlpTAq).

(The functor u˚ : coKlpTA1 q ÝÑ coKlpTAq is defined dually to u˚.)

The previous definitions are all straightforward to give: in particular, Kleisli and coKleisli
fibrations have a characterisation in terms of pullbacks. However, the following argument
shows a certain care is required when one wants to relate the (co)Kleisli opfibration of a
parametric (co)monad with its (co)Eilenberg–Moore fibration. We will say more on this in
§4.5.
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Remark 2.1.18. It would be tempting to assert that, given a parametric monad T : A ÝÑ

rX,Xsµ, the comparison functors KT : KlXpT q ÝÑ EMXpT q are the components of an object-
wise fully faithful pseudonatural transformation KlX ñ EMX of sorts, and maybe even of a
morphism of fibrations

ş

KlX //

##

ş

EMX

zz
rX,Xsµ

(2.1.13)

between the Kleisli opfibration and the Eilenberg–Moore fibration, in the slice 2-category
over rX,Xsµ.

A moment of reflection is however enough to realise that the opposite variance of the
pseudofunctors KlXp q and EMXp q gets in the way: in fact, the diagram

KlXpT q
K //

α˚

��

EMXpT q

KlXpSq
K1

// EMXpSq

α˚

OO

(2.1.14)

is not commutative; the best one can do is assess that it is laxly commutative, i.e. that it is
filled by a 2-cell κ : K ñ α˚ ˝K 1 ˝ α˚ closing the square.

2.2 Analytic properties of fibrations of algebras
Given how fibrations of algebras arise by pulling back a universal one, we need to study the
properties of such ‘classifying’ fibrations. Recall that

Remark 2.2.1. The category
ş

AlgX arises through the Grothendieck construction when
applied to the functor AlgX : rX,Xsop ÝÑ Cat sending F to its category of algebras AlgXpF q

and α : F ñ G to α˚ : AlgXpGq ÝÑ AlgXpF q defined as:

• α˚pyq :“ y ˝ αY for every y : GpY q Ñ Y ;
• α˚pfq “ f for every morphism f : y Ñ y1 in AlgXpGq.

Remark 2.2.2. Note that, as it should be, given the shape of (2.1.1) the fibre of U over F
consists precisely of the morphisms f : X Ñ Y with the property that y ˝ Ff “ f ˝ x, i.e.
of F -algebra morphisms. So, each fibre of U corresponds to the category of algebras of F .

Each natural transformation α : F ñ G induces a functor α˚ : AlgXpGq ÝÑ AlgXpF q (by
reindexing or looking at the action of Γ on arrows) sending y : GY Ñ Y to y˝αY : FY Ñ Y ,
therefore we get the following explicit description of the fibrational structure of U .

The next step is to characterise the shape of Γ-Cartesian arrows in
ş

AlgX, and the
vertical-Cartesian factorisation system (1.2.5) therein.

Remark 2.2.3 (On vertical-Cartesian factorisations). In the case of the fibration of alge-
bras, the vertical-Cartesian factorisation can be characterised as follows: let pα, fq : pF, xq Ñ

pG, yq a map in
ş

AlgX, then it factors through pidF, fq, vertical, and pα, idY q, Cartesian.

Similarly, one can characterise (op)Cartesian arrows and the (op)Cartesian-vertical fac-
torisation in all (op)fibrations of algebras introduced so far.
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2.2.1 Reindexing and limits
In this section we will look at the limit-preserving properties of the reindexing functors
α‹ : AlgXpF q ÝÑ AlgXpGq; as a consequence of the fact that each forgetful functor AlgXpF q

creates limits, we will get that each α˚ is continuous.
Let us first start by providing a recipe to compute limits of algebras. First of all, recall

two well-known results: in [Str23, Theorem 8.5], the second is stated for J a finite category.

Proposition 2.2.4. Given F : X ÝÑ X, the forgetful functor VF : AlgXpF q ÝÑ X creates
limits.

Theorem 2.2.5. Let p : E ↠ C be a fibration over a finitely complete category C, and let
J be a small category. Then the following are equivalent:

1. all fibers of p have limits of shape J and they are preserved by all reindexing functors;

2. E has limits of shape J and p preserves them.

Proposition 2.2.6. Let J a small category, and X a category which admits J-limits; then
α˚ : AlgXpGq ÝÑ AlgXpF q preserves limits of shape J for every α : F ñ G.

Now Proposition 2.2.6 and Theorem 2.2.5, together with the fact that limits in rX,Xs

are computed pointwise, entail the following corollary.

Corollary 2.2.7. If X is complete then
ş

AlgX is complete too and U :
ş

AlgX ↠ rX,Xs

preserves all limits.

Remark 2.2.8. Note how this gives an explicit way to compute limits of shape J in the
universal fibration of algebras: let D : J ÝÑ

ş

AlgX be a functor; its components are given
by pFJ ;XJ , xJ : FJX ↠ Xq and we can consider the limits F “ limJ FJ of all parameters,
as well as the algebras α˚

JpXJ , xJq, each of which is an F -algebra by change of base; it is a
routine exercise to check that the limit pX,xq of these objects in AlgXpF q yields the limit of
D. A similar argument shows also how to compute limits in a fibration of algebras modelled
on F : A ÝÑ rX,Xs: given a diagram A ˙ X with components pAJ ;XJ , xJq, compute the
limit A “ limJ AJ of the parameters; reindex all FAJ

-algebras to make them FA-algebras
and compute the limit in that fiber.

Existence of colimits in a fibration of algebras is a more delicate issue that we will
address in §2.2.3. If one wants an explicit way to compute colimits, this is not an easy
problem to solve. In the case of parametric monads, we can rely on a richer theory, for
which the language of Chapter 4 will be essential to recognise the A ˙EM X as Eilenberg–
Moore categories.

2.2.2 Adjoints to reindexing
Fibrations whose reindexing functors have any adjoints are particularly well-behaved: from
the point of view of the logic left/right adjoints to reindexing correspond to dependent
sums/products (whence the notation we use for them below).

With some additional properties on the category X (=that it is κ-accessible) and re-
stricting to the functors F P rX,Xs (=the κ-accessible ones), it is possible to employ a
specific form of the adjoint functor theorem to prove the existence of left adjoints for each
reindexing.
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Theorem 2.2.9. Let X be κ-presentable and assume that the fibration of algebras is re-
stricted to just the κ-accessible functors X ÝÑ X, then each reindexing α˚ has a left adjoint
ř

α.

The proof follows an argument that in early stages of this work has been dubbed by the
authors a ‘Freyd swindle’2; we sketch the idea in the case κ “ ω, for bigger ordinals one
argues similarly.

Proof. Let α˚ : AlgXpSq ÝÑ AlgXpT q : pX,xq ÞÑ pX,αX ˝xq be the functor between algebras
induced by a natural transformation α : T ñ S, and consider a T -algebra a : TA Ñ A;
consider the pushout

TA
α //

a

��

SA

��
A

t0
// P0

(2.2.1)

and define inductively the chain at the lower horizontal side of the diagram

TA
α //

a

��

SA
St0 //

��

SP0
St1 //

��

SP1

��

// . . . // ?

��
A

t0
// P0 t1

// P1 t2
// P2 t3

// . . . // P8

(2.2.2)

The accessibility assumption on S now implies that SP8 is the colimit of the upper horizontal
chain, so ? “ SP8. The pushout cocone then yields a canonical choice of a map s8 :
SP8 Ñ P8.

Remark 2.2.10. Note that each reindexing having a left adjoint is equivalent to the fact
that p is a bifibration (1.2.20).

Remark 2.2.11. By contrast, universals, i.e. right adjoints
ś

α to reindexing functors α˚

tend to be nonexistent. In fact, the existence of such a
ś

α requires a filling of the following

2The term ‘swindle’ entered some parts of mathematical practice as a non-derogatory way to refer to
‘clever tricks, akin to sleights of hand, providing proofs of true statements based on illegal but evocative
manipulations’. For example, the offhanded re-bracketing of an infinite sum (of real numbers, as in Euler’s
proofs of some analytic identities; of direct sums of R-modules, as in [Lam98, Corollary 2.7] where the term
‘Eilenberg swindle’ was apparently coined, or of connected sums of compact manifolds, [Tao09]).

From our category-theoretic standpoint, the sleight of hand is instead a demonstration of stubbornness:
to build a certain universal object, you apply a certain universal construction, for example a pushout.
The pushout will hardly compute the desired left adjoint

ř

αpA, aq. But one insists, and applies the same
construction again, to the new piece of data; the pushout at this second stage will hardly be the desired
ř

αpA, aq. But you insist, . . . and after a certain number of steps you get an answer in the form of a
fix-point: in our case, SP8 “ S pcolim . . . q – colim S . . . is the clever re-bracketing (but apart from a few
little sins of omissions in what exactly the isomorphism means, the argument is rigorous). As for attributing
the swindle to P.J. Freyd, more than one bright argument in his mathematical work is based on a similar
technique of ‘doing one thing for a transfinite number of steps’.
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horn
FY

α˚y

��

αY

""

Fh // FZ
αZ

""

z

��

GY
Gh //

y
||

GZ

||
Y

h // Z

(2.2.3)

and that is in general not possible.3

Leveraging on the following result, we can prove that all fibrations obtained pulling back
the universal fibration of algebras share its same properties in terms of limit-preserving
reindexings:

Lemma 2.2.12. Let p : E ↠ B be a fibration such that each reindexing u˚ : EB1 ÝÑ EB
preserves (co)limits; let F : A ÝÑ B be a functor and q the fibration obtained pulling back
p along F . Then, each reindexing of q also preserves (co)limits.

2.2.3 The question of completeness and cocompleteness
From §2.2.1 we know that each fiber of a fibration of Eilenberg–Moore algebras is complete,
with limits created by the forgetful functors. This will actually be a staple of our charac-
terisation of A˙EM X as an Eilenberg–Moore category in §4.2 – implying, incidentally, that
limits in the whole category A ˙EM X are indeed created by a canonical monadic functor
A ˙EM X ÝÑ A ˆ X. With this perspective in mind, we will invite the reader to go back
to Remark 2.2.8 above, as that’s essentially the unique way to compute limits of diagrams
spanning different fibers.

Colimits in categories of algebras, and limits in coalgebras, on the other hand, are noto-
riously way more difficult to compute as, even when they exist, they tend to be complicated
objects: it is for example the case for initial endofunctor algebras.

We are then left with the problem of establishing how colimits in each fiber tAu ˙ X

of a fibration of Eilenberg–Moore algebras for T induce, if anything, global colimits in the
whole A˙ X, provided some additional assumptions on T are made. The issue is somewhat
subtle, as it is well-known that being ‘internally’ cocomplete as an object in Fib is a weaker
property than having a cocomplete total category, [Str23, p. 87]. Are total categories of
fibrations of algebras cocomplete in the weak sense, or in the strong sense? And how does
this relate to assumptions made on A,X or T : A ˆ X ÝÑ X?

One preliminary remark is the well-known observation by Linton [Lin69a] that an Eilen-
berg–Moore category over a cocomplete base has coproducts as long as it has certain specific
reflexive coequalisers, and it is cocomplete if it has all reflexive coequalisers. Computing
such coequalisers is, however, a difficult task in general. In the specific case of A ˙EM X

regarded as an Eilenberg–Moore category, the computation of binary coproducts goes as
follows: given algebras pX, ξq and pY, θq their coproduct is the coequaliser of the reflexive
pair

FUFUpX, ξq ˚ FUFUpY, θq

ϵFUpX,ξq˚ϵFUpY,θq//

FUϵX ˚FUϵY

// FUpX, ξq ˚ FUpY, θq (2.2.4)

3Note that for the fibrations of interest in this work, the request that u˚ preserves colimits is highly
restrictive: in natural examples, even preservation of initial objects can dramatically fail (consider, for
example, the reindexings of the ‘generation of list’ endofunctor pA, Xq ÞÑ 1 ` A ˆ X).
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where the coproduct of free algebras is simplified by the observation that FUX ˚ FUY –

F pUX ` UY q since F is a left adjoint. In the specific case of A ˙EM X the coequaliser that
defines the coproduct pX, ξqA ˚ pY, θqB is then

`

TA`BpTAX ` TBY q, µA`B
˘A`B //

//
`

TA`BpX ` Y q, µA`B
˘A`B (2.2.5)

where it is not important what objects are involved, but rather that the coequaliser in
question happens in a single fiber, the one over A`B (coproduct in A). This colimit can’t
in general be reduced further (although there are cases where it acquires a more explicit
form, for example when A is the initial object of A).

What will make the problem more tractable is restricting the class of functors we consider.

In the following, the categories A,X are both κ-accessible categories for some
regular cardinal κ; furthermore, all the parametric functors TA that we consider
are κ-accessible.

Under these assumptions, the category of κ-accessible functors rX,Xsăκ is itself accessible
(although for a bigger cardinal λ " κ; if X is κ-presentable instead, the category rX,Xsăκ is
κ-presentable).

Now, a simple way to get accessibility of all the total categories in study is to appeal
the results of [MP89, Ch. 5]: the pseudofunctor AlgX : rX,Xs

op
ăκ ÝÑ Cat is accessible in

the sense of [MP89, 5.3.1], which means, in addition to the assumptions we made, that
AlgXpcolimTiq – limi AlgXpTiq for every κ-filtered diagram of endofunctors; this ensures
that A˙X ↠ A is accessible (which means its total category is accessible, and its projection
is an accessible functor).

Relying on this, we can cover in one fell swoop:

• all cases in which reindexings are covariant: coEilenberg–Moore opfibrations, Kleisli
opfibrations, endofunctor coalgebras. . . ; this can also be appreciated directly, relying
on the completeness theorem for the 2-category of accessible categories, and presenting
the opfibrations of (2.1.12) as pullbacks of accessible functors over rX,Xsăκ;

• the fibrations of endofunctor algebras over accessible categories, cf. Theorem 2.2.9;
• Eilenberg–Moore fibrations: notably, the proof of Theorem 2.2.9 can be carried over

unchanged, and s8 will be an Eilenberg–Moore algebra assuming S, T are monads.
But there is a slicker argument in that case: from [Bor94b, 4.3.2] we know that a
category CT of Eilenberg–Moore algebras for a monad T : C ÝÑ C has all colimits
that T preserves. Then, it will immediately follow from Theorem 4.2.1 that if AˆX ÝÑ

A ˆ X : pA,Xq ÞÑ pA, TAXq preserves colimits of shape J, then A ˙EM X has colimits
of shape J.
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Chapter 3

Some motivating examples

Summary of chapter

Examples of fibrations of algebras are abundant; here we try to classify them.
The paradigmatic case is that of a category acting on itself through the regular
representation (cf. Example 3.2.1) which ends up having many of the motivating
examples in the introduction as special cases. The action it entails can be im-
pressed by (co)monads, as in the case of the simple fibration or of the (bi)fibration
of monoids (cf. §3.3.1) or by mere endofunctors, as it is the case for polynomials
(cf. §3.4) or when the simple fibration is ‘twisted’ as in Example 3.3.4 – a con-
struction that is known under the name of Artin gluing if the base category is a
topos. The assignment pA,Xq ÞÑ A ˙ X (as well as A ˙EM X, etc.) is functorial
from a suitably defined domain which is of the form pCat˙ Catqℓ, with respect to
an action that is the 2-dimensional analogue of the regular representation. The
semidirect products of groups (Proposition 3.3.8) and monoids (Remark 3.3.9)
can be characterised as functors Grp˙EMGrp ÝÑ Grp and Mon˙EMMon ÝÑ Mon.
Other examples where the aforementioned micro-macrocosm principle works are
the fibration of points in Example 3.3.17, and Hopf algebras in Example 4.2.4,
and Theorem 4.2.5 in the following chapter (the best way to present both relies
on our monadicity theorem Theorem 4.2.1, that however is a ‘structural’ result
on categories of the form A ˙EM X).

The case of dinatural dependence from a parameter is studied in §3.5, relating
our Kleisli opfibration with Atkey’s Kleisli category of a diparametric monad
[Atk09a] (we call them ‘diparametric’ to avoid confusion: a diparametric monad
is a monad parametric over Aop ˆ A). In §3.5.1 we draw a connection between
parametric endofunctors and optics [Tam06, Ver23] associating to every F :
A ÝÑ rX,Xs a category of F -optics OptX,F which is, however, very difficult to
characterise in practice.

3.1 Monoids and posets
Soon we will recover the motivating examples outlined in the introduction, but a fundamental
design principle of category theory compels us to adopt ‘negative thinking’ any time we
are introducing a new definition, and thus we are led to analyse what Definition 2.1.5,
Definition 2.1.8 and all the rest become when A has only one object (i.e. when it is a
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monoid) or when it has at most one morphism between any two given objects (i.e. when it
is a preorder).

Remark 3.1.1. When A “ M is a monoid, a category fibered over M consists of, to borrow
a term from the theory of triangulated categories, the translation category associated to a
representation of M in terms of endofunctors of a single category of algebras. In other words,
a parametric endofunctor M ÝÑ rX,Xs corresponds to the choice of a single endofunctor
F : X ÝÑ X and a representation of M through endofunctors of AlgpF q.

In particular, when M “ A˚ is a free monoid on a set A, i.e. the free category on the
graph having a single vertex and one loop for every element a P A, this amounts to a family
αa : AlgpF q ñ AlgpF q of natural transformations of the category AlgpF q.

The poset case gives rise to examples with a distinguished topological flavour, as a
parametric endofunctor P ÝÑ rX,Xs is essentially a presheaf of endofunctors (and a nice
behaviour can be expected when this presheaf is in fact a sheaf).

Example 3.1.2 (The stack of subtopoi of a space). If X is a topological space and L “ OpXq

is its frame of open subsets regarded as a category, we can consider the association

Lop // rShpXq,ShpXqs

U � // TU
(3.1.1)

where TU is the monad associated to the open subtopos ShpUq,

ShpXq // ShpUq // ShpXq . (3.1.2)

In other terms, this monad is determined by the reflective subcategory ShpUq ãÑ ShpXq,
and we could have equivalently taken the category of sheaves over the closed set-theoretic
complement F “ U c of the open U , regarded with the subspace topology, and identifying
a subcategory ShpF q ãÑ ShpXq; the two subcategories determine each other as they fit in a
‘short exact sequence’ like

ShpF q // ShpXq // ShpUq , (3.1.3)

an arrangement of categories and functors that is known as a (unpointed) recollement. This
is not an isolated instance in the theory of fibrations of algebras, and we will in fact study
the relation between recollements and fibrations of algebras in §3.3.3. A strong point of
connection between the two is contained in Example 3.3.7 below.

3.2 More monoids, algebras, transition systems
Example 3.2.1 (The regular representation of a Cartesian category). Let X be a category
having finite products, and consider the transposed of the Cartesian product functor

ˆ : X ˆ X // X (3.2.1)

sending an object A to the functor λX.AˆX: in every Cartesian category, this endofunctor
is a comonad SA. Mimicking what happens when a monoid M acts on itself on the left
under the map m ÞÑ λx.mx, we call this the regular representation of X on itself. It being
a comonad, we can consider the two following constructions.
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• Its fibration of coKleisli categories, meaning the category spXq over X, where each fiber
spXqA over an object A has

– the same objects of X;
– spXqApX,Y q :“ XpX ˆA, Y q.

CoKleisli composition, i.e. composition of intra-fiber arrows, is defined as

X ˆA
Xˆ∆ // X ˆAˆA

fˆA // Y ˆA
g // Z . (3.2.2)

The category spCqA is called the simple slice and denoted C{{A in [Jac98], and it is
used in the categorical semantics of simple type theory [Hin97, Far23].

• Its opfibration of coEilenberg–Moore coalgebras coAlgXpS‚q; in this case the fiber over
A P X coincides with the whole slice category over A, so the fibration of coEilenberg–
Moore algebras for S‚ is simply the domain opfibration.

Notation 3.2.2. When the regular representation of X is considered as a parametric
comonad, it usually falls under different names; one is to call A ˆ the coreader comonad
on X with parameter A. Considering that the sub-text of our entire discussion is that we are
categorifying the notion of monoid action, we have a more representation-theoretic orienta-
tion, but readers should be aware that the notion is (largely) studied in categorical logic,
with genuinely type-theoretic motivations in mind.
Remark 3.2.3 (Monoidal semiautomata). There is interest in considering also mere endo-
functor algebras for the regular representation S : A ÞÑ A ˆ , and the same construction
in fact makes sense in any monoidal category pK,bq: there, endofunctor algebras for Ab

consist of morphisms d : A b E Ñ E, and algebra morphisms f : pX, dq Ñ pY, d1q are the
f : X Ñ Y fitting in commutative squares

AbX
Abf //

d

��

Ab Y

d1

��
X

f
// Y

(3.2.3)

so that an A b -algebra consists of a semiautomaton [KKM00] (also called a Medvedev
automaton, cf. [EKKK74]) with input alphabet A. The associated fibration of endofunctor
algebras is then what we call the fibration of semiautomata for pK,bq. Observe here that
if K admits countable coproducts preserved by each Ab , i.e. if pK,bq is, in the language
of [LT23], a doctrine of D-rigs for the KZ 2-monad of coproducts, then the fibration of
semiautomata is precisely the fibration of K-monoids (cf. Example 3.3.1 below) restricted
to free monoids of the form

ř

ně0 A
n.

By virtue of this, we obtain a natural identification of the fibration of semiautomata
and the fibration of Eilenberg–Moore algebras of Example 3.3.1 below, restricted to free
monoids.

In short, whenever X is a Cartesian category with a free monoid construction meaning
an adjunction F : X Õ MonpXq : U , we can consider pullback diagrams as below.

X ˙ X //

��

X ˙EM X //

��

ş

AlgX

��
X

F
// MonpXq // rX,Xs

(3.2.4)
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Remark 3.2.4. Similar considerations can be made in the more general case of a category C

(enriched and) tensored over a category V: the tensor functor ´ d ´ : VˆC ÝÑ C evidently
gives rise to a parametric endofunctor, and an endofunctor algebra V dC Ñ C is a ‘family of
endomorphisms fv : C Ñ C’ indexed by the ‘elements’ of V (this is precisely what happens
when C is an ordinary category with small coproducts and V “ Set).

This slight generalisation comes in handy when one wants to abstractly encode an action
of an object V on C. For example, a monoid M acting on another monoid N through
endomorphisms am : N Ñ N can be represented as a map UMdN Ñ N , where UMdN “
ř

mPM N but the sum is performed in the category Mon of monoids.
Ultimately, we have a pullback as below.

V ˙ C //

��

ş

AlgC

��
V

d
// rC,Cs

(3.2.5)

Remark 3.2.5. Recall that for a group G one can form the semidirect product AutpGq ˙G
when AutpGq acts on G by evaluating an automorphism f on an element g: this is called the
holomorph of G. The same construction carries over to monoids, as EndpMq acts on M with
the same evaluation map. We can recapture this example, and generalise it to categories,
via a suitable fibration of algebras.

Example 3.2.6 (The fibration of endofunctor algebras). When K “ rX,Xs is the monoidal
category of endofunctors of a fixed category X, the regular representation from Example 3.2.1
provides a sort of universal paradigm for our construction, and an analogue of the notion of
holomorph: indeed, any object F : X ÝÑ X has an associated category of pF ˝ q-algebras
(or (right) modules in the sense of [Dub70, p. 61]) and if we let such F vary over all rX,Xs we
obtain the fibration of endofunctor algebras of Definition 2.1.2. Hence,

ş

AlgX – rX,Xs ˙ X

for the action so determined.

The theory of coalgebras provides a host of examples as well, a large family of which is
given by labelled transition systems.

Example 3.2.7. Fix a set A and consider the (covariant in X and in A) functor X ÞÑ

2AˆX ; its opfibration of endofunctor coalgebras has typical fiber the category of A-labelled
transition systems, and one can collect it in the category

Set i2 Set // // Set . (3.2.6)

Similarly, consider the monad of finite distributions [Jac18, Jac10] D : Set ÝÑ Set and the
functor D‚ : X ÞÑ p1 ` DXqA; its opfibration of endofunctor coalgebras is the category
of probabilistic A-labelled transition systems [DEP02, LS91], and one can collect it in the
category

Set iD Set // // Set . (3.2.7)

For more examples, the reader is referred to the many places in which a parametric
endofunctor appears, starting from all those listed in [Jac16].

Endofunctor algebras, coupled with a slice construction, yield a family of paramet-
ric endofunctors of slice categories Cat{K: we address the reader looking for a concrete
incarnation of the following construction to [Gui80, EKKK74, Gui74] and more recently
[BLLL23b, BLLL23a].
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Example 3.2.8 (Abstract Mealy and Moore automata). The ingredients of the following
construction are

• a possibly large category K, and a small category B;
• an endofunctor F : K ÝÑ K, thought of as a generating input of a dynamics;
• a functor B : B ÝÑ K, thought of as a generalised element of output for the dynamics.

The categories MlypF,Bq and MrepF,Bq are then defined respectively as the following strict
pullbacks in Cat,

MlypF,Bq //

��

F {B

��

MrepF,Bq //

��

K{B

��
AlgpF q // K AlgpF q // K

(3.2.8)

where AlgpF q is the category of endofunctor algebras for F , F {B is the comma category of
arrows u : FX Ñ BY , K{B the comma category of arrows v : X Ñ BY , and the functors
into K are obtained from the comma construction defining F {B and K{B.

As such, both MlyK,MreK are functors of type

rK,Ks
op

ˆ Cat{K // Cat{K
pF,Bq

� // MlyKpF,Bq ↠ K,MreKpF,Bq ↠ K
(3.2.9)

giving rise to a parametric endofunctor of Cat{K with category of parameters A “ rK,Ks
op,

and thus to a fibered category over A (both MlyK,MreK are considered categories over K

via the diagonal in the pullback that defines them).
The notions of Mealy and Moore automaton of [Gui80, EKKK74] are obtained as par-

ticular instances of these constructions, when K is a Cartesian category, F “ A ˆ is the
product for a fixed object A, the category B is terminal (and thus B : 1 ÝÑ K is an object
of K).

Under such an assumption, if K “ Cat, we get a parametric endofunctor of Cat sending
Y to MlyCatpA,Yq. The category of Mealy automata in Cat is the central object of study
in [Gui74, Gui78], we also refer to [GVdB77] for a discussion about the relation between
Cat-valued automata and the Kleisli category of the monad of diagrams.

3.3 More monoids, algebras
Example 3.3.1 (Monoid objects acting on other objects). Let pK,bq be a monoidal cat-
egory, and consider again the regular representation TM “ M b of Example 3.2.1, but
restricted to the subcategory MonpKq of monoids in K; then the functor TM : K ÝÑ K

becomes a monad, and a TM -algebra is precisely a (left) M -module, i.e. an object A P K

with a (left) action a : M b A Ñ A. Therefore the category of pM b q-algebras is the
category of objects with an M -action, KM . A monoid homomorphism f : M Ñ N now
induces a functor that sends the left N -action a : N bX Ñ X

M bX
fbX // N bX

a // X. (3.3.1)

This clearly sets up a functor MonpKq ÝÑ Cat, and thus a fibration of Eilenberg–Moore
algebras

MonpKq ˙EM K // // MonpKq. (3.3.2)
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Example 3.3.2 (A sub-example: the fibration of modules over a ring). When K “ Ab is
the category of abelian groups, an internal monoid R is a ring, and the category AbR is the
category of (left) R-modules. Collecting together all categories of modules over all rings we
get a category Mod fibred over Ring.

Example 3.3.3 (A sub-example: the fibration of Eilenberg–Moore algebras). When K “

rX,Xs is the monoidal category of endofunctors of a fixed category X, this provides some sort
of universal example for our construction: indeed, a K-monoid is a monad, and for a fixed
monad T on K a (right) T -module is exactly a T -algebra: the fibration of Eilenberg–Moore
algebras then arises as the fibration of monads on K.

From this, we obtain the identification between MndpXq˙EM rX,Xs determined according
to this action, and the category

ş

EMX of (2.1.8).

3.3.1 The fibration of algebras of fibrations of algebras
An example from topos theory can help us put our fibrations of algebras in an even larger
perspective.

Example 3.3.4 (Artin Gluing and generalised gluing). Given a left exact functor F : E ÝÑ

E1 between elementary toposes, the Artin gluing of E,E1 along F is defined as the comma
category E1{F ; with a similar reasoning as the one in Example 3.2.1, one can show that
this arises as total category for the coEilenberg–Moore fibration of the parametric comonad
FE ˆ .

Indeed, for a fixed E P E we can define a comonad

pE,E1q // pE,FE ˆ E1q (3.3.3)

and observe that such a correspondence boils down to a parametric functor E ÝÑ rE1,E1s

sending E to FE ˆ .
A more precise way to word this result is that there are two pasted pullbacks of categories

E1{F //

��

spE1q //

��

AlgE1

��
E

F
// E1 // rE1,E1s

(3.3.4)

with notation as in Example 3.2.1. Not only that, we can observe two more things:

• firstly, the obvious fact that the assignment E ÞÑ FEˆ is a strong monoidal functor
E ÝÑ rE1,E1sδ (notation as in Equation 2.1.8);

• additionally, that the assignment F ÞÑ E1{F is a functor LexpE,E1q ÝÑ Fib{E obtained
taking F to the fibration of algebras for the comonad FE ˆ .

Tweaking the above example a bit, and taking advantage of the 2-dimensional structure of
Cat, we can appeal to a ‘macrocosm principle’ and build the fibration (or rather, 2-fibration)
of fibrations of algebras.

The construction we have in mind considers the regular representation Cat ÝÑ rCat,Cats
of Cat; its endofunctor algebras (more precisely, the endofunctor algebras of the underlying
endofunctor of the comonad arising from Example 3.2.1) consist of functors F : A ˆ X ÝÑ

X for some category X (clearly, parametric endofunctors with parameters A are precisely
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semiautomata on X, with ‘alphabet’ A), and the category of oplax morphisms of algebras
has objects the pairs pU, δq : pF,Xq Ñ pG,Yq where U : X ÝÑ Y is a functor and δ is a 2-cell
filling the diagram below.

A ˆ X
F //

~� δAˆU

��

X

U

��
A ˆ Y

G
// Y

(3.3.5)

Remark 3.3.5. If A is a monoidal category acting on X, and U is the identity, this definition
recovers the notion of distributive law for monoidal actions exposed in [Sko04].

The importance of this construction is understood in terms of the following observation:
sending A to the category AlgℓpA ˆ q of its algebras and lax homomorphisms is a pseudo-
functor Cat ÝÑ Cat of which we can consider once again the associated (very large) fibration
obtained as the left vertical arrow in the pullback

Cat ˙ Cat //

��

AlgℓCat

��
Cat // rCat,Cats

(3.3.6)

thus providing a ‘universe’ for the fibration of algebras construction. We can make this
statement precise in the sense that follows.

Theorem 3.3.6. There is a 2-functor

˙ : Cat ˙ Cat // Cat (3.3.7)

sending the typical object pA;X, F : AˆX ÝÑ Xq to the fibration of (endofunctor) algebras
A ˙F X obtained as the pullback in Definition 2.1.5. Functoriality is over morphisms pU, δq

like in (3.3.5), and on 2-cells α : pU, δq Ñ pV, σq compatible with δ, σ in the usual sense.

3.3.2 Of groups and modules
Example 3.3.7 (The fibration of Beck modules). Let X be a category with finite limits.
The fibration of Beck modules can be obtained considering the assignment

G ÞÑ AbpX{Gq (3.3.8)

where X is a category with finite limits, and AbpX{Gq is the category of abelian groups in
the slice X{G; an object of AbpX{Gq consists of a morphism

B ˆG B

bˆb
##

m // B

b��
G

(3.3.9)

and a section u : G Ñ B for b such that in the slice X{G the axioms for an abelian group
are satisfied (associativity, unitality and commutativity).

In case X “ Grp is the category of groups and group homomorphisms, this is an example
of a fibration of algebras, but seeing why it is so is not entirely trivial.
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• First of all, observe that the map b : B Ñ G is a split epimorphism of groups (with
inverse u); from this, one derives that the group G acts naturally on ker b, which is
Abelian.

• This sets up an equivalence between the category AbpX{Gq and the category of actions
of G on abelian groups, i.e. group homomorphisms

υ : G // AutpHq (3.3.10)

for some abelian group H.
• Now the universal property of the group ring construction yields that υ exhibits H as

a ZrGs-module, so that
AbpGrp{Gq – ZrGs-Mod. (3.3.11)

All in all, a compact way to present this result is that there are pullback diagrams

Grp ˙EM Ab //

��

Ring ˙EM Ab //

��

ş

EMX

��
Grp

Zr s

// Ring // rAb,Abs

(3.3.12)

where the rightmost square is just a particular instance of Example 3.3.1 when K “ Ab,
once we recognise that Ring “ MonpAbq.

Observe that this presentation style allows to argue similarly that:

• when instead of Z as a base ring of coefficients one considers more generally a com-
mutative ring k and a k-algebra R acting on k-modules, this yields a fibration of
Eilenberg–Moore algebras in the same fashion (3.3.12) above does;

• it is always possible to consider the general b-monoid in a monoidal category pK,bq

as in Example 3.3.1, and the corresponding fibration of Eilenberg–Moore algebras, and
pulling back from the category of Hopf monoids – provided that one has an analogue of
the group ring functor available, such as a left adjoint to the functor selecting grouplike
elements of an Hopf monoid.

We conclude the chapter giving an application in terms of an elegant description of the
semidirect product operation as a left adjoint functor Grp˙EMGrp ÝÑ Grp : pG,Hq ÞÑ G˙H.

We again start from the fibration of monoids of Example 3.3.1. Note that the typical
object of the category Grp ˙EM Set arising from Example 3.3.1 is a triple pG;A,αq where
G is a group, A is a set, and α : G ˆ A Ñ A a (left) action of G on A; a morphism
pG;A,αq Ñ pH;B, βq is a pair pu, vq of a group homomorphism u : G Ñ H and a function
v : A Ñ B such that the square

GˆA
α //

uˆv

��

A

v

��
H ˆB

β
// B

(3.3.13)

is commutative. Similarly, the typical object of Grp ˙EM Grp is a G-group, i.e. a triple
pG;H,αq where G acts on a group H under group automorphisms. Then,
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Proposition 3.3.8. Let G be a group, and α : G ˆ G Ñ G be the conjugation action
pg, hq ÞÑ g´1hg.

Then, there is a functor

rα : Grp // Grp ˙EM Grp (3.3.14)

sending G to the object pG;G,αq P Grp ˙EM Grp. The functor rα has a left adjoint, sending
a G-group pG,H,ψq to the semidirect product G˙ψ H.

Remark 3.3.9. In a similar vein, the semidirect product of monoids [Jan03, 3.9], [BJ98,
3.2] can be characterised as a functor

˙ : Mon ˙EM Mon // Mon (3.3.15)

which is cocontinuous; by virtue of the reasoning in §2.2.3, Mon ˙EM Mon is locally pre-
sentable, and thus ˙ is a left adjoint. Unfortunately, it might be difficult to establish
its right adjoint, as the conjugation representation of Proposition 3.3.8 doesn’t exist for
monoids.

3.3.3 Recollements and fibrations of algebras
The above example lends itself to the following generalisation, for which we assume that
the base category X is pointed (=it has a zero object denoted 0) and finitely complete and
cocomplete.

Then, there is a sequence of functors

AbpXq
i0 //

ş

X
AbpX{ q

U // X (3.3.16)

where U is the codomain functor, and i0 the ‘inclusion of the fiber at 0’ functor AbpX{0q –

AbpXq ãÑ
ş

X
AbpX{ q in the category of elements of Theorem 1.2.13, in such a way that the

square
AbpX{0q

i0 //

��

ş

X
AbpX{ q

U

��
1

0
// X

(3.3.17)

is a pullback.
We can immediately observe that

Lemma 3.3.10. The functors U and i0 both have a left and a right adjoint,

UL % U % UR iL % i0 % iR (3.3.18)

and moreover there is a natural isomorphism UL – UR.

The functors are defined as follows:

• UL “ r1 s sends an object A to its identity arrow A|A;

• iR sends an object
´

A,
E
hÓ

A

¯

P AbpX{Aq to its kernel kerh in X;
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• iL can be proved to exist using the fact that U is a bifibration; however, can’t be easily
described explicitly.

It is easily seen that these indeed form adjunctions, and that i0 and r1 s are fully faithful.

Remark 3.3.11. The functor UL “ r1 s is also a left adjoint to U , as in a commutative
square of the form

X
u // E

h
��

X
v
// A

(3.3.19)

the morphism u : X Ñ E is uniquely determined by the compatibility sv “ u with the right
inverse of h, an s : A Ñ E such that hs “ 1A: if hu1 “ hu2 “ v and sv “ u then

u1 “ shu1 “ sv “ shu2 “ u2. (3.3.20)

This defines a diagram of adjoints

AbpX{0q i0 //oo
iR

oo iL ş

X
AbpX{ q U //oo

UL

oo UL

X (3.3.21)

Now, recall from [BBD82] – and see [BR07, Jan65, Han14] and more recently [Lor16] –
the notion of a recollement (usually stated when the categories at play are Abelian or
triangulated).

Definition 3.3.12. A recollement of additive (more often, Abelian) categories is an ar-
rangement of categories and functors

L i0 //oo
iR

oo iL
D q //oo

qR

oo qL

R (3.3.22)

subject to the following axioms:

r1) there are adjunctions iL ηL

ϵL
i0 ηR

ϵR
iR and qL η̄L

ϵ̄L
q η̄R

ϵ̄R
qR;

r2) the functors i0, qR, qL are fully faithful;

r3) the essential image of i0 coincides with the kernel of q, i.e. with the subcategory
tX P D | qX – 0u;

r4) the squares
qLq

ϵ̄L //

��

1D
ηL

��

i0iR

��

ϵR // 1D
η̄R

��
0 // i0iL 0 // qRq

(3.3.23)

obtained from units and counits of the adjunctions in item r1 are exact, which in
this particular context means that they are both a pullback and a pushout (=pullout
squares).

Now, a recollement is called Frobenius if qR – qL, and we have that
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Theorem 3.3.13. The arrangement of categories and functors in (3.3.21) forms a Frobenius
recollement.

Proof. We only need to show Axiom item r4, the other conditions having already been
established. But this follows from explicitly writing the units and counits in question, as
the two squares in item r4 are objectwise pullouts in D “

ş

X
AbpX{ q.

Remark 3.3.14. In the unpointed case, the situation isn’t as nice: for example, if X “ Set
we can consider the category AbpSet{Aq – AbpSetAq – AbA “ rA,Abs of functors A ÝÑ Ab
as the typical fiber of a fibration

ş

A
AbA over Set, and the forgetful functor U :

ş

A
AbA ÝÑ

Set : pA,Gq ÞÑ A. In this case we have an arrangement

Ab
i0
//oo iL ş

A
AbA U //oo

UL

oo UL

Set (3.3.24)

where i0 lacks a right adjoint.

Remark 3.3.15. Every recollement as in (3.3.22) induces an adjunction between endofunc-
tors of D obtained as follows:

• there is an adjunction

D

xq,iLy //
Koo

qRˆi0

R ˆ L (3.3.25)

where qR ˆ i0 is the functor R ˆ L
xqR,i0y

ÝÝÝÝÑ D ˆ D
ˆ

ÝÑ D;
• similarly, there is an adjunction

R ˆ L

qL`i0 //
Koo

xq,iRy

D (3.3.26)

where qL ` i0 is the functor R ˆ L
xqL,i0y

ÝÝÝÝÑ D ˆ D
`

ÝÑ D;
• now these adjunctions can be composed into an adjunction F : D Õ D : G and, in

case D is pointed and has biproducts, we can further specify the adjunction as follows:
FD “ qLqD ‘ i0iLD and GD “ qRqD ‘ i0iRD.

Remark 3.3.16. For the adjunction F : D Õ D : G we obtain two trivial exact sequences
0 Ñ qLqD Ñ FD Ñ i0iLD Ñ 0, 0 Ñ i0iRD Ñ GD Ñ qRqD Ñ 0.

In light of Theorem 4.2.1, it is an interesting problem to determine when the adjunction
in (3.3.26) is (monadic and) fibered over R, so that R is the category of parameters for a
parametric endofunctor (monad) R ˆ L ÝÑ R ˆ L.

This problem will be studied in full generality in a future work.

One of the motivating examples of a fibration of algebras is the category of actions,
induced by the fibration of points, as considered in [BJK05, §3.2], [BJ98]. We reproduce
the example here using our terminology, and we rely heavily on material that will only be
presented and contextualised in the next chapter, but this example is important.

37



3.4. POLYNOMIAL FUNCTORS AND POLYNOMIAL MONADS

Example 3.3.17. The freestanding split epi is the category generated by

0
r // 1
s

oo (3.3.27)

subject to the relations requiring that r ˝ s “ id1 (and thus s ˝ r is an idempotent). A point
in a category B is a functor P from the freestanding split epi to B, and a point at B is, for
every object B, a point such that P1 “ B. If B has pullbacks and a zero object, for every
B, the subcategory PtBpBq is the fiber at B of the fibration of points p : PtpBq ↠ B. Note
that, by naturality, a morphism of points must commute with both the split epimorphism
and its splitting.

Let us now assume that B has pullbacks, a zero object, and finite coproducts. The
functor p : PtpBq Ñ B mapping a point to its codomain is a fibration known as the fibration
of points, reindexing being given by pullback. The fiber PtBpBq over B has a zero object,
the identity of B, split by the identity of B. This means that p has a fully faithful left and
right adjoint s. We therefore have the diagram

B – Pt0pBq
i //oo
iR

PtpBq //oo
s

oo s

B. (3.3.28)

The category B is said to be protomodular when the functor W “ xp, iRy : PtpBq ÝÑ BˆB

into the product category is conservative, and it is said to be a category with semidirect
products when W is monadic. Note that since (by definition) πB ˝W “ p, the functor W is
a morphism from p to the trivial fibration πB (the projection is on the first factor).

PtpBq

p
""

W // B ˆ B

πB

||
B

(3.3.29)

Thus, we have a family of monadic functors WB : PtBpBq ÝÑ B given by reindexings, and
Theorem 4.2.1 (more precisely, (4.2.1)) now yields a parametric monad

5 : B ˆ B ÝÑ B (3.3.30)

(the multiplication of the monad B 5 is described at [BJK05, p. 246]; the unit is given in
terms of a universal property that characterises B 5X Ñ B`X as an equaliser). Ultimately,
there is a pullback diagram

PtpBq //

��

ş

EMB

��
B // rB,Bsµ

(3.3.31)

presenting the fibration of points as a fibration of Eilenberg–Moore algebras.

3.4 Polynomial functors and polynomial monads
Example 3.4.1 (Polynomials, first take, [MP00]). Given a locally Cartesian closed preto-
pos E and an object f : X Ñ A of E{A we can define a polynomial endofunctor on E as the
following composition

Pf : E
π // E{A

xf,´y // E{A
d // E (3.4.1)
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where

• π is the functor X ÞÑ πA : AˆX ↠ A;
• x´,´y : pE{Aqop ˆ E{A ÝÑ E{A is the internal hom of E{A (so that xf, y is right

adjoint to pulling back along f);
• d is the forgetful functor from the slice category (note that d % π).

By very general facts a morphism h : pX, fq Ñ pX 1, f 1q in E{A induces a natural transfor-
mation h˚ : xf 1,´y ñ xf,´y and thus a natural transformation Pf 1 ñ Pf by whiskering on
the left and on the right.

Thus, we obtain a functor
E{A // rE,Es

B ↠ A � // Pf
(3.4.2)

and from this we obtain a fibration having typical fiber AlgEpPf q.

Example 3.4.2 (Polynomials, second take, [GK13]). We can also define a category {pol{I
of polynomials having objects the diagrams

f : I B
soo f // A

t // I (3.4.3)

and morphisms f Ñ f1 diagrams

B

��

f // A

��

&&
I ee
xx

I

B1

f 1

// A1

99 (3.4.4)

where the central square is a pullback. To each object f : I s
ÐÝ B

f
ÝÑ A

t
ÝÑ I of {pol{I one can

associate a polynomial endofunctor Pf of E{I defined thanks to the parametric adjunction
Σg % ∆g % Πg (with parameter a morphism g : U Ñ V ) as the composition

Pf : E{I
∆s // E{B

Πf // E{A
Σt // E{I (3.4.5)

to the effect that a morphism like in (3.4.4) induces a natural transformation Pf ñ Pf1 . So,
we obtain a fibration having typical fiber AlgEpPfq.

Note that indexing over E{A the construction in [MP00] gives a contravariant functor,
whereas the particular case I “ 1 in [GK13] still yields a covariant one. In order to obtain
[MP00] as a particular instance of the polynomial functors in [GK13] one has to consider
as indexing (what boils down to) the category of Cartesian morphisms for the codomain
fibration EÑ ↠ E, i.e. the category of morphisms f : X Ñ A and Cartesian commutative
squares.

X
f //

u

��

A

v

��
X 1

f 1

// A1

(3.4.6)
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In particular, [MP00] contains a description of the endofunctor algebras for such poly-
nomials, with a particular focus on initial algebras, which model what in Martin-Löf type
theory are W-types. There, their existence is preserved through (a certain) Artin glueing,
i.e. our Example 3.3.4, so that [MP00, Theorem 6.3] can be formulated by means of an
‘iterated’ endofunctor algebras construction having fibered initial objects.

Discussion 3.4.3 (Almost a result). One of the main results in [GH04] is actually that,
if an initial algebra for polynomials in one variable exists, then one exists for polynomials
in any variable. From the point of view of our theory, this seems like a ‘creation of initial
objects’ property enjoyed by co-limit preserving functors between the fibers of a fibration
of endofunctor algebras. In fact, from the terminal map I Ñ 1 one could define a functor
!˚ : {pol{I Ñ {pol{1, hence a reindexing between the respective algebras, and thanks to
Theorem 2.2.9, an adjunction !˚ %!˚. This suggests that there is something to unravel
about the pseudofunctor I ÞÑ {pol{I in general, and in particular about the reindexings
u˚ : {pol{I ÝÑ {pol{J .

The problem is now that {pol{I and {pol{1 naturally index endofunctors into two different
categories, respectively E{I and E, so that a priori they live in two different ‘slices’ of a
fibration of algebras construction. Nevertheless, we believe that with a bit more work this
idea could be actually implemented, possibly using Beck-Chevalley squares as suggested in
[Koc16, §8.3].

We leave developing adequate applications, both to polynomial endofunctors and to
polynomial monads as in [GK13], for future work. Discussion on the preservation of initial
objects through reindexing in the general case is discussed in §4.4.

3.5 The case of dinatural parametricity
Besides a natural dependency on a parameter, another way in which an endofunctor TA :
X ÝÑ X can be ‘indexed over A’ is the following: let L : AˆC ÝÑ D and R : Aop ˆD ÝÑ C

be two functors such that for each A P A there exist adjunction isomorphisms

DpLpA,Xq, Y q – CpX,RpA, Y qq (3.5.1)

natural in all variables A,X, Y ; then, naturality in A is equivalent to the request that the
counit and unit

LARA
ϵA
+3 1 1 ηA

+3 RALA (3.5.2)

of the adjunction LA :“ LpA,´q % RpA,´q “: RA form, respectively, a cowedge and a
wedge in the object A. The pervasive abundance of adjoint situations in Mathematics, an
eminent example of which is given by the Cartesian closed adjunction of Set, where the
functor

X ÞÑ XA ˆA (3.5.3)

depends on A in a dinatural fashion, and the evaluation pf, aq ÞÑ fa, i.e. the counit ϵ : X ÞÑ

XA ˆA Ñ X is a cowedge in A, compels us to take into account dinatural parametricity.
The notion of a diparametric monad provides a useful framework for interpreting pro-

gramming languages that record information about the effects performed by the typing
information (see [Atk09b] where a variety of monads of interest are studied in their para-
metricity; cf. also [OWE20], albeit tangentially), but it doesn’t seem that something similar
to our ‘fibration of algebras’ point of view has ever been considered.
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The problem in trying to fit this host of examples in our picture is, however, that if the
dependence on the parameter is dinatural, there is no way to induce a natural transformation
TA ñ TA1 o TA1 ñ TA given a morphism u : A Ñ A1 in A.

We can, however, circumvent the problem considering the entire ‘twisted product’ AopˆA

as an indecomposable space of parameters, and then consider the family of endofunctors

Aop ˆ A // rD,Ds

pA,A1q
� // LA1RA

(3.5.4)

of which we are free to consider the endofunctor algebras.

Definition 3.5.1. Adopt the notation pL % RqA “ tLA % RA | A P Au for a parametric
adjunction as in (3.5.1), and denote

S : Aop ˆ A ÝÑ rD,Ds : pA,A1q ÞÑ LA1RA T : Aop ˆ A ÝÑ rC,Cs : pA,A1q ÞÑ RALA1

(3.5.5)
the parametric endofunctors obtained as in (3.5.2).

• The fibration of algebras (resp., of twisted arrow algebras) of the parametric adjunction
pL % RqA is defined as the central (resp., left) vertical leg of the pullback square

Algτ pL % Rq //

��

AlgpL % RqA //

��

ş

AlgC

��
TwpAq

Σ
// Aop ˆ A

T
// rC,Cs

(3.5.6)

• The opfibration of coalgebras (resp., of twisted arrow coalgebras) of the parametric
adjunction pL % RqA is defined as the central (resp., left) vertical leg of the pullback
square

coAlgτ pL % Rq //

��

coAlgpL % RqA //

��

ş

coAlgD

��
TwpAq

Σ
// Aop ˆ A

S
// rD,Ds

(3.5.7)

Remark 3.5.2. It is worth spelling out explicitly the structure of AlgpL % Rq and Algτ pL %

Rq.
An object of AlgpL % Rq consists of a triple pA,A1;Xq where X is a RALA1 -algebra (for

short: an AA1-algebra with respect to L % R), i.e. a map xAA1 : RALA1X ↠ X. A morphism
pA,A1;Xq Ñ pB,B1;Y q consists of a triple pu, v; fq P ApB,Aq ˆ ApA1, B1q ˆ XpX,Y q such
that f is a morphism of algebras X Ñ pu, vq˚Y , where Y becomes an AA1-algebra posing

pu, vq˚Y “ RALA1Y
Ru˚Lv

ÝÝÝÝÑ RBLB1Y Ñ Y (3.5.8)

This means that the diagram

RALA1X

xAA1

��

RALA1f// RALA1Y

yBB1

��
X

f
// Y

(3.5.9)
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3.5. THE CASE OF DINATURAL PARAMETRICITY

is commutative.
An object of Algτ pL % Rq admits a similar description, only that objects are pairs

pu : A Ñ A1;Xq where X is a RALA1 -algebra, and a morphism pa : A Ñ A1;Xq Ñ pb : B Ñ

B1;Y q consists, similarly, of a morphism pu, vq P TwpAq and a morphism f : X Ñ pu, vq˚Y .
Note that Σ is a discrete fibration, and as a consequence so are the fibrations of twisted

algebras and coalgebras Algτ pL % Rq ↠ AlgpL % Rq and coAlgτ pL % Rq ↠ coAlgpL % Rq.

Note how each LA1RA is in general just a mere endofunctor, and a comonad if A1 “ A;
similarly, for RALA1 . It seems like we can’t build a fibration collecting the endofunctor
algebras for LA1RA if A1 ‰ A, and the coEilenberg–Moore algebras if A1 “ A, in the same
total category (what would the reindexings of such a fibration be?).

The intuition on how to modify the definition of algebra to circumvent this problem is
due to R. Atkey, and it is studied to a fairly large extent in [Atk09a] (where, for example,
a Beck monadicity theorem is proved).

Definition 3.5.3. A diparametric monad consists of a functor T : Aop ˆ A ˆ X ÝÑ X

(or equivalently, of type Aop ˆ A ÝÑ rX,Xs) equipped with extranatural transformations
η : idX ñ T and µ : T ˝ T ñ T having components

T pAA1 T pA1A2 Xqq

T pA A2 Xq

µA1

AA2X

X

T pA A Xq

ηA
X

(this means that µ is natural in A,A2, X and dinatural in A1, and η is natural in X and
dinatural in A) such that the following axioms1 are satisfied:

• left and right unitality,

T pA A1 Xq

A T pA A1 XqqT pA

T pA A1 Xq

µA1

AA2X

ηA
T AA1X

“

T pA A1 Xq

T pA A1 Xq

“

T pA A1 Xq

A1 A1 A1 XqqT pA

T pAA1 Xq

µA1

AA2X

T AA1ηA1

X

• associativity,

T pA A3 Xq

T pA A1 T pA1 A2 A2 T pA3Xqqq

“

T pA A3 Xq

T pA A1 T pA1 A2 A2 T pA3Xqqq

µA1

AA3X
µA1

AA3X

1We express the axioms in string diagrammatic form, as the equational presentation in [Atk09a] is nota-
tionally quite daunting. The graphical presentation of axioms is not present in Atkey’s paper, but it doesn’t
add anything new.
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Definition 3.5.4. A parametric algebra for a diparametric monad as above consists of a
parametric module; spelled out explicitly, this is a functor E : Aop ÝÑ X equipped with a
family of morphisms ξAA1 : T pA1, A,EAq Ñ EA1 subject to the following string-diagrammatic
constraints: if the algebra map is described as

ξA
A1

then we require the following compatibilities to hold:

• with the unit of the monad,

ξA
A1

ηA
X

idEA“

• with the multiplication of the monad,

ξA
A1

T AA1ξA1

A2

ξA
A2

µA1

AA2EA2

“

Remark 3.5.5. Note to what condition these string diagram reduce to, when E : Aop Ñ X

is a constant functor at E P X: instead of an Eilenberg–Moore algebra for the monad
T pA,A,´q, one has a map T pA1, A,Eq Ñ E subject to certain compatibility conditions
with the parametric unit and the parametric multiplication. The diparametric monad mul-
tiplication and unit are ‘irreducible’ to a monad structure on the various T pA1, A,´q. This
is compatible with the fact that for a given parametric adjunction, RALA1 is not a monad
if A1 ‰ A.

The obvious notion of morphism between parametric algebras E,E1 : Aop Ñ X (a natural
transformation γ : E ñ E1 compatible with the algebra maps in a suitable sense) gives the
definition of the category of parametric algebras πAlgpT q for a diparametric monad as in
Definition 3.5.3.

A similar line of reasoning defines free parametric algebras for a diparametric monad:

Definition 3.5.6. The category πKlpT q of parametric free algebras for a diparametric monad
pT, µ, ηq has objects the pairs pA,Xq P A ˆ X, and morphisms pA,Xq Ñ pA1, Y q the mor-
phisms X Ñ T pA,A1, Y q in X; the identity of pA,Xq is given by ηX : X Ñ T pA,A,Xq, and
composition is defined using the multiplication maps µA1

AA2X . Associativity and unitality
then follows from the constraints of Definition 3.5.3.

Examples of diparametric monads in the sense of Atkey come from elementary category
theory and logic.

Example 3.5.7 (The state monad). In every monoidal closed category pC,b, Iq, the para-
metric adjunction

CpAbB,Cq – CpA,CBq (3.5.10)
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3.5. THE CASE OF DINATURAL PARAMETRICITY

gives rise to the state monad with unit and multiplication respectively given by the following.

ηAX : X // pX bAqA µBXAC : ppX bAqB bBqC // pX bAqC (3.5.11)

Example 3.5.8 (The continuation monad). In every monoidal closed category C, the para-
metric adjunction

CpX,Y Aq – CpY,XAq (3.5.12)

gives rise to the continuation monad with unit and multiplication obtained as in Exam-
ple 3.5.7.

Remark 3.5.9. Parametric monads are, much like graded monads, just monads in the
sense of [Str72] in a 2-category other than Cat; a diparametric monad T : Aop ˆ A ÝÑ

rX,Xs is in fact just a monad in the bicategory of rX,Xs-enriched profunctors, over the
free rX,Xs-enriched category generated by A, and as such, a category enriched over rX,Xs,
with morphisms given by the morphisms in A, plus the heteromorphisms prescribed by T .
Indeed, the general monad laws boil down to the axioms of Definition 3.5.3 in the special
case of rX,Xs-enriched categories.

It is worth to pointing out that, however, Atkey provides every diparametric monad with
the choice of a tensorial strength – an assumption that we do not include in the definition.

Theorem 3.5.10. There exists a comparison functor

K : AlgpL % Rq // πKlpT q (3.5.13)

where T : Aop ˆ A ÝÑ rX,Xs is the diparametric monad RL : pA,A1q ÞÑ RALA1 .
On objects, K is defined as a projection pA,A1;Xq ÞÑ pA1, Xq; on morphisms, a triple

ru, v; f s as in Remark 3.5.2 goes to the composition

X
ηA1

X // RA1LA1X
RA1LA1f // RA1LA1Y

RA1 ˚Lv // RA1LB1Y (3.5.14)

which is a parametric Kleisli morphism pX,A1q Ñ pY,B1q according to Definition 3.5.6.

Note also that given a parametric adjunction pL % Rq we can build the fuctors T, S as
in Equation 3.5.5 and we can consider the end and the coend

ż

A

RALA,

ż A

LAR
A : D ÝÑ D (3.5.15)

of T, S respectively. As (co)limits, and hence (co)ends, in functor categories are taken
pointwise,

ş

A
RALA,

şA
LAR

A are precisely the end and coend of a diagram of endofunctors.
Notice that from well-known facts on (co)monadicity of the category of (co)monads over

X it follows that

• the functor S5 “
şA
LAR

A is a comonad on D;
• the functor T 7 “

ş

A
RALA is a monad on D.

Another instance of dinatural parametricity arises when, given a parametric endofunctor
F : A ÝÑ rX,Xs, we want to consider its endofunctor algebras and coalgebras at the same
time:
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Definition 3.5.11. Define the pseudofunctor

caF : Aop ˆ A // Cat
pA,Bq

� // AlgXpFAq ˆ coAlgXpFBq
(3.5.16)

The fibration associated to caF is the fibration of coalgebras-algebras obtained from F .
Similarly, given a diparametric monad T : A ÝÑ MndpXq, its Eilenberg–Moore-Kleisli

fibration is the fibration associated to the functor

emkT : Aop ˆ A // Cat
pA,Bq

� // EMpTAq ˆ KlpTBq
(3.5.17)

Remark 3.5.12. From the fact that if A has an initial and a terminal object, its twisted
arrow category has ∅ Ñ 1 as a terminal object, we deduce that there are isomorphisms

ż A

caF pA,Aq “

ż A

AlgXpFAq ˆ coAlgXpFBq

– AlgXpF∅q ˆ coAlgXpF1q,
ż A

emkT pA,Aq “

ż A

EMpTAq ˆ KlpTBq

– EMpT∅q ˆ KlpT1q.

3.5.1 An optician’s lament
In functional programming, a lens (and, more generally, an optic) is a powerful abstraction
that provides a composable and bidirectional data type to access and modify parts of other
complex data structures. It draws its theoretical foundation from category theory (for the
connection with lenses, particular optics, see [Hed19, Hed17]; see [Spi19] for a categorical
overview and generalisation; [Ril18, PGW17, Boi18, CEG`20]), specifically focusing on the
notion of a lens as a certain type of morphism in categories of pairs of objets, representing
abstract data structures.

Loosely speaking, a notion of optic arises every time a monoidal category M is acting on
a category X. To start our analysis, we recall how the construction of the category of optics
goes: let M be a monoidal category, X a category equipped with two compatible left and
right actions of M, i.e. with functors ◁,▷ such that pM ▷ Cq ◁M 1 – M ▷ pC ◁M 1q.

Define a category OptX having as objects the pairs r AB s and hom-sets given by

OptXpr AB s , r CD sq “

ż M

XpA,M ▷ Cq ˆ XpD ◁M,Bq (3.5.18)

We can adapt this construction, first exposed in [Tam06, PS08] and used in [Ril18, CEG`20]
to describe modular data accessors, to attach a category of optics to a parametric endofunc-
tor F : A ÝÑ rX,Xs.

Let A˚ be the free monoidal category on A and consider the canonical extension F˚ :
A˚ ÝÑ rX,Xs of F , given by the universal property of free monoidal categories; then one
can define a category OptX,F having objects the pairs of objects of X and hom-sets

OptXpr AB s , r CD sq “
ÿ

nPN

ż X⃗“X0,...,Xn

XpA, X⃗ ▷ Cq ˆ XpD ◁ X⃗, Bq (3.5.19)
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where X⃗ ▷ C, B ◁ X⃗ are shorthands for

X⃗ ▷ C :“ FX0 p. . . FXn´1FXn
Cq

D ◁ X⃗ :“ FXn
p. . . FX1FX0Dq

respectively.

Remark 3.5.13. Clearly, to determine (3.5.19) it is enough to compute the coends
ż X

XpA,X▷CqˆXpD◁X,Bq,

ż XY

XpA, pX,Y q▷CqˆXpD◁pX,Y q, Bq, . . . (3.5.20)

and sum all the results.

Example 3.5.14. If A “ X is a Cartesian category and F is the regular representation of
Example 3.2.1, from (3.5.19) we have to compute the coends

ż X0,...,Xn

XpA,X0 ˆ ¨ ¨ ¨ ˆXn ˆ Cq ˆ XpX0 ˆ ¨ ¨ ¨ ˆXn ˆD,Bq (3.5.21)

whence we obtain the category having objects the pairs r AB s and hom-sets given by the
morphisms of type

f

g
...

(3.5.22)

and composition and identities respecively given by

f

g

h

k
...

...
...

1A

πB

(3.5.23)

This is usually called the category of traversables.

Note that there’s very few other cases when the integral (3.5.19) can be explicitly eval-
uated.

In fact, even in the case where A “ X is a monoidal (nonCartesian) category and F is
the regular representation, the integral (3.5.19) is not easy to compute: actually, it is not
even clear how to compute the coend at step n “ 2, as the integral

ż XY

XpA, Y bX b Cq ˆ XpD bX b Y,Bq (3.5.24)

doesn’t seem to reduce to a known object.

Construction 3.5.15. A more interesting way to attach a category of optics to a parametric
endofunctor comes from the theory of dependent optics exposed in [Ver23]; there, a category
of optics is defined in terms of a pair of pseudofunctors L,R : Bop ÝÑ Cat from a bicategory
B; the objects of OptL,R are then ‘dependent’ pairs pX,Y qB :“ pB;X P LB , Y P RBq,
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where B P B is an object of the base bicategory, and X,Y objects of LB “ LB,RB “ RB
respectively. Hom-sets are defined as the coends

OptL,RppX,Y qB , pX 1, Y 1qB
1

q “

ż fPBpB,B1
q

LBpX,LfpX 1qq ˆ RBpRfpY 1q, Y q (3.5.25)

Specialising this construction to a pair of parametric endofunctors F : A ÝÑ rX,Xs, G :
A ÝÑ rX,Xs and the pseudofunctors associated to their fibration of algebras, we obtain the
category with objects the dependent pairs

´

FAX
Ó

X
,
GAY

Ó

Y

¯

, and hom-sets the coends above.

We conclude this excursus in profunctor optics theory with a way to connect the category
of (Set-based) lenses with the Kleisli opfibration of the parametric continuation monad of
Example 3.5.8. The derivative functor was introduced in [Cap23] but this connection wasn’t
observed.

Construction 3.5.16. Let LenspSetq “ Lens be the category having objects the pairs r AB s

and morphisms
LensprXS s , r YR sq :“ SetpX,Y q ˆ SetpX ˆR,Sq (3.5.26)

(this is a particular case of Equation 3.5.18 when the action is the regular representation).
Now, define the endofunctor B : Lens ÝÑ Lens as follows:

• on objects B rXS s “
“

X
SX

‰

;
• on morphisms, as a map

LensprXS s , r YR sq // Lensp
“

X
SX

‰

,
“

Y
RY

‰

q (3.5.27)

so that a pair of functions u : X Ñ Y and f : X ˆR Ñ S goes to the pair

pu, Bufq P Lensp
“

X
SX

‰

,
“

Y
RY

‰

q “ SetpX,Y q ˆ SetpX ˆRY , SXq (3.5.28)

where Bufpx1, tq “ λx.fpx, tpuxqq.

This is called the reverse derivative of a lens in [Cap23].

Lemma 3.5.17. Let M be the free monoid on two generators, Nxα, βy. Then, every B-
coalgebra pX, fq P coAlgpBq induces a representation of M on the Kleisli category of the
parametric continuation monad of Example 3.5.8.

Theorem 3.5.18. The correspondence of the previous lemma is the action on objects of a
functor

Υ : coAlgpBq // πKlpT q (3.5.29)

where πKlpT q is the Kleisli category in the sense of Atkey, of the parametric continuation
monad T : X ÞÑ SpSX

q on Set (cf. § 3.5).

The result is easily unraveled: an endofunctor coalgebra for B consists of an element
pᾱ, βq of SetpX,Xq ˆ SetpX ˆ SX , Sq, i.e. of a pair of functions

X
ᾱ // X

ηS
X // SpSX

q X
β // SpSX

q (3.5.30)

(up to currying β and precomposing ᾱ with the unit of the continuation monad. Clearly,
this defines a representation of M sending prXS s , pᾱ, βqq to the carrier X with the action
induced by α, β.
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The crux of the matter is to show that this correspondence is functorial. The generic
morphism of coalgebras r

ν
φ s : rXS s Ñ r YR s now induces a morphism X Ñ SpRY

q, defined as

x ÞÑ λr.φpν, rpνxqq. (3.5.31)

Very boring routine calculations now show that this assignment is such that the identity in
Lens goes to the unit ηSX , and that composition of coalgebra maps in Lens goes to Kleisli
composition in πKlpT q.
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Chapter 4

Structure theorems

Summary of chapter

The present chapter is the heart of our work, where we expose a formal theory
of fibrations of algebras; we elucidate the relation between fibrations of algebras
and graded monads in Remark 4.1.5: the category of parametric algebras of a
parametric monad T : A ˆ X ÝÑ X and of graded algebras for an associated
graded monad T̂ are equivalent. In this perspective, the theory of fibrations of
algebras is a portion of the theory of graded monads.

We then move to characterise parametric monads intrinsically. Theorem 4.2.1
and Theorem 4.2.6 prove that a parametric monad is, equivalently: a monad in
FibpAq over the trivial fibration πA : A ˆ X ↠ A; a monad in the coKleisli
2-category of the coreader comonad A ˆ over an object X; a monad in the 2-
category Cat˙Cat arising from Theorem 3.3.6. In each of these characterizations,
the Eilenberg–Moore category of the monad in question is A ˙EM X.

In §4.3 we substantiate our view of fibrations of algebras as semidirect prod-
ucts, building the ‘canonical null sequence’ of a fibration of algebras

1 ÝÑ X ÝÑ A ˙ X ÝÑ A ÝÑ 1

in Remark 4.3.6, and (4.3.4). We study the problem of the existence of adjoints
to fibre inclusions in §4.4, which is naturally stated in terms of the canonical
null sequence, and subsequently in §4.5 we move to relate the Eilenberg–Moore
fibration A ˙EM X of a parametric monad T and the Kleisli fibration A ˙Kl X
via a parametric Linton theorem, Construction 4.5.2, built on the Yoneda struc-
ture on FibpAq [SW78, Str81]. Lastly, in §4.6 we provide universal properties of
the fibration of algebras A ˙ X and A ˙EM X as 2-dimensional limits (Proposi-
tion 4.6.5) and colimits (later developed in §5.1), and we draft the essentials of
a theory of fibration of algebras in an abstract 2-category other than Cat.

4.1 On the relation with graded monads
Remark 4.1.1. In [BJK05] it is observed that to give a lax monoidal functor pC,`q ÝÑ

pK,bq, where K is any monoidal category and C is coCartesian is the same as to give a
functor C ÝÑ MonpKq, due to the universal property of the coCartesian monoidal structure.
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We are particularly interested in this result when K “ rX,Xs is the category of endo-
functors of X and b is functor composition.

In fact, in such a situation, thanks to the fact that every object of a coCartesian category
C has a canonical monoid structure, we can prove that a functor F : C ÝÑ MonpXq defines
laxators

FA ˝ FB // FA`B ˝ FA`B
// FA`B (4.1.1)

and vice versa, any lax monoidal functor F : pC,`q ÝÑ prX,Xs, ˝q is such that each FA is a
monad with multiplication

FA ˝ FA // FA`A
// FA . (4.1.2)

Remark 4.1.2. There is a rather intrinsic way to prove this result: given a parametric
endofunctor F : A ÝÑ rX,Xs, a monad structure on each FA amounts to the presence of
2-cells

A

∆
��

F //

�� µ

rX,Xs A
t //

�� η

1

ridXs

��
A ˆ A

FˆF
// rX,Xs ˆ rX,Xs

˝

OO

A
F
// rX,Xs

(4.1.3)

while if A is coCartesian a lax monoidal structure on F amounts to the presence of 2-cells

A
F // rX,Xs

T\
A 1

ridXs

��

∅oo

A ˆ A

`

OO

FˆF
// rX,Xs ˆ rX,Xs

˝

OO

A
F
// rX,Xs

(4.1.4)

Then, if A is coCartesian, these two types of 2-cells correspond bijectively to each other
under mating.1

It is an observation of J. Bénabou [Bén67] that a monad in a bicategory B consists
exactly of a lax functor 1 ÝÑ B, where 1 is the terminal bicategory. The notion of a graded
monad [FKM16] arises to generalise this fact.

Definition 4.1.3 (Graded monad). Let B be a bicategory; a graded monad in B consists
of a lax functor ΣK ÝÑ B, where ΣK is the one-object bicategory associated to a monoidal
category pK,bq.

When there is no risk of misunderstanding, we will denote a graded monad simply as
T : K ÝÑ B, implicitly assuming that K is regarded as a one-object bicategory.

Unwinding this definition in the case B “ Cat is the strict 2-category of categories,
functors and natural transformations, we get that a graded monad consists of the following
data:

• a family of functors TM : X ÝÑ X;
• a natural transformation η : idX ñ TJ where J is the monoidal unit of K;
• a family of natural transformations µMN : TMTN ñ TMbN ,
1A coCartesian object in a Cartesian 2-category K can be defined as a 0-cell A such that the comonoid

maps A Ñ 1, A Ñ A ˆ A are right adjoints. CoCartesian objects in pCat, ˆq are precisely categories with
(finite) coproducts.
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satisfying the axioms of unitality and associativity:

• for M,N P K, the diagrams

TN

,,

ηTN // TJTN

µJN

��

TMTJ

µMJ

��

TM
TMηoo

rrTJN TMJ

(4.1.5)

are commutative, where the arrows TM ñ TMJ , TN ñ TJN are induced by the unitors;
• for L,M,N P K, the diagram

TLTMTN
TLµ

MN

//

µLMTN

��

TLTMbN

µL,MN

��

TLbMTN

µLM,N

��
TpLbMqbN

// TLbpMbNq

(4.1.6)

commutes, where the unnamed arrow comes from the associator.

This leads directly to the following definition, once recognised that the category of Eilenberg–
Moore algebras for a monad T : X ÝÑ X is the lax limit of the lax functor T : 1 ÝÑ Cat:

Definition 4.1.4 (Algebras for a graded monad). The category of algebras for a graded
monad T : K ÝÑ B is – provided it exists – the lax limit of the functor T : K ÝÑ B.

Unwinding this definition in the case B “ Cat is the strict 2-category of categories,
functors and natural transformations, we get that an algebra for a graded monad T consists
of morphisms TMAN Ñ AMbN satisfying suitable axioms (cf. [Fuj19, §4.1.1]).

This notion of graded algebra for a graded monad depends on all the parameters simul-
taneously; instead, we have been considering a fiberwise notion of parametric algebras. It is
natural to wonder whether the two constructions are related meaningfully.

The relation between the two notions of algebras is made precise by the following remark:
when we consider a parametric functor and its algebras in our sense, we are, in the end, just
considering the algebras (in the graded sense) for its associated lax monoidal functor.

Remark 4.1.5 (On the relation with graded monads). The category of parametric algebras
for a parametric monad F : A ÝÑ rX,Xsµ and the category of graded algebras for the
associated graded monad F̃ : pA,`q ÝÑ rX,Xs are equivalent.

Proof. The proof fundamentally uses the equivalence of Remark 4.1.1.

4.2 EM fibrations as Eilenberg–Moore objects
A useful characterisation lemma for Eilenberg–Moore fibrations uses a monadicity criterion:
it is known (cf. [Jac98, p. 79]) how to characterise monads in FibpAq as monads on total
categories having vertical unit and multiplication. This gives at once the following result,
that turns out to be one of the most useful results of the present paper, although completely
elementary.
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Theorem 4.2.1. A fibration p : E ↠ A is an Eilenberg–Moore fibration if and only if there
exists a morphism of fibrations H : p : E ↠ A ÝÑ πA : A ˆ X ↠ A which is monadic as a
1-cell in FibpAq.

This, in turn, is equivalent to the fact that H

• has a left adjoint L fibred over A;
• the Eilenberg–Moore object for the monad HL induced by L % H is equivalent to p.

We can flesh out the statement in more explicit terms. An Eilenberg–Moore fibration is
equivalent to giving a functor

A // pCat{Xqop
m (4.2.1)

where the codomain is the subcategory of functors U : C Ñ X that are monadic.
The proof Theorem 4.2.1 can be given directly, but we prefer to proceed swiftly to more

interesting results, and thus we provide a formal argument suited to a more general setting
(that will be extensively adopted in §4.7).

Proof. Define two correspondences, in opposite directions, between fibrations pT obtained
as pullbacks

A ˙EM X //

��

ş

EMX

Uµ

��
A

T
// rX,Xsµ

(4.2.2)

and monads on A ˆ X, fibered over A:

• on one side, given T (and thus the fibration pT ), we compose it with the forgetful
functor V :

ş

EMX ÝÑ X sending pA,E P EMpTAqq ÞÑ E of (4.3.4); this yields

A ˙EM X
xpT ,V y // A ˆ X (4.2.3)

and one can prove directly that this amounts to collating together all (monadic) func-
tors UA : EMpTAq ÝÑ X and their left adjoints into a monadic functor;

• on the other side, let T : A ˆ X ÝÑ A ˆ X be a monad, split as the composition
UF : AˆX

F
ÝÑ EMpT q

U
ÝÑ AˆX; then, we can consider the composition πX ˝UF , i.e.

A ˆ X
T // A ˆ X // X . (4.2.4)

Now, we have to prove that these two correspondences are mutually inverse. The heart of
the matter is proving that the diagram

A ˙EM X //

��

ş

EMX

��
A

η // rX,A ˆ Xs
rX,UF s// rX,A ˆ Xs

rX,πXs // rX,Xs

(4.2.5)
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is a pullback; this is however a direct consequence of the pasting lemma for pullbacks:

A ˙EM X //

��

rX,As ˆ
ş

EMX

��

//
ş

EMX

��
A

η // rX,A ˆ Xs
rX,UF s // rX,A ˆ Xs

rX,πXs // rX,Xs

(4.2.6)

which concludes the argument.

Remark 4.2.2. Consider the functor

xpT , V y : A ˙EM X // A ˆ X. (4.2.7)

It is a general fact that its left adjoint L is the objectwise coproduct of the left adjoints to
pT and V , and coupled with the remarks of §2.2.3 a direct computation shows that such lef
adjoint acts sending pA,Xq to the free A-algebra pTAX,µ

A
Xq.

From here, it is clear how to construct a (tautological) equivalence of categories between
the category of algebras for the induced monad xpT , V y ˝ L and A ˙EM X.

Remark 4.2.3. It’s clear how to dualise Theorem 4.2.1 to characterise A iEM X as a
coEilenberg-Moore object; we will postpone a precise statement to Theorem 4.2.7 below.

The above discussion applies to the aforementioned Cartier–Gabriel–Kostant theorem.

Example 4.2.4 (The Cartier–Gabriel–Kostant setting). Let k be an algebraically closed
field of characteristic zero, let Liek denote the category of Lie algebras over k and let CCHopf
denote the category of cocommutative Hopf algebras over k. We then have the adjunctions

Liek oo
P

K

U //
CCHopf G //oo

kr s

oo kr s

Grp (4.2.8)

where all the functors are defined as follows:

• the functor G maps a Hopf algebra to the set of its grouplike elements (elements
satisfying ∆pxq “ x b x), which becomes a group if we restrict the multiplication of
the algebra to it,

• the functor P maps a Lie algebra to its primitive elements (elements satisfying ∆pxq “

xb 1 ` 1 b x), which becomes a Lie algebra under the commutator operation rx, ys “

xy ´ yx,
• the functor kr´s maps a group G to its group algebra, which becomes a Hopf algebra

if we define comultiplication on the generators g P G by ∆pgq “ gbg and the antipode
on the generators g P G by Spgq “ g´1 (note that kr s % G % kr s), and

• the functor U maps a Lie algebra L to its universal enveloping Hopf algebra, which
is constructed by taking the free algebra on the vector space L, which is given by
À8

n“0 L
bn, and taking the largest quotient algebra that kills the elements rx, ys´pxb

y ´ y b xq.

The CGK theorem [Kos77], [EGNO15, 5.10.2] now can be rephrased into the following
assertion, thus giving rise to an example of a fibration of algebras.

Theorem 4.2.5 (Cartier–Gabriel–Kostant theorem). The functor xG, P y : CCHopf ÝÑ

Grp ˆ Liek is monadic over the trivial fibration πGrp : Grp ˆ Liek ↠ Grp.
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4.2.1 More characterisation results
Theorem 4.2.1 evidently has a dual analogue for fibration of Eilenberg–Moore coalgebras; in
fact, we can appreciate best the nature of Theorem 4.2.1 above if we rephrase it as follows:

Theorem 4.2.6. The following pieces of data are equivalent:

• a parametric monad T : A ˆ X ÝÑ X, i.e. (upon currying) a functor A ÝÑ rX,Xsµ;
• a monad T : πA : A ˆ X ↠ X ÝÑ πA : A ˆ X ↠ X in the 2-category FibpAq;
• a monad T : A ˆ X ù X in the 2-coKleisli category of the 2-comonad A ˆ ´, over

the object X;
• a monad in the (domain of the) 2-fibration Cat ˙ Cat obtained in Theorem 3.3.6.

Proof. It is enough to observe that the unit and multiplication of a parametric monad
T : A ÝÑ rX,Xsµ can be seen as 2-cells η : πX ñ T and µ : T ‚T ñ T where πX : AˆX ÝÑ X

is the projection functor and

T ‚ T : A ˆ X
∆ˆX

ÝÝÝÑ A ˆ A ˆ X
AˆT

ÝÝÝÑ A ˆ X
T

ÝÑ X (4.2.9)

is a coKleisli composition.

This statement is more prone to be dualised straightforwardly:

Theorem 4.2.7. The following pieces of data are equivalent:

• a parametric comonad T : A ˆ X ÝÑ X, i.e. (upon currying) a functor A ÝÑ rX,Xsδ;
• a comonad T : πA : A ˆ X ↠ X ÝÑ πA : A ˆ X ↠ X in the 2-category FibpAq;
• a comonad T : A ˆ X ù X in the 2-coKleisli category of the 2-comonad A ˆ ´, over

the object X;
• a comonad in the (domain of the) 2-fibration Cat ˙ Cat obtained in Theorem 3.3.6.

Remark 4.2.8 (The universal property of the simple fibration). A similar statement holds
for coKleisli and Kleisli (op)fibrations: a functor p : E ↠ A is equivalent to A ˙Kl X (resp.,
A iKl X) if and only if it is the (co)Kleisli object of a monad fibered over the projection;
Kleisli objects in the 2-category Fib are the subject of [Her93, 5.4.1, 5.4.2].

An immediate consequence of such a characterisation is that the simple fibration of
Discussion 1.1.1 and Example 3.2.1 of a Cartesian category has a universal property in the
2-category FibpAq; it is the coKleisli object of the comonad

pA,Xq
� // pA,AˆXq

A ˆ A //

πA

##

A ˆ A

πA

yy
A

(4.2.10)

Remark 4.2.9 (Distributive laws between parametric functors). We turn to an application
of this characterisation: Theorem 4.2.1, and 4.2.6 even more, are quite useful in pinpointing
the correct notion of distributive law between parametric endofunctors S, T : X ÝÑ X.
Recall that the classical notion of distributive law consists of a ‘lax intertwiner’ between
functors λ : ST ñ TS to which we require to be compatible with the structure of S, T
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(monad and monad; comonad and monad; monad and comonad, etc.; cf. [AM20, Appendix
C.1] for a thorough discussion on the matter of intertwining p monads and q comonads).

Now Theorem 4.2.6 allows describing distributive laws between parametric moands as
distributive laws between a monad T : AˆX ÝÑ AˆX on πA, and a monad S : Bˆ Y ÝÑ

BˆY on πB. (Unwinding what this latter characterisation boils down to is just a matter of
bookkeeping the notation.)

Another application of this point of view is to relate endofunctor algebra fibrations and
Eilenberg–Moore fibrations together.

Remark 4.2.10. Assume X is such that the forgetful functor

U : rX,Xsµ // rX,Xs (4.2.11)

has a left adjoint L, we can compare the fibration of endofunctor algebras for a parametric
functor F : A ÝÑ rX,Xs and the fibration of Eilenberg–Moore algebras for the associated
free parametric monad F̃ : A ÝÑ rX,Xs

L
ÝÑ rX,Xsµ.

In fair generality, these fibrations are even equivalent, as it can be seen observing that
the fiberwise equivalences between AlgXpFAq and EMpF̃Aq glue together to an equivalence
of fibrations.

4.3 Fibrations of algebras as short exact sequences
The purpose of this section is to provide a more formal outlook on fibrations of algebras,
inspired by the fact that under minimal assumptions on A,X we can build ‘short exact
sequences of categories’ out of a parametric endofunctor F : A ÝÑ rX,Xs.

Assumption 4.3.1. For the entire section, we will assume that the category A of parameters
has an initial object and the category X, the domain of the parametric endofunctors we
consider, has a terminal object. Sometimes, we will mention the possibility that A is pointed
or has both an initial and a terminal object, and likewise for X.

Moreover, we assume that all parametric free algebras exist: more formally, each functor

UA : tAu ˙ X // X (4.3.1)

has a left adjoint.

Remark 4.3.2. In case F is a parametric monad, this last assumption is always satisfied for
obvious reasons when considering its fibration of EM-algebras and its opfibration of Kleisli
categories.

Now that this is set up, we have to establish some notation and terminology:

Definition 4.3.3 (Null adjunctions, null sequences). In the above assumption that A has
an initial object and X a terminal one, we call the pair of adjoint functors

X oo
∅
K

1 //
A (4.3.2)

obtained from the constant at the initial and terminal objects the null adjunction.
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Equivalently, we call null adjunction any adjoint pair that factors through the discrete
category on one object. Note that the essential uniqueness of adjoints makes the above one
in (4.3.2) the unique null adjunction, up to isomorphism of functors.

Consider, now, a sequence of adjoints

A oo
uR

K

u //
B oo

vR

K

v //
C (4.3.3)

that composes to the null adjunction; in such a situation, we call (4.3.3) a null sequence of
adjunctions.

Under such assumptions,

Lemma 4.3.4. The category A˙ X induced by a parametric endofunctor F : A ÝÑ rX,Xs

fits in a null sequence of adjunctions

X oo
V

K

Φ //
A ˙ X oo

s
K

pF //
A. (4.3.4)

The right adjoint s is determined by choosing the terminal object of each fibre. The
functor V is obtained from the forgetful functors UA : AlgXpFAq ÝÑ X, and its left adjoint
from the free algebra at the initial parameter: X P X goes to the free F∅-algebra on X.

Proposition 4.3.5. Given a null sequence

A oo
uR

K

u //
B oo

vR

K

v //
C (4.3.5)

of adjunctions u
ηu
ϵu

uR and v
ηv
ϵv

vR, there is precisely one natural transformation uuR ñ

vvR, necessarily equal to the composition

uuR
εu

ùùñ 1B
ηv

ùùñ vvR (4.3.6)

in the category B.

From the previous discussion, we deduce the following:

Remark 4.3.6 (The canonical null sequence of a fibration of algebras). There is a diagram
of adjunctions

X

##

Φ //
K A ˙EM X
V

oo

iRyy

pF //
K A
s

oo

t∅u ˙ X

i∅
99

U∅

cc
(4.3.7)

where the upper line of Lemma 4.3.4 forms a null sequence and the left triangle of adjoints
commutes, in the sense that the adjunction pΦ % V q is the composite of the two adjunctions
X Õ t∅u ˙ X Õ A ˙EM X.
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Remark 4.3.7. The diagram of functors

X A ˙ X
Voo pF // A

! // 1 (4.3.8)

defines a polynomial with J “ 1 in the notation of [GK13], so a ‘monomial functor on X

many variables’. Recall that we introduced the topic in the context of fibrations of algebras
in Example 3.4.2, but only in the case of endofunctors – meaning when, in the same notation,
J “ I.

Note that since pF is a Grothendieck fibration, it is always a Conduché functor [Con72],
so that the adjunction p˚

F % ΠpF
always exists and we can compose

Cat{X V ˚

// Cat{A ˙ X
ΠpF // Cat{A

!˚ // Cat{1 “ Cat . (4.3.9)

Definition 4.3.8. The polynomial canonically associated to the parametric endofunctor
F : A ÝÑ rX,Xs is the composition P rF s : Cat{X ÝÑ Cat obtained as in (4.3.9).

This leaves open how to compute P rF s in motivating examples, as it is generally quite
intricate to compute a dependent product functor Πf .

Remark 4.3.9 (Adjoint split extensions). The presence of a sequence of functors like (4.3.4)
and its properties call for a general theory, which will be outlined in a forthcoming paper that
we plan to organise as follows: consider the 2-category LAdj0,1 whose objects are categories
having an initial and terminal object. LAdj0,1 is 2-pointed, hence we can consider sequences

X oo
iR

K

i //
E oo

pR

K

p //
A (4.3.10)

which are pairs of adjunctions composing to the zero adjunction 0 % 1 between constant
functors. If the functor p additionally has a left adjoint pL, then we talk of an ace (short for
Adjoint Split EXtension), and if this latter adjunction is Frobenius (i.e. pL – pR) we talk of
a pointed ace.

For particularly nice choices of sub-2-categories of LAdj0,1 such as semi-abelian categories
or the opposites of toposes, as considered in [FM20], the central term E of an ace can be
seen as the total category of a fibration of algebras; a nice example of this is the torsion
theory, considered in [GKV16], arising from CGK theorem Example 4.2.4.

4.4 On adjoints to inclusions of the fibers
Lifting an adjunction along a fibration via pullback is a well-known problem that can be
dated back to C. Hermida’s thesis [Her93], see for example his 3.2.3 and 3.2.5; the content
of the present section hence is not new, but might be considered a specialisation to the case
when there is an adjunction between the category A of parameters of a fibration of algebras,
and another category K; particularly interesting choice of K are the fibre over the initial or
terminal object of A (so we determine an adjunction between the fibres t∅u ˙ X or t1u ˙ X

and A˙X), which reduce to an adjunction X Ô A˙X under the relatively mild assumption
that T∅ or T1 is the identity functor.

The terminology and notation of null sequences exposed in §4.3 here is particularly
handy.
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Proposition 4.4.1. Let p : E ÝÑ A be a fibration, and let i : K ãÑ A be (the inclusion
functor of) a coreflective subcategory with coreflection r : A ÝÑ K. Consider the pullback
of p along i,

EK

p1

��

oo K

j //
E

p

��
K oo K

i //
A

(4.4.1)

i.e. the inclusion of the full subcategory EK over the objects such that pE lies in K. Then,
j has a right adjoint r1.

Note that a more concise way to rephrase Proposition 4.4.1 is that p1 is a coreflective
subfibration of p as an object of the 2-category Fib of fibrations (on variable bases).

Corollary 4.4.2. Consider a parametric endofunctor T : A ÝÑ rX,Xs; then, if A has an
initial object ∅, the inclusion of the fiber over ∅, i.e. the functor i : t∅u ˙ X :“ AlgXpT∅q

has a right adjoint iR : A ˙ X ÝÑ t∅u ˙ X.

Proof. The inclusion t∅u Õ A is a coreflection.

Dually, if i : H ãÑ A is a reflective subcategory and p : E ÝÑ A is an opfibration, then
there exists a left adjoint to j : EH ãÑ E, obtained in a pullback similar to (4.4.1):

EH

��

oo J

j //
E

p

��
H oo J

i //
A

(4.4.2)

Corollary 4.4.3. Consider a parametric endofunctor T : A ÝÑ rX,Xs; then, if A has a
terminal object 1, the inclusion of the fiber over 1, i.e. the functor i : t1u ˙ X :“ coAlgXpT1q

has a left adjoint iL : A ˙ X ÝÑ t∅u ˙ X.

Proof. The inclusion t1u Õ A is a reflection.

Notice that by Lemma 1.2.20 the fibration p is a bifibration if and only if each reindexing
functor u˚ has a left adjoint u! (cf. Theorem 2.2.9 for sufficient conditions under which this
is true for fibrations of endofunctor / Eilenberg–Moore algebras). Thus, we can consider the
diagram

t1u ˙ X A ˙EM X
//

Joo

t∅u ˙ X
��

%

OO

oo K
//
A ˙EM X

(4.4.3)

where u : ∅ Ñ 1 is the unique morphism, and try to outline conditions under which said
diagram can be ‘completed’ with an adjunction of A ˙EM X compatible with the given one.

Observe also that the composite adjunction

X oo K
//
t∅u ˙ X oo K

//
A ˙ X (4.4.4)

coincides with the adjunction pΦ % V q of Lemma 4.3.4; then, by uniqueness of adjoints, if
p : A ˙ X ÝÑ A has a left adjoint l, xp, V y also has a left adjoint obtained as the pointwise
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coproduct l` Φ : pA,Xq ÞÑ lA` ΦX (cf. Remark 4.2.2). Last, observe that such an adjoint
is characterised similarly to Remark 3.3.15.

To conclude this analysis, we shall study the case when A has both an initial and a
terminal object, which might not coincide. Then, if the initial object ∅ is strict, there is
a fully faithful functor ∆r1s “ t0 ď 1u ÝÑ A choosing the unique arrow u : ∅ Ñ 1, and
this admits a left adjoint. Leveraging on Corollary 4.4.3, from any opfibration of coalgebras
q : A i X ↠ X we obtain a reflection

H1
oo K

//
A i X (4.4.5)

where H1 is the subcategory over the fibers on ∅ and 1, connected by the reindexing u˚ :
EMpT1q ÝÑ EMpT∅q.

Remark 4.4.4. The situation in which the existence of such adjoints to inclusions of fibres
becomes interesting is the following general problem (we carry on the discussion in the
case of parametric monads, with little adjustments – like assuming the existence of free
endofunctor algebras for F : A Ñ rX,Xs – a similar analysis can be made for A ˙ X, and of
course dualised to AiEMX and AiX). Consider an arrangement of categories and functors

t∅u ˙ X oo
iR

K

i“i∅ //
A ˙EM X //oo

pR

oo pL

A (4.4.6)

where pL is the functor sending A P A to the free TA-algebra on the initial object of X,
and pR as usual chooses the terminal object in the fiber over A P A; then we can form the
commutative square of natural transformations

iiRpLp
iiR˚ϵ //

ϵ1
˚pLp

��

iiR

ϵ1

��
pLp ϵ

// 1

(4.4.7)

and address the following issues: the square is generally quite far from being a pushout, but
the real pushout k of iiR ˚ ϵ and ϵ1 ˚ pLp acquires thanks to (4.4.7) a canonical choice of
copoint κ : k ñ 1.

This naturally begs the question: when is k a comonad? Given that both H “ iiR
and K “ pLp are comonads, a natural additional assumption on the above diagram is that
the composition HK is itself a comonad (so that iiR ˚ ϵ and ϵ1 ˚ pLp become comonad
homomorphisms). As it is well-known, this is equivalent to the presence of a comonad-
comonad distributive law HK ñ KH. Then, the pushout of K ð HK ñ H in the
category of comonads over E “ A˙EMX is created by the forgetful functor into endofunctors
MndpEq ÝÑ rE,Es.

In our specific situation, however, no nontrivial distributive law can exist: the compo-
sition KH “ pLpiiR is the constant functor at the initial object (because such is pi), and
then a distributive law would have components HKpA;X,xq Ñ ∅.

Remark 4.4.5. One can ask a similar question when, instead of the fibre over ∅, we consider
the whole X and the adjunction pΦ % V q of Lemma 4.3.4: then we have a diagram

X oo
iR“V

K

i“Φ //
A ˙EM X //oo

pR

oo pL

A (4.4.8)
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a commutative square like (4.4.7) also exists in this case, and one can wonder under which
conditions it is a pushout or induces a coreflection of sorts. Note that in this case i “ Φ is not
full; note also that the two problems just outlined coincide when T∅ is the identity functor (it
happens, for example, for the ‘exception’ fibration of endofunctor algebras TAX “ A`X).

Given the above considerations, in general one can only compute the pushout (4.4.7)
explicitly; unwinding the definitions of the various functors one is left with the pushout of
the following span: fix an object pX,xqA P A ˙EM X, and consider

p∅;T∅TA∅ ↠ TA∅q
p!A,idTA∅q//

pid∅,f̄q

��

pA;µ : TATA∅ ↠ TA∅q

p∅;x ˝ T!X : T∅X ↠ Xq

(4.4.9)

where f̄ : TA∅ Ñ X is induced by ∅ Ñ X given the A-algebra structure on X. Note that
the vertical leg of the span in question is just the image of pTA∅, µ∅

AqA Ñ pX,xqA under
the reindexing along the initial map ∅ Ñ A (note also that the ∅ as subscript of T is the
initial object of A, while the ∅ in its argument is the initial object of X); then, given that
p : A ˙EM X ÝÑ A must preserve this pushout, the above diagram can be completed as

p∅;T∅TA∅ ↠ TA∅q
p!A,idTA∅q//

pid∅,f̄q

��

pA;µ : TATA∅ ↠ TA∅q

��
p∅;x ˝ T!X : T∅X ↠ Xq // pA;Qq

(4.4.10)

for an object Q that arises as a colimit in tAu ˙ X. Very little can be said more in general,
but in a specific example, a specific parametric monad can make this computation simpler.

Example 4.4.6. In the fibration of monoids of Example 3.3.1, the pushout in (4.4.10)
defines the functor k : Mon ˙EM Set Ñ Mon ˙EM Set sending an M -set pX, a : M ˆX Ñ Xq

to the set X itself, equipped with the trivial action. Note that this functor is copointed
with a natural transformation ϵ : k ñ id, having components the zero maps p0M , idXq :
pX,πXqM Ñ pX, aqM ;

Note also that the functor k is idempotent (up to isomorphism: k ˝ k – k) and well-
copointed, but not an idempotent comonad (because ϵ ˚ k “ k ˚ ϵ is not an isomorphism).

Remark 4.4.7. We now sketch how to dualise the above analysis:

d1) provided that parametric free algebras exist, we can carry on a similar analysis for
endofunctor algebras in a diagram analogue to (4.4.6); in addition,

d2) we can apply the above line of reasoning to the reflection t1u ˙ X Õ A˙EM X instead;
moreover,

d3) we can study coreflections of fibers of a fibration of coalgebras, and coreflections H1 Ô

A iEM X and A i X as in (4.4.5).

More explicitly, one can study diagrams like

tAu iEM X oo
iL

J

iA //
A iEM X p //oo

pR

oo pL

A (4.4.11)
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for the inclusion of a fiber tAu i X ãÑ A i X (or A iEM X), or for the forgetful-cofree
adjunction V 1 : A iEM X Ô X : Φ1. In the latter case, the diagram

X oo
V 1

J

Φ1

//
A iEM X p //oo

pR

oo pL

A (4.4.12)

is composed by functors Φ1, sendingX to the cofree coalgebra S1X on the terminal parameter
with carrier X, V 1, sending a SA-coalgebra to its carrier, pL sending A to the initial object
in the fiber tAu iEM X, and pR, sending A to the cofree SA-coalgebra on the carrier 1 (the
terminal object of X).

For the coEilenberg–Moore opfibration above, this construction yields a pullback of nat-
ural transformations

h +3

��

pRp

��
Φ1V 1 +3 Φ1V 1pRp

(4.4.13)

rendering h a pointed endofunctor (the reasoning is entirely similar, but dual, to the one
for (4.4.7)); in the specific case of the coreader comonad Aˆ in a Cartesian category (cf.
Example 3.2.1), the pullback in question is easily computed, and h : pA, x : X ↠ Aq ÞÑ

p1, AˆX ↠ 1q is an idempotent monad on A iEM X.

4.5 A parametric Linton theorem
The scope of the present section is to transport the following classical result (cf. [Lin69b,
Lin74]) to the realm of parametric monads: relying on the presheaf construction in the
2-category Fib [Str81], we can relate together the opfibration of Kleisli of §2.1.3 and the
fibration of Eilenberg–Moore of Definition 2.1.11.

Theorem 4.5.1 (Linton’s characterisation of algebras through free algebras). Let T : C ÝÑ

C be a monad; then the Eilenberg–Moore category EMpT q fits in a pullback

EMpT q
K̂ //

U

��

rKlpT qop,Sets

˝FT

��
C

yC
// rCop,Sets

(4.5.1)

where yC is the Yoneda embedding, F˚
T “ ˝ FT precomposes with the (opposite of) the

free functor FT : C ÝÑ KlpT q and K̂ is isomorphic to the ‘nerve’ of the comparison functor
K : KlpT q ÝÑ EMpT q, K̂ : pA,αq ÞÑ EMpT qpK , pA,αqq.

Here we want a similar result for a parametric monad T : A ÝÑ MndpXq; we will obtain
it as a consequence of the following general fact, which can be seen as modelled on [Str81,
6.1].

Construction 4.5.2. Let A be a category and b : F ↠ A be a bifibration; then there is a
functor

ϖ : b{OpFibpAq // FibpAq{b (4.5.2)
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defined on objects h : b Ñ q as follows, if q : E ↠ A is an opfibration over A: consider the
pseudofunctor Fq : A ÝÑ Cat associated to q under the Grothendieck construction, and the
composition

Aop “ Acoop // Catcoop // Cat
A � // FqpAq “ q´1A � // rFqpAqop,Sets

(4.5.3)

and its associated fibration P q : Ē ↠ A; consider now the pullback of fibrations

ϖq
v //

u

��

b

yb

��
P q

Ph
// P b

(4.5.4)

or more explicitly, the pullback of categories Z “ Ē ˆF̄ F:

Z
v //

u

�� ϖq

��

F

yb

��

b

��

Ē
Ph

//

P q
''

F̄

P b

��
A

(4.5.5)

Then, we obtain a fibration ϖq : Z ↠ A over A with a morphism v : ϖq Ñ b.

The trivial fibration is certainly a bifibration, and thus from the Kleisli opfibration of
T : A ÝÑ MndpXq as in (2.1.16) we obtain a morphism of opfibrations f : π : A ˆ X ↠
A ÝÑ qT : A ˙Kl X ↠ A collating together all the free functors; from this we can form the
pullback

ZA

��

// P pKlpTAqq

��
X // PX

(4.5.6)

where PC “ rCop,Sets, which is nothing but the pullback exhibiting, fiberwise, the following
pullback in FibpAq.

Z //

zz

��

A ˆ X

yy

}}

P pA ˙Kl Xq //

))

A ˆ PX

��
A

(4.5.7)

Linton’s theorem now ensures that ZA – EMpTAq, but the construction that we provided
is ‘global’, not just an objectwise version on the result in [Lin74]: we get an isomorphism
of fibred categories Z – A ˙EM X. It is worth noting that this is a particular instance of a
result true in a sufficiently good Yoneda structure on a 2-category with pullbacks, induced
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by a presheaf construction P : Kcoop ÝÑ K admitting a left 2-adjoint (cf. [SW78, Prop. 22]
or [Ark22, 5.5.2] for a sharper statement): in the Yoneda structure on fibrations, Linton’s
theorem becomes the following statement.
Proposition 4.5.3. Let C be an admissible object, with an admissible monad t : C Ñ C,
such that the free algebra object Ct exists and it is admissible; then the pullback square

Q
v //

u

��

PCt

��
C // PC

(4.5.8)

exhibits Q as the algebra object Ct, so that u : Q Ñ C becomes isomorphic in the slice K{C
to the forgetful, and v to the nerve of the comparison Ctpk, 1q : Ct Ñ P pCtq.

All in all, the result boils down to the following observation: for every admissible object
B, the presheaf construction of the Yoneda structure P : Kcoop ÝÑ K induces a 2-functor

B{K “ pKop{Bqop apply P // Kop{PB
pb along y˚

B // K{B. (4.5.9)

In Construction 4.5.2 we are using the Yoneda structure on FibpAq – PsdpAop,Catq described
in [Str81].

4.6 Universal properties of fibrations of algebras
The starting point for this last part of the exposition is the well-known observation that the
object of algebras of a endo-1-cell f : X Ñ X is an inserter [Kel89].

4.6.1 Fixpoints and orbits
We again begin with an example and proceed by analogy. When studying the representation
theory of a monoid or a group, it is common to fix an action a : GˆA Ñ A and define

• the space of orbits of A{G, as the pushout

G ¨A
∇ //

a1

��

A

��
A // A{aG

(4.6.1)

where a1 : G ¨ A Ñ A is induced by the action, if G ¨ H :“
ř

gPGH is the copower of
|G| copies of H, and ∇ is the fold map (if one wants, induced by the trivial action).

• The subspace of fixpoints of the action, as the equaliser2

AG // A
a2

//

d
// AG (4.6.2)

where a2 is induced transposing the action (and AG is the |G|-fold product of copies
of A), and d is the diagonal map.

2In the (fairly common) applications to algebraic topology, the space of fixpoints can be replaced with
the space of homotopy fixpoints, by replacing the above equaliser with an appropriately defined homotopy
limit. Inspired by a similar procedure, we also define homotopy fixpoints, as isomorphisms F X – X.
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We can easily reproduce both these constructions starting from a parametric endofunctor
F : A ˆ X ÝÑ X and define

• the analogue for the space of orbits, as the iso-coinserter,

A ˆ X

�� α

F //

π

��

X

q

��
X

q
// X{F A

(4.6.3)

• the analogue for the subspace of fixpoints, as the iso-inserter of the same pair:

XpAq
p //

p

��
�� ω

A ˆ X

F

��
A ˆ X

π
// X

(4.6.4)

Now, what are the mutual relations between X{F A, XpAq and A ˙ X?

• If T : A ˆ X ÝÑ X is a parametric monad such that T∅ is the identity functor, then
multiplication yields an invertible 2-cell

A ˆ X

�	 µ

F //

π

��

X

Φ
��

X
Φ
// A ˙EM X

(4.6.5)

(recall from Lemma 4.3.4 that Φ selects the free algebra over the initial parameter)
filling the square and thus giving a unique functor R : X{F A ÝÑ A ˙EM X such that
R ˝ q “ Φ and R ˚ α “ µ.

• Dually, one can define a functor

J : XpAq // A ˙ X (4.6.6)

sending every object pA;X, ξ : FAX – Xq to pX, ξqA P A˙X regarded as an endofunc-
tor algebra with invertible structure map. This functor is fully faithful, and in case
F is accessible, J is an accessible functor of accessible (in fact, locally presentable)
categories, and thus XpAq is complete and cocomplete; with the adjoint functor theo-
rem we can ensure an adjoint for J , but there seems to be no explicit, straightforward
procedure to describe it.

4.6.2 Fibrations of algebras as limits
The fact that the category of endofunctor algebras of F : X ÝÑ X can be seen as an inserter
(cf. [AR94, p. 121]) is the special case of the following characterisation when A “ 1 is the
terminal category.
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Proposition 4.6.1. Let F : A ˆ X ÝÑ X be a parametric endofunctor; then there is an
inserter diagram as follows.

A ˙ X

�	 θ

U //

U

��

A ˆ X

F

��
A ˆ X

πX

// X

(4.6.7)

Now, it is still well-known but rarely spelt out in detail (see [AR94, §2.78]) that the Eilen-
berg–Moore category of a monad T : X Ñ X admits a similar description as a joint equifier;
more precisely, consider the inserter InspT, 1q (i.e. the category of endofunctor algebras of
the underlying endofunctor of T ) and a pair of parallel 2-cells

InspT, 1q
)) 55))55 Xθ˝ηU�� idU�� (4.6.8)

of which we take the equifier k1 : E1 ÝÑ InspT, 1q. Consider now the pair of 2-cells

InspT, 1q
)) 55))55 Xθ˝Tθ�� θ˝µU�� (4.6.9)

The equifier of the whiskered 2-cells pθ ˝ Tθq ˚ k1, pθ ˝ µUq ˚ k1 is the category of Eilenberg–
Moore algebras for T . We can invoke an analogous result for the monad on A ˆ X that
corresponds to the parametric monad T : A ÝÑ rX,Xsµ under Theorem 4.2.6, but we can
also cook up an equifier formula that employs only T : A ˆ X ÝÑ X.

Recall Theorem 4.2.6: from that statement, we can consider T as a monad in coKlpAˆ´q,
and take the inserter of T and πX, the 2-cell θ ˝ ηU ,

A ˙ X

�	 θ

U //

U

��

A ˆ X

πX

zz
F ks

η��
A ˆ X

πX

// X

(4.6.10)

and the equifier k1 : E1 ÝÑ A ˙ X of θ ˝ ηU and of the identity 2-cell of πX ˝ U .
Proposition 4.6.2. There is an equifier diagram

A ˙EM X // E1
$$
::
$$
:: X�� �� (4.6.11)

where the 2-cells equified are obtained from the compositions

pT ‚ T q ˝ U
µU
ñ T ˝ U

θ
ñ πXU and pT ‚ T q ˝ U

Tθ
ñ pT ‚ πXq ˝ U “ T ˝ U

θ
ñ πXU (4.6.12)

whiskered with k1.
The diagrams in Proposition 4.6.1 and Proposition 4.6.2 can be interpreted in any Carte-

sian 2-category K and provide definitions for the object of algebras of f : A ˆ X Ñ X and
of Eilenberg–Moore algebras of t : AˆX Ñ X:
Proposition 4.6.3. The object of algebras of a parametric endo-1-cell f : A ˆ X Ñ X of
K is the inserter of f, πX .

Inspf, πXq

�
 θ

u //

u

��

AˆX

f

��
AˆX

πX

// X

(4.6.13)
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What is a parametric monad in K, i.e. a 1-cell t : AˆX Ñ X such that ‘each tA : X Ñ X
is a monad’? Leveraging on Theorem 4.2.6 we can define the ‘simple 2-slice’ K{{A and
consequently a parametric monad as a monad over one of its objects X:

Definition 4.6.4. Let K a Cartesian 2-category, and A one of its objects; the simple 2-slice
is the 2-category where

• objects are the same of K;

• the hom-category of 1- and 2-cells X Ñ Y is just KpAˆX,Y q.

With this at hand, a parametric monad on X, with object of parameters A, is just a
monad in K{{A, i.e. a 1-cell t : AˆX Ñ X equipped with 2-cells

AˆX

πX

''

t

77�� η X AˆX

t‚t
''

t

77�� µ X (4.6.14)

subject to appropriate unit and associativity conditions (t ‚ t is coKleisli composition in
K{{A, which gives an explanation for why T ‚ T appeared in (4.2.9)).

Proposition 4.6.5. The object of Eilenberg–Moore algebras of a parametric monad t :
AˆX Ñ X in K as above is the following iterated equifier construction:

• first, one takes the equifier of θ ˝ pη ˚ uq obtained as pasting

Inspt, πXq

�
 θ

u //

u

��

AˆX

πX

{{
F ks

η��
AˆX

πX

// X

(4.6.15)

and of the identity 2-cell πX ˝ u ñ πX ˝ u; this results in a diagram

E1
k1 // Inspt, πXq

((
66 Xθ˝ηu�� 1�� (4.6.16)

• then, one takes the equifier of

pt ‚ tq ˝ u ñ t ˝ u ñ πXu and pt ‚ tq ˝ u ñ pt ‚ πXq ˝ u “ t ˝ u ñ πXu (4.6.17)

similarly to (4.6.12).

4.7 Formal theory of fibrations of algebras
A trained eye will have noticed that the discussion carried up to this point is inspired
by the desire to interpret the constructions attached to a fibration of algebras within an
abstract 2-category endowed with sufficient additional structure (for example, finite limits
and colimits). The purpose of this section is to make this precise in two different ways.
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4.7.1 Fibration of algebras in a 2-category
This section is intended to formalise the results of §4.6.2.

Our blanket assumption for the entire section is that K is a 2-category with all (strict)
finite 2-limits. In particular, it has finite products, i.e. there exists a right adjoint KˆK ÝÑ

K to the diagonal functor, and in the same way this is true in K “ Cat, every object A P K

defines a comonad Aˆ , having the ‘simple slice in K’ as coKleisli 2-category.
Now, leveraging on the results of §4.6.2, we can give the following definitions.

Definition 4.7.1. Let A be an object of K. A A-parametric endocell (resp., an A-parametric
monad, A-parametric comonad) is an endo-1-cell (resp., monad, comonad) X Ñ X in the
coKleisli category coKlpA ˆ ´q; equivalently, it’s a 1-cell f : A ˆ X Ñ X (resp., satisfying
monad, comonad laws as a 1-cell of coKlpAˆ ´q).

Remark 4.7.2. We can build the analogue construction of Theorem 3.3.6 and define the
oplax regular representation fibration as the 2-fibration arising as the left vertical side of the
strict 2-pullback

pK ˙ Kqℓ //

��

Algℓ

��
K // rK,Ks

(4.7.1)

and a parametric endocell (or monad, comonad) can be defined as an endo-1-cell in pK˙Kqℓ

in complete analogy with (3.3.6).

Definition 4.7.3. Let f : A ˆ X Ñ X be a parametric endocell in K, regarded as a
coKleisli map; its object of algebras Algpfq is the inserter Ipf, πXq between f : X ù X and
the identity X ù X, i.e. the following inserter in K.

Ipf, πXq //

��
�	 θ

AˆX

f

��
AˆX

πX

// X

(4.7.2)

The object of coalgebras coAlgpfq is, dually, the inserter IpπX , fq.

Definition 4.7.4.

• The object of EM-algebras of a parametric monad is the iterated equifier obtained from
Algpfq in the same way of Proposition 4.6.5.

• The object of coEM-coalgebras is, dually, obtained from similar equifiers from coAlgpfq.

Remarkably, the definition we gave is a fibration in K, and in particular a Street fibra-
tion: to see this, note that it’s enough to prove the result in Cat, i.e. to prove that every
corepresentable functor KpE,´q sends the composition

Algpfq // AˆX
πA // A (4.7.3)

to a fibration in Cat, and this latter statement follows from the fact that A ˙ X’s natura of
inserter has been demonstrated in Proposition 4.6.1, and A˙EM X has been characterised as
an iterated equifier in Proposition 4.6.2. This way of reasoning ‘representably’ is well-known
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and based on the fact that one can consider, for a monad pE, tq in K, and a generic object
E, the category KpE,Xq, and the induced monad

t˚ : KpE,Xq // KpE,Xq (4.7.4)

given by post-composition, whose algebras are to be intended as ‘generalised t-algebras with
domain X’ (cf. [LS02]). This produces an algebra-like 2-functor

Algptq : Kop ÝÑ Cat, E ÞÑ AlgKpE,Xqpt˚q . (4.7.5)

When Algptq is representable, the representing object is the Eilenberg–Moore object of the
monad t.

Theorem 4.7.5. [Str72] There exists a right 2-adjoint to K ÝÑ MndpKq if and only if K
has Eilenberg–Moore objects for all its monads.

The correspondence above arises from a bifunctor

Lemma 4.7.6. For a 2-category K and C one of its objects, there is a 2-functor

Alg : rX,Xscoop
µ ˆ Kop // Cat

pt, Eq
� // AlgKpE,Xqpt˚q

where rC,Csµ is the 2-category obtained as in Remark 2.1.10, with trivial 2-cells.

Remark 4.7.7. In every Cartesian 2-category K we can define a Cartesian 0-cell as an
object A such that the diagonal A Ñ A ˆ A and the terminal A Ñ 1 have right adjoints;
in each such K, every Cartesian object A has a simple fibration associated, as the coKleisli
object, provided it exists, of the parametric comonad Aˆ . Evidently, in the case K “ Cat
this reduces to Discussion 1.1.1.

4.7.2 A 2-category of extensions
This section is intended to formalise the ideas of Remark 4.3.9, of the results in Lemma 4.3.4,
Remark 4.3.6, and provides a birds-eye view of our forthcoming work.We fix a 2-category K

with all finite weighted limits, so that, in particular, it has all finite products and coproducts.
The terminology in the following definitions is either standard in the language of formal

category theory, or follows from a straightforward generalization of the Cat case (for example:
in Cat, an object is pointed if and only if it is a category with an initial and a terminal
object that are isomorphic; and the zero adjunction is just the ‘constant at zero object’ pair
of functors).

Definition 4.7.8. An object C of K has a terminal (resp., initial) object when the unique
1-cell C Ñ 1 has a right (resp., left) adjoint 1 Ñ C; the object C is pointed when the left and
right adjoints to C Ñ 1 (exist and) coincide. Clearly, if two objects A,X P K are pointed,
it is meaningful to speak of the ‘zero adjunction’ between them, i.e. of the composition of
adjoints as below.

X oo
0
K

! //
1 oo

!
K

0 //
A (4.7.6)
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Definition 4.7.9 (Slices and coslices of adjunctions). Let Adj be the 2-category obtained
from K, having objects adjoint pairs f : C Õ D : u in K and morphisms the pairs h, k such
that the following square commutes choosing both the left and the right adjoints:

C

h

��

f //
D

u
oo

k

��

k ˝ f “ f 1 ˝ h

C 1
f 1

//
D1

u1

oo u1 ˝ k “ h ˝ u

(4.7.7)

If A is an object of K we define the 2-category of adjunctions over A as the comma object

Adj{A //

��

tAu

��
Adj Adj

?G (4.7.8)

or equivalently, as the morphisms of Adj into the identity adjunction of A and dually, if X
is an object of K we define the 2-category of adjunctions under X as the comma object

X{Adj //

��
��

tXu

��
Adj Adj

(4.7.9)

or equivalently, as the morphisms of Adj out of the identity adjunction of X.

Unwinding the above definitions, the typical morphisms h : pf, uq Ñ pf 1, u1q of Adj{A
and X{Adj are the following triangle on the left and on the right respectively:

E
f

��

__

u

h // F

f 1

��

??
u1

X

  

``

~~

>>

A E
h

// F

(4.7.10)

where the triangle commutes both choosing left adjoints, and choosing right adjoints:

f 1 ˝ h “ f and h ˝ u “ u1 h ˝ f “ f 1 and u1 ˝ h “ u.

From now on, we assume that the objects A,X that we consider are pointed, in the sense
of Definition 4.7.8 above.

Definition 4.7.10 (The category of sequences). The 2-category SeqpA,Xq is defined by
the following strict pullback:

SeqpA,Xq //

��

Adj{A

d

��
X{Adj

c
// K

(4.7.11)

where the domain and codomain 2-functors X{Adj c
ÝÑ K

d
ÐÝ Adj{A are respectively defined

sending xf : X Õ E : uy and xf : E Õ A : uy to E.
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Unwinding the above definition, the typical object of SeqpA,Xq is a sequence of adjoints

E “
@

X oo
uX

K

fX //
E oo

uA

K

fA //
A

D

(4.7.12)

and the typical morphism E Ñ F is a 1-cell h : E Ñ F in K between the central terms of
E,F:

E

h

��

&&
ff

X

88

xx

&&
ff A

F

88

xx

(4.7.13)

The definition explains unambiguously what it means that this diagram ‘commutes’.

Remark 4.7.11. The intuition behind the terminology is clear: an object of SeqpA,Xq can
be thought of as a sequence of the form

1 // X
fX // E

fA // A // 1 (4.7.14)

where each arrow is a left adjoint.

Among short sequences, the exact ones play a fundamental role: this motivates us to
single out a subcategory of SeqpA,Xq of sequences where the composition fA ˝ fX is zero
(or equivalently, the composition uX ˝ uA is).

Definition 4.7.12 (The category of extensions of A by X). The category of exact sequences
ExtpA,Xq is defined as the full subcategory of SeqpA,Xq spanned by all objects as in (4.7.12),
where the square

X
fX //

��

E

fA

��
1

0
// A

(4.7.15)

is a pullback in K; this characterises X as the fiber of fA : E Ñ A, and by uniqueness of
adjoints the composition uX ˝ uA is also ‘exactly zero’.

The next result shall be compared with the fact that in homological algebra, the set
of extensions ExtpM,Nq between two modules is an Abelian group, and it follows in a
fundamental way from the fact that the category of adjunctions has biproducts.

Theorem 4.7.13. ExtpA,Xq is a symmetric monoidal category.
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Chapter 5

Where do we go from here?

Summary of chapter

We end the paper describing what remains an open problem or an enticing
direction in which to develop the theory further.

5.1 Fibrations of algebras as colimits
Given that A ˙ X and A ˙EM X have been characterised as having limit properties, it is
an interesting question whether they also have colimit properties, modelled on the intuition
that the semidirect product of groups and monoids can be presented in a colimit form.

Consider the following colimit characterisations of the semidirect product of groups and
monoids (cf. [BJK05, §4.3]):

Fact 5.1.1 (Semidirect products of groups as a pushout). Let G be a group and H a G-
group, i.e. another group over which G acts by automorphisms; then there is a pushout
diagram

G ¨H
γ //

a

��

G ˚H

��
H // G˙H

(5.1.1)

where G ¨ H :“
ř

gPGH is the copower of |G| copies of H, a arises from the action in the
obvious way, G ˚ H is the coproduct of groups, and γpg, hq :“ hg “ g´1hg, and G ˙ H is
the semidirect product of groups.

Fact 5.1.2 (Semidirect product of monoids as a coequaliser). Let M,N be monoids, and
let a : M ˆN Ñ N be an action of M on N under monoid homomorphisms. Then there is
a coequaliser diagram

M ˆN
//
// M ˚N // M ˙N (5.1.2)

where the upper map is defined as pm,nq ÞÑ rm, apm,nqs (seen as equivalence class of a
word in M ˚N) and the lower map as pm,nq ÞÑ rn,ms. If the monoids are groups, this boils
down to identifying the action apm,nq with the conjugation action.

This leads to the question of whether it is possible to equip A ˙ X and A ˙EM X with
colimit-like properties. Although there seems to be evidence that this conjecture can be
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answered positively, the question remains open at the moment of writing. We limit ourselves
to drafting some remarks, and we reserve to the near future the opportunity for further
investigation.

For categories, the copower operation A ¨ X amounts to the Cartesian product A ˆ X,
and a legitimate candidate for a is, then, just our parametric endofunctor F : A ˆ X ÝÑ X.
We are then left with the question of what interesting 2-dimensional colimits (coinserters,
coequifiers, cocomma objects) arise combining F and the functors of Remark 4.3.6.

Recall the following concrete presentation for cocomma objects in Cat:

Lemma 5.1.3. Given a span of functors,

B E
F //Goo C (5.1.3)

the cocomma category r FG s can be obtained as follows: its objects are those of the disjoint
union B ` C, and morphisms are specified so that

• r FG s pB,B1q “ BpB,B1q;
• r FG s pC,C 1q “ CpC,C 1q;
• the hom-set r FG s pC,Bq of heteromorphisms C ù B is determined as the coend

ż E

CpC,FEq ˆ BpGE,Bq (5.1.4)

All hom-sets r FG s pB,Cq are empty, and the composition of a B-morphism and a C-morphism
with an heteromorphism is performed using elementary coend manipulations.

Remark 5.1.4. Note that this is just the cograph of the profunctor F˚ ˛G˚ : C ù B.

Now, let X §T pA ˆ Xq denote the cocomma category

A ˆ X

T

��

A ˆ X

��
X // X §T pA ˆ Xq

CK
(5.1.5)

the typical object of which is

unpackC as rX P X | pA1, X 1q P A ˆ Xs (5.1.6)

or C “ rX P X | pA1, X 1q P A ˆ Xs for short.
The coend formula above shows that the set of heteromorphisms in X §T pAˆXq can be

computed as
hompX2, pA1, X 1qq – KlpTA1 qpX2, X 1q. (5.1.7)

Remark 5.1.5. There exists a natural transformation α : Φ ˝ T ñ FT (where FT is the
free functor of the Kleisli adjunction FT : A ˆ X Õ A ˙Kl X : UT that can be deduced from
Theorem 4.2.1), from which, using the universal property of X §T pA ˆ Xq we deduce the
existence of a unique functor Γ : X §T pA ˆ Xq ÝÑ A ˙Kl X, defined using FT and Φ.

The following theorem is easily proved, showing the adjunction isomorphism

homX§T pAˆXq

`

ΓC, pA;TAX,µAXq
˘

– homA˙KlX

`

C,W pA;TAX,µAXq
˘

(5.1.8)

directly.
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Theorem 5.1.6. The functor obtained in Remark 5.1.5 has a right adjoint W acting as
follows.

W : A ˙Kl X // X §T pA ˆ Xq

pA;TAX,µAXq
� // pA, TAXq

(5.1.9)

5.2 Applications to torsion theories
Every fibration p : E ↠ B lifts a factorisation system pL,Rq on the base category to the
total category as follows:

•
•

This, coupled with the following theorem,

Theorem 5.2.1. Monads

yields the following results:

Fact 5.2.2. one

Fact 5.2.3. two

And considering the result of [], where the following result has been proved:

Theorem 5.2.4. Kadjo-Joost tortheory on Hopf

We can try to induce a torsion theory on a total category of the form A˙ X or A˙EM X

using a torsion theory on A,X.

5.3 Monadicity over what, for whom?
This entire paper is a special case of the following general problem:

Problem 5.3.1. Consider a fibration p : E ↠ B; what is the theory of endofunctor algebras,
monads, comonads. . . fibered over p, i.e. of endofunctors (monads, comonads. . . ) in the
2-category FibpBq, over the object p?

The theory of fibration of algebras answers this question when p is the trivial fibration
(actually, a bifibration) πA : AˆX ↠ A: an endofunctor (monad, comonad) parametric over
A is an endofunctor ‘over’ the trivial fibration, in the sense above, in that it amounts to a
family FA : XA ÝÑ XA of functors between the fibers of πA, which happen to be constantly
X.

Yet, as much as this level of generality may seem appealing,1 it is also of very limited
practical utility, too general to exhibit a nontrivial result: for monads over p, such a study
can be conducted as a systematic study of the formal theory of monads in Fib, following

1For example, it lends itself quite easily to an exercise in self-referentiality: fix a parametric monad T :
AˆX ÝÑ X, consider the fibration of algebras pT : A˙EM

T X ↠ A. Consider a monad S : A˙EM
T X ÝÑ A˙EM

T X

fibered over A, i.e. a monad S on A ˙EM X preserving Cartesian morphisms, and such that pT ˝ S “ pT ;
work out what kind of distributive law is there between the monad xT, πAy and the monad S; find examples
of this construction.
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[Str72], but for endofunctors that are not (co)monads, one has no other choice than stating
some straightforward consequences derived from the fundamental definitions.

Some of the situations we analyzed in the present paper lend themselves to be generalised
in this way, passing from the trivial fibration πA to other concrete, but nonconstant, ones.

For example, Example 3.3.7 may be generalised as follows: consider a finitely complete
category C, an algebraic theory T and the models ModpT,C{Aq as A runs over the objects
of C: for Beck modules, T is the theory of abelian groups, C the category of groups.

Clearly, we have a factorization

C{A // ModpT,C{Aq // C{A (5.3.1)

or more precisely, a family of monads on the various C{A, or, which is equivalent when this
family of monads TA is ‘natural in A’, a monad CÑ ÝÑ CÑ over the codomain fibration of
Example 1.2.6.

Similarly, Discussion 3.4.3, and in fact also the functors Pf of (3.4.5) deal with poly-
nomials over variable categories, again the slices E{I, i.e. again the fibers of the codomain
fibration.
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true nature of an exercise, specifically [Jac98, Exercise 1.3.4.(ii)], and knowing whether by
any chance a general theory of ‘parametric algebras’ was treated somewhere, explaining why
the result was true (or better, what it was a particular instance of).

Firmly believing that something so obvious should have been observed somewhere by
someone else, FL posted a completely innocent question on MathOverflow [Lor] in March
2022 and promptly forgot about it. It is no understatement to say that the present article
merely consists of a solution to [Jac98, ibi] that a particularly stubborn category theorist
might give. To this day, the question on MathOverflow remains unanswered and almost
entirely ignored.

In May 2022, GC and DC were simultaneously in Tallinn for a short time, in the final
stage of their PhD; after scanning the web once more, now aided by their expertise in cate-
gorical logic, FL scribbled a list of examples that are fibrations of algebras, some covariant,
some contravariant. The list grew bigger and bigger and bigger. Then it doubled in size
and again. We noticed that we could package the property of being a fibration of algebras
in what appears now as Definition 2.1.5; this motivated us to write the backbone of what is
now chapter 3.

Shortly after FL travelled to Brno, a city dear to his heart, to attend the 106th PSSL in
honour of Jǐŕı Rosický’s 75 years. What now appears as Theorem 4.2.1 was keenly suggested
to FL in Punkt., a kavárna in Bayerova 7, by Ivan Di Liberti, a friend and clever logician
dear to his heart.

There must have been more to this story, between the lines of such a beautiful, concise
characterisation. In Brno, FL asked Jǐŕı Adámek whether he knew the true face of the
theorem we were looking at. He did not. This was the final endorsement we needed to fully
engage with the problem, trustful that it would have been a fruitful endeavour. For a very
long time, however, we were stuck in the mud of our question: examples were abundant,
even too many, and no convincing narrative could tie them together. Months passed, and
frustration mounted at our inability to see past the illusory multitude of the hylic forms; FL
presented some scattered results first to the research group in Tallinn and then to the 3rd
ItaCa meeting in Pisa in December 2022. After the talk, Beppe Metere suggested that Beck
modules could have been another source of fibrations of algebras. As Example 3.3.7 shows,
he was right. The ItaCa talk [CCL22] is essentially a cry for help: what is this story really
about?

Help came as a polite, unprompted email that ÜR sent to FL in March 2023 from the
University of Tartu. ÜR asked whether we knew about a construction for which ‘there was
not much to find about in the literature, although it seemed to appear quite often in practice’.
It was a fibration of algebras, in the context of protomodular categories and representation
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theory. Első számú fasiszta, it seems, is not without a sense of irony if He left to His children
yet another slew of examples (and another category theorist) in Estonia, just for them to
discover after a year of pilgrimages.

The story goes that Xiangyan Zhixian spent several years studying the sūtras, making
very little headway. One day, his master Guishan asked him what his face was before he was
born –a question to which Zhixian could not respond, to his shame. After more and more
pointless study, enraged, he burned the sūtras and left the monastery, built a hut nearby
and stayed there alone. One day, while he was weeding, a piece of rock which Zhixian had
dislodged struck a bamboo tree. At that sound, tock!, in the clear silence of the morning,
Zhixian burst out laughing; suddenly, his mind was open.

Similarly, most of this article emerged instantaneously during a single meeting on a single
morning in the first week of April 2023 that FL spent in Tartu.

Without the Universities and cities of Brno, Tartu, and Tallinn, without the patience of
all authors for their respective quirks, without A. and M., without Ülo’s email, and without
ItaCa, probably none of these theorems would have been recorded. To each of the people
mentioned above and many others, goes our warmest thank you.
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C. Löding, eds.), 2016, pp. 513–530.

[FM20] Peter F. Faul and Graham R. Manuell, Artin glueings of frames as semidirect products,
Journal of Pure and Applied Algebra 224 (2020), no. 8, 106334.

[Fuj19] S. Fujii, A 2-categorical study of graded and indexed monads, 2019, arXiv:1904.08083
preprint.

[GAV72] A. Grothendieck, M. Artin, and J. L. Verdier, SGA4. théorie des topos et cohomologie
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