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Introduction
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A category-theorist’ view on universal algebra.

What’s the paper about? A variety theorem for partial
algebraic theories (operations are partially defined).



Plan of the talk

1la. A semiclassical look to algebraic theories;
1b. Essentially algebraic theories;
2a. Towards a Lawvere-like characterization;

2b. the variety theorem of PLTs.






Two take-home messages

The classical picture



You could have invented universal algebra
if only you knew category theory

if you define it right, you won’t need a subscript.
— Sammy Eilenberg



Fact: the category Fin°" is the free completion of e under finite
products.

[n] € Fin [n]=[1]+---+[1] ntimes

Definition (Lawvere theory)
A Lawvere theory is a functor p : Fin°®® — £ that is identity on

objects (=‘idonob’) and strictly preserves products.

p(n+m) = pln] x plm]

There is a category Law of Lawvere theories and morphisms
thereof.



Theorem

It is equivalent to give

1. a Lawvere theory, in the sense above. (. )
2. a finitary monad T on Set. (| )
3. a finitary monadic LFP category over Set (,
)
4. a cartesian operad P : Fin — Set — a certain monoid (7$72F) in
[Fin, Set] ( ).

5. a cocontinuous monad T on [Fin, Set|, which is convolution
monoidal. (cmc := convolution monoidally cocontinuous)



Let p : Fin®® — £ be the theory, and consider the strict pullback in
Cat:

M(L) L, Set]

Set —— [Fin®", Set]
A An.An

it’s a pullback in the 2-category of locally fin. presentable categories
& left adjoints; M(L) is thus locally fin. presentable, and a left adjoint
F - U can be built by hand.

In addition, — o p is monadic = U is monadic, thus M(L) = Alg(UF) is
monadic. Finally, U is finitary = UF is finitary.

M(L) = models of the theory (p, £)



Given a finitary monad T on Set, consider the composition
Fin —— Set —— KI(T7)

(free T-algebras on finite sets). Factor this functor as a
composition of an idonob + a fully faithful functor, and discard
the fully faithful one.

Fin —’ - Set

I

L——KI(T)

This gives a Lawvere theory, whose algebras (by a theorem of
Linton) are exactly the T-algebras.



Any monad T : Set — Set determines a functor
ToJ: Fin — Set by restriction along J : Fin — Set; if (and only
if) T is finitary, it can be recovered from T o J via left extension:

Lany(TI) =T
This is encapsulated in an equivalence of categories

—oJ
[Set, Set|,, T ~ [Fin, Set]

Lany
which can be promoted to a monoidal equivalence
([Set, Set],,, o) = ([Fin, Set|, ¢) transporting o; a clone is

exactly a o-monoid, and a finitary monad is exactly a o-monoid
in [Set, Set],,.



4 <— 5

(=) In every monoidal category, tensoring with a monoid
yields a monad. In this case, it is cmc.

(<) Let S : [Fin, Set] — [Fin, Set] be a cnc monad; then it is
determined by its action on representables and

(SAim = S (/nAn X Fin(n,m)) (Yoneda)
= /nAn x SFin(n, m) (cocont)
~ /nAn x S(Fin(1,m)™") (def. of %)
= /nAn x (SFin(1, m))™" (x-preserving)

= (/nAn X (SJ)*”) m = (Ao SJ)m

so that S is uniquely determined as — ¢ SJ.



Distributive laws btwn theories

This perspective can be pushed quite far: [Cheng] adapting a former
result of Rosebrugh and Wood

Theorem
Let C be a small category; a factorisation system (£, M) on it is

precisely a pair of monads £ and M in Span together with a
distributive law of £ over M such that the composite monad M - £ is
the category C ( ).

[Cheng] : distributive laws between Lawvere theories correspond to
factorisation systems ‘modulo Fin°"’, in such a way that

 adistributive law for a Lawvere theory

« adistributive law for the associated finitary monad

correspond bijectively.



Power enriched theories

Following [Pow99] a V-enriched theory is a idonob V-functor
p: V., — Lwhere V., is the category of finitely presentable
objects of an LFP, monoidal closed base of enrichment.

An algebra (or model) for a theory p is a finite
cotensor-preserving functor £ — V; this defines the
V-category of models of p.

Many characterizations transport untouched: a V-enriched
theory is also

« acmcmonad T: Ve, V] = [V<u, V];

- afinitary V-monad on V;

- afinitary monadic-V-LFP category of V.



Theories as V-categories

Recent work of Garner [BG] builds on the equivalence between
finitary endofunctors of Set and [Fin, Set].

Taking the category [Fin, Set] works as base of enrichment, and
blurring the distinction between the categories
[Fin, Set] = [Set, Set|, = W:

« Afinitary monad is a monoid in W, i.e. a WW-category with a
single object;

« A Lawvere theory is a W-category that is absolute (=Cauchy-,
=Karoubi-)complete as an enriched category and generated by
a single object.

Lawvere theories form a reflective subcategory in finitary monads;
reflection is the enriched Cauchy completion functor.



Theories as V-categories

In this perspective

there is no difference between a Lawvere theory and its
associated monad: they are the very same thing, up to a
Cauchy-completion operation.

Note also that:

« The Cauchy completion of a monoid in Cat is rarely a
monoid: take the “generic idempotent” M = {1,e} and
splite:x —xasr:0 < x:s.

« Inorderto add all W-absolute colimits, at least all tensors
y[n] ® X must be added to the single object X.



Theories as V-categories

Equivalently,

« A Lawvere WW-category is a W-category which
- is freely generated by cotensors with a single object X:
yialoXy2|eX,...;
- admits all WW-absolute colimits.
« AW-category is a special kind of cartesian multicategory:
one where a multimorphism f: X1 ... X, — Xis such that
X1=Xo=---=Xp=X.



Recent work of Bourke and Garner builds a generalised
monad-theory correspondence (by construction, this can’t be
made more general):

e A pretheoryis anidonob functor J: A — V; its codensity
monad RanzJ is a monad on V;

 given a monad on V, consider the idonob part of
A=V — KIT).

The equivalence of categories induced by the fixpoints of this
adjunction is ‘the’ monad-theory correspondence.
F
C \ D
G
Fix(GF) _~— Fix(FG)




Other sources

» Lucyshyn-Wright for a sharp characterization of ‘eleutheric
theories’ as [J-ary monads or semi-representable
profunctors;

» see Johnstone & Wraith for internal algebraic theories
(e.g. in atopos);

- see Fuji, for an encompassing notion of ‘theory’ as
‘monoid in a place’, and for a notion of ‘meta’theory and
‘meta’model.

...definitely a longer story than this brief account can contain!



1963 Lawvere’s
‘Functorial semantics’
\

1966 Linton theories
are monads

\
1966 Linton: infini-
tary theories
\

1968 Ehresmann-
Gabriel-Ulmer: sketches

\
1969 Linton: a category
of arities
\
1971 (Gabriel-)
Ulmer: LPcat
\

1978 Theories in
a topos/as promonads

A timeline of functorial semantics (of algebraic theories)

1999 Enriched
theories

\
2009 "Theories” in
double categories
\

2011 Distributive
laws b’'wn theories
\

2013 Theories
are F-enriched cats
\

2015 Eleutheric
theories

\
2018 Monads and
(pre)theories
¥

2019 Theories in
fibered cats






Essentially algebraic
theories



Definition (EAT)
An essentially algebraic theory is a quadruple

(27 E7 El’a D)

where the pair (X, E) is an equational theory, 3; C ¥ is a subset
of ‘totally defined’ operation symbols, and D is a function on
Y\ Xt accounting for the domain of definition of partially
defined operations.

A model of an EAT is a model of the equational theory (X, E)
with the property that every 7 € X is everywhere defined, and
every o € ¥ \ X;is interpreted as a partial function (with
domain specified by D(¢)).



3.34 Definition
(1) An esseatially algebraic theory is a quadruple

T = (I, E, Iy, Def)

consisting of a many-sorted signature X of algebras, a set E of X-
equations, a set X; C ¥ of “total” operation symbols, and a function
Def assigning to each operation symbol ¢: [];c;8:i — sin Z—X; a set
Def(o) of Xs-equations in the standard variables z; € V;, (i € I).

(2) We say that the theory T is A-ary, for a regular cardinal A, provided
that X is A-ary, each of the equations of E and Def(o) uses less than A
standard variables, and each Def(o) contains less than A equations.

(3) By a model of an essentially algebraic theory I' we mean a partial -
algebra A such that
(a) A satisfies all equations of E,

(b) for each o € T, the operation o4 is everywhere defined,

c) for each ¢ € ~ ¢ with o: ;e7Si — s and any a; € A,

f h L ~ X, with jes Si d ;i € A,
(j € J) we have that 0 4(a;) is defined iff A satisfies all equations
of Def(c) in the elements a;.

The category of all models and homomorphisms is denoted by ModT. A
category is called essentially algebraic if it is equivalent to Mod T for some
essentially algebraic theory T.

[AR94]



Theorem (Gabriel-Ulmer duality)

There is a biequivalence of 2-categories
Lex’’ < LFP

between

 Lex, the 2-category of small categories with finite limits,
where 1-cells are functors preserving finite limits and
2-cells are the natural transformations, and

« LFP, the 2-category of locally finitely presentable
categories, where 1-cells are right adjoints preserving
directed colimits.



A syntax-Semantics duality for EATs

GU duality prescribes the rule under which

every EAT has an associated finite limit theory, whose
category of models is LFP;

Conversely, every LFP determines a category with finite
limits, the opposite of FP objects, and this is an EAT.

Syntax: a class of small categories defined by a sketch of
shapes;

Semantics: a class of large categories molded by syntax.

Syntax _T~ Semantics



Mindful of Eilenberg’s principle, we now wonder: is there an
analogue of 1-6 above for essentially algebraic theories?

Is there an equational notion of theory, that we can use to
build a syntax-semantics correspondence on the lines of 1-6?



Short answers: yes, we already have finite limit theories, but
the ‘doctrine’ of finitely complete categories does not,
per se, provide a notion of syntax to replace classical
terms, nor a calculus for (partial) equational reasoning
about the categories of models they define.

Short answer 2: we can fix this.



End of Part I



A failed approach



Fact: there is an equivalence of categories
Set, =~ 0Set(= Par)

between pointed sets are sets and partial functions.

Idea: Exploit this to translate questions about partial functions
of sets into questions about pointed sets, i.e. into
Set.-enriched functorial semantics in the sense of Power et al.

Problem: there appears to be no ‘Linton theorem’ linkin
theories and monads.

In hindsight, we were working in the wrong 2-category.



Fortunately there is a setting that was engineered to
axiomatise the features of pointed sets / partial functions.



A working approach



A restriction category is a category C with a restriction
structure: a coherent choice of an idempotent f: A — A for
each morphism f: A — B, satisfying certain axioms.

There is a 2-category rCat of restriction categories, restriction
functors and transformations.

This 2-category rCat is a whole new world (a pretty ugly one, if
you ask me). [Cocket and Lack 1, 2, 3,...]

It is however the only way (afa we know today) to provide a
‘Lawvere-style’ notion of essential algebraic theory.



Fortunately we can resort to yet another equivalent
presentation for our partial Lawvere theories, that exploits as
little machinery of restriction categories as it is possible.

- a partial Lawvere theory is the analogue of a cartesian
functor in the restriction world

« every PLT has a category of models, a LFP category, but for
us Mod(p) is regarded over Par.



A partial Frobenius algebra (A, da, pa, e4) in @ symmetric
monoidal category consists of a commutative comonoid
(A, da,ea) and a commutative semigroup (A, ua) interacting
together as follows: the co/mult satisfy the equations

MCA) b—=? X3 =3
(SFROB) E=H=E 3 -—

A discrete cartesian restriction category? is the same thing as
a symmetric monoidal category where every object A is
equipped with a coherent partial Frobenius algebra structure
(A, 04, ea, 1a) With natural comultiplication.

1The kind of restriction categories we are interested into



Partial theories and their models

A partial Lawvere theory is a DCR category £ for which there is
an identity-on-objects DCR functor Par(Fin°?) — L.

A morphism of partial Lawvere theories is a functorh: £ — M
s.t. the following triangle commutes:

Par(Fin°P)

SN

s M.

This defines the category pLaw of partial Lawvere theories.



Partial theories and their models

Mimicking also the definition of model of a Lawvere theory, we
obtain at once the notion of model of a partial Lawvere theory:

Definition (Model of a partial Lawvere theory)

A model for a partial Lawvere theory £ is a CR functor
L : £ — Par. Ahomomorphism L — L’ is a lax natural
transformation o : L = L'.



DCRC to the rescue



The connection between our theorem and the
finit-limit-theories approaches relies on Gabriel-Ulmer duality:
Proposition

- If Cis a category with finite limits, Par(C) is a DCR
category.

A converse holds:

« Every restriction category has a subcategory of total
maps, and if C is Cauchy-complete then C = tot(C) has
finite limits.

This sets up an adjunction (in fact, a reflection of Lex,
categories with finite limits in DCRC).



The variety theorem

Theorem
There is a 2-adjunction

Th : LFP = (DCRC=)° : Mod,

where DCRCS is the 2-category of DCR categories, CR functors
and lax transformations and LFP is the 2-category of LFP
categories, finitary right adjoints and nat. transformations.

The unit of this adjunction is an equivalence, i.e.
K ~ Mod(Th(K))

i.e. each LFP category is equivalent to the category of models of
its induced theory.



Define an adjunction
K: : DCRC* = Lex : Par
K: acts as follows: given a DCRC X, K:(X) has
- objects pairs (A, a) with A an object of Xand a : A — A a domain

idempotent in X.

e arrows f: (A,a) — (B,b) are arrows f: A — B of X such that

f=aandbf=F.
- composition is given by composition in X.
- The identity on (A, a) is given by a.

K:¢(X) has finite limits (painstakingly compute binary products and
equalisers by hand).



« The functor Par acts sending a category with finite limits
into its category of partial maps: spans of morphisms in C
where a leg is a monomorphism. This is a
Cauchy-complete DCR category.

« The two functors arrange in an adjunction K; - Par, and
the counit of this adjunction is invertible, giving that Lex is
a 2-reflective 2-subcategory of DCRC=.



This closes the diagram of adjunctions

(DCRC=)°P (Lex)°P

<
IR
~ Se
~ ~
~ ~
~

and proves the theorem.




Examples



Partial stru

Example 5.4 ((Partial) Commutative Monoids). We start with the monoidal theory of commutative
monoids (Example 2.16), where the multiplication and unit generators are re-coloured to red to
avoid a clash. In models, the multiplication operation may be partially defined and the unit may be
undefined. To define the partial theory of roral commutative monoids, we’d need to add equations:

® 3— = T =



Equivalence relations

Example 5.6 (Equivalence Relations). Consider the partial Lawvere theory consisting of a single
binary operation R with coarity 0, together with equations expressing symmetry and reflexivity:

T > -1

Note that inequations of terms, as in Remark 3.4, do not add expre:
them freely when specifying partial Lawvere theories. Transitivity is intuitively captured by the
inequation on the left, which, unfolding the definition of <, is precisely the equation on the right:

gL 5o

A model A of this theory consists of a set A together with an equivalence relation =5C A x A
corresponding to the domain of definition of A(R). A morphism F : A — B is a function
F: A — Bwitha =4 b = Fa =g Fb, which arises from the requirement that F is a lax

transformation:
A A
pu=all
A A

Thus, the variety corresponding to this theory is the category of Bishop sets (setoids) [Pal09].




(2-sorted)

Example 6.1 (Directed Graphs). We begin with the partial Lawvere theory of directed graphs,
which has a sort O of vertices and a sort A of edges, together with source and target operations:

A —f5+—o A—i—o Ao =a—e A—e =a—e
The associated variety is the category of directed graphs, as model morphisms F must satisfy:
= =
Example 6.2 (Reflexive Graphs). Extending Example 6.1, we ask that each vertex has a self-loop:

o—fi—4a ofdre = 0— o fdHFo =0—o = o{aito

then morphisms of models are required to preserve the self-loop, so the associated variety is the
category of reflexive graphs. Notice that along with Example 6.1, this could also be presented as a
(total) 2-sorted Lawvere theory, since all the operations are total.




Categories

(2-sorted)

Example 6.3 (Categories). To capture categories we extend Example 6.2 with a composition
operator, which is defined when the target of the first arrow matches the source of the second:

O =3

and equations insisting composition is associative and unital, with identities given by the self-loops:

A A
-}
b Ai —a }oa= = !
A A= "" A4 “mA

A
Model morphisms are precisely functors. It is worth noting that this involves an inequality:
> < >
<

This states that if f and g are composable thenso are F f and Fg, and in particular F(f $g) = Ff 3 Fg.
If this were an equality, it would insist also that if F f and Fg are composable, then so are f and g,
which is not always the case. Of course, the associated variety is the category of small categories.

Note the inequality! This accounts for the laxity of natural tns.



esian (closed) categories

Example 6.8 (Cartesian Categories). To capture cartesian categories instead, we can extend
Example 6.6 with one equation, ensuring that £ is natural:

= A{HEF A

Example 6.9 (Cartesian Closed Categories). Finally, to capture cartesian closed categories we
extend Example 6.8 with an operator exp : O ® O — O, the idea being that exp(A, B) is the internal
hom [A, B], along with an operator ev : O ® O — O that gives the corresponding evaluation map:

obter == 7
e - 55

along with an operation A and equations stating, intuitively, that A(X, A, B, f) is defined precisely
incase f : X X A — B, and yields amap A(X,A,B, f) : X — [A, B] asin:




Cartesian (closed) categories

also equations insisting that if f : X X A — B then (A(X, A, B, f) x 1) 3ev = f holds:

Now the associated variety is the category of strict cartesian closed categories and strict carte-
sian closed functors: these preserve hom-objects and, when A(X, A, B, f) is defined, satisfy
FA(X,A,B, f) = A(FX,FA,FB, F f). This presentation of cartesian closed categories is essen-
tially due to Freyd: a version of it is given immediately after the first appearance of the notion of
essentially algebraic theory in [Fre72], albeit somewhat informally, and using very different syntax.



Prospects



Comunque la si giri, (algebraic) theories are monoids

How can we recover a monad-theory correspondence?

As already said, there are problems: one can’t expect the
category of models of a PLT to be monadic over Par.

So?
The more I try, the less I know!

- aformal theory of restriction monads
- cartesian monads on the framed bicategory of polynomial functors

« restriction operads



Tensor product of theories

Law can be equipped with a canonical symmetric monoidal
product operation characterised by the fact that models of
S®T are

- the S-models in the category of 7T-models, or equivalently,

« the 7-models in the category of S-models:

Modss = Mods(Mod ).

Find an analogue of this monoidal structure for partial theories.



Free space for discussion.



Free space for discussion.
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Free space for discussion.



Free space for discussion.



