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Introduction

joint work with

• Ivan Di Liberti (CAS)
• Chad Nester (Taltech)
• Pawel Sobocinski (Taltech)

A category-theorist’ view on universal algebra.

Opinions are my own.
— the Twitter angry mob

What’s the paper about? A variety theorem for partial
algebraic theories (operations are partially defined).



Plan of the talk

1a. A semiclassical look to algebraic theories;
1b. Essentially algebraic theories;
2a. Towards a Lawvere-like characterization;
2b. the variety theorem of PLTs.





Two take-home messages

The classical picture



You could have invented universal algebra
if only you knew category theory

if you define it right, you won’t need a subscript.
— Sammy Eilenberg



Theories

Fact: the category Finop is the free completion of • under finite
products.

[n] ∈ Fin [n] = [1] + · · ·+ [1] n times

Definition (Lawvere theory)
A Lawvere theory is a functor p : Finop → L that is identity on
objects (=‘idonob’) and strictly preserves products.

p(n+m) = p[n]× p[m]

There is a category Law of Lawvere theories and morphisms
thereof.



Theories

Theorem

It is equivalent to give

1. a Lawvere theory, in the sense above. (Lawvere, 1963)

2. a finitary monad T on Set. (Linton, 1966)

3. a finitary monadic LFP category over Set (Adàmek, Lawvere,
Rosickỳ 2003)

4. a cartesian operad P : Fin → Set – a certain monoid
(
P⋄P→P
1→P

)
in

[Fin,Set] (probably known to Lawvere?).

5. a cocontinuous monad T on [Fin,Set], which is convolution
monoidal. (cmc := convolution monoidally cocontinuous)



1 ⇐⇒ 2 ⇐⇒ 3

Let p : Finop → L be the theory, and consider the strict pullback in
Cat:

M(L)
_�

//

U

��

[L,Set]

−◦p
��

Set
A

// [Finop
,Set]

λn.An

it’s a pullback in the 2-category of locally fin. presentable categories
& left adjoints; M(L) is thus locally fin. presentable, and a left adjoint
F ⊣ U can be built by hand.

In addition, − ◦ p is monadic⇒ U is monadic, thus M(L) ∼= Alg(UF) is
monadic. Finally, U is finitary⇒ UF is finitary.

M(L) =models of the theory (p,L)



1 ⇐⇒ 2 ⇐⇒ 3

Given a finitary monad T on Set, consider the composition

Fin // Set // Kl(T)

(free T-algebras on finite sets). Factor this functor as a
composition of an idonob + a fully faithful functor, and discard
the fully faithful one.

Fin J //

p bo
��

Set

FT
��

L
ff

// Kl(T)

This gives a Lawvere theory, whose algebras (by a theorem of
Linton) are exactly the T-algebras.



2 ⇐⇒ 4

Any monad T : Set → Set determines a functor
T ◦ J : Fin → Set by restriction along J : Fin → Set; if (and only
if) T is finitary, it can be recovered from T ◦ J via left extension:

LanJ(TJ) ∼= T

This is encapsulated in an equivalence of categories

[Set,Set]ω ⊤
−◦J //

[Fin,Set]
LanJ
oo

which can be promoted to a monoidal equivalence
([Set,Set]ω, ◦) ∼= ([Fin,Set], ⋄) transporting ◦; a clone is
exactly a ⋄-monoid, and a finitary monad is exactly a ◦-monoid
in [Set,Set]ω.



4 ⇐⇒ 5

(⇒) In every monoidal category, tensoring with a monoid
yields a monad. In this case, it is cmc.
(⇐) Let S : [Fin,Set] → [Fin,Set] be a cmc monad; then it is
determined by its action on representables and

(SA)m ∼= S
(∫ n

An× Fin(n,m)

)
(Yoneda)

∼=
∫ n

An× SFin(n,m) (cocont)

∼=
∫ n

An× S(Fin(1,m)∗n) (def. of ∗)

∼=
∫ n

An× (SFin(1,m))∗n (∗-preserving)

∼=
(∫ n

An× (SJ)∗n
)
m ∼= (A ⋄ SJ)m

so that S is uniquely determined as − ⋄ SJ.



Distributive laws btwn theories

This perspective can be pushed quite far: [Cheng] adapting a former
result of Rosebrugh and Wood

Theorem
Let C be a small category; a factorisation system (E ,M) on it is
precisely a pair of monads E andM in Span together with a
distributive law of E overM such that the composite monadM · E is
the category C (Memento: categories are monads in Span).

[Cheng] : distributive laws between Lawvere theories correspond to
factorisation systems ‘modulo Finop’, in such a way that

• a distributive law for a Lawvere theory

• a distributive law for the associated finitary monad

correspond bijectively.



Power enriched theories

Following [Pow99] a V-enriched theory is a idonob V-functor
p : V<ω → L where V<ω is the category of finitely presentable
objects of an LFP, monoidal closed base of enrichment.

An algebra (or model) for a theory p is a finite
cotensor-preserving functor L → V; this defines the
V-category of models of p.

Many characterizations transport untouched: a V-enriched
theory is also

• a cmc monad T : [V<ω,V] → [V<ω,V];
• a finitary V-monad on V;
• a finitary monadic-V-LFP category of V .



Theories asW-categories

Recent work of Garner [BG] builds on the equivalence between
finitary endofunctors of Set and [Fin,Set].
Taking the category [Fin,Set] works as base of enrichment, and
blurring the distinction between the categories
[Fin,Set] ∼= [Set,Set]ω = W:

• A finitary monad is a monoid inW , i.e. aW-category with a
single object;

• A Lawvere theory is aW-category that is absolute (=Cauchy-,
=Karoubi-)complete as an enriched category and generated by
a single object.

Lawvere theories form a reflective subcategory in finitary monads;
reflection is the enriched Cauchy completion functor.



Theories asW-categories

In this perspective

there is no difference between a Lawvere theory and its
associated monad: they are the very same thing, up to a
Cauchy-completion operation.

Note also that:

• The Cauchy completion of a monoid in Cat is rarely a
monoid: take the “generic idempotent” M = {1, e} and
split e : ∗ → ∗ as r : 0 ⇆ ∗ : s.

• In order to add allW-absolute colimits, at least all tensors
y[n]⊙ Xmust be added to the single object X.



Theories asW-categories

Equivalently,

• A LawvereW-category is aW-category which
• is freely generated by cotensors with a single object X:
y[1]⊙ X, y[2]⊙ X, . . . ;

• admits allW-absolute colimits.

• AW-category is a special kind of cartesian multicategory:
one where a multimorphism f : X1 . . .Xn → X is such that
X1 = X2 = · · · = Xn = X.



Recent work of Bourke and Garner builds a generalised
monad-theory correspondence (by construction, this can’t be
made more general):

• A pretheory is an idonob functor J : A → V; its codensity
monad RanJJ is a monad on V;

• given a monad on V , consider the idonob part of
A → V → Kl(T).

The equivalence of categories induced by the fixpoints of this
adjunction is ‘the’ monad-theory correspondence.

C
F //
⊥oo
G

D

Fix(GF) //∼ Fix(FG)oo



Other sources

• Lucyshyn-Wright for a sharp characterization of ‘eleutheric
theories’ as J -ary monads or semi-representable
profunctors;

• see Johnstone & Wraith for internal algebraic theories
(e.g. in a topos);

• see Fuji, for an encompassing notion of ‘theory’ as
‘monoid in a place’, and for a notion of ‘meta’theory and
‘meta’model.

…definitely a longer story than this brief account can contain!



A timeline of functorial semantics (of algebraic theories)

1963 Lawvere’s
‘Functorial semantics’

1966 Linton theories
are monads

1966 Linton: infini-
tary theories

1968 Ehresmann-
Gabriel-Ulmer: sketches

1969 Linton: a category
of arities

1971 (Gabriel-)
Ulmer: LPcat

1978 Theories in
a topos/as promonads

1999 Enriched
theories

2009 ”Theories” in
double categories

2011 Distributive
laws b’wn theories

2013 Theories
are F-enriched cats

2015 Eleutheric
theories

2018Monads and
(pre)theories

2019 Theories in
fibered cats





Essentially algebraic
theories



Definition (EAT)
An essentially algebraic theory is a quadruple

(Σ,E,Σt,D)

where the pair (Σ,E) is an equational theory, Σt ⊆ Σ is a subset
of ‘totally defined’ operation symbols, and D is a function on
Σ∖ Σt accounting for the domain of definition of partially
defined operations.

A model of an EAT is a model of the equational theory (Σ,E)
with the property that every τ ∈ Σt is everywhere defined, and
every σ ∈ Σ∖ Σt is interpreted as a partial function (with
domain specified by D(σ)).



[AR94]



Theorem (Gabriel-Ulmer duality)

There is a biequivalence of 2-categories

Lexop ⇆ LFP

between

• Lex, the 2-category of small categories with finite limits,
where 1-cells are functors preserving finite limits and
2-cells are the natural transformations, and

• LFP, the 2-category of locally finitely presentable
categories, where 1-cells are right adjoints preserving
directed colimits.



A syntax-Semantics duality for EATs

GU duality prescribes the rule under which

• every EAT has an associated finite limit theory, whose
category of models is LFP;

• Conversely, every LFP determines a category with finite
limits, the opposite of FP objects, and this is an EAT.

• Syntax: a class of small categories defined by a sketch of
shapes;

• Semantics: a class of large categories molded by syntax.

Syntax //
⊥oo Semantics



Mindful of Eilenberg’s principle, we now wonder: is there an
analogue of 1-6 above for essentially algebraic theories?

Is there an equational notion of theory, that we can use to
build a syntax-semantics correspondence on the lines of 1-6?



Short answers: yes, we already have finite limit theories, but
the ‘doctrine’ of finitely complete categories does not,
per se, provide a notion of syntax to replace classical
terms, nor a calculus for (partial) equational reasoning
about the categories of models they define.

Short answer 2: we can fix this.



End of Part I



A failed approach



Fact: there is an equivalence of categories

Set∗ ∼= ∂Set(= Par)

between pointed sets are sets and partial functions.

Idea: Exploit this to translate questions about partial functions
of sets into questions about pointed sets, i.e. into
Set∗-enriched functorial semantics in the sense of Power et al.

Problem: there appears to be no ‘Linton theorem’ linkin
theories and monads.

In hindsight, we were working in the wrong 2-category.



Fortunately there is a setting that was engineered to
axiomatise the features of pointed sets / partial functions.



A working approach



A restriction category is a category C with a restriction
structure: a coherent choice of an idempotent f̄ : A → A for
each morphism f : A → B, satisfying certain axioms.

There is a 2-category rCat of restriction categories, restriction
functors and transformations.

This 2-category rCat is a whole new world (a pretty ugly one, if
you ask me). [Cocket and Lack 1, 2, 3,…]

It is however the only way (afa we know today) to provide a
‘Lawvere-style’ notion of essential algebraic theory.



Fortunately we can resort to yet another equivalent
presentation for our partial Lawvere theories, that exploits as
little machinery of restriction categories as it is possible.

• a partial Lawvere theory is the analogue of a cartesian
functor in the restriction world

• every PLT has a category of models, a LFP category, but for
usMod(p) is regarded over Par.



A partial Frobenius algebra (A, δA, µA, εA) in a symmetric
monoidal category consists of a commutative comonoid
(A, δA, εA) and a commutative semigroup (A, µA) interacting
together as follows: the co/mult satisfy the equations

A discrete cartesian restriction category1 is the same thing as
a symmetric monoidal category where every object A is
equipped with a coherent partial Frobenius algebra structure
(A, δA, εA, µA) with natural comultiplication.

1The kind of restriction categories we are interested into



Partial theories and their models

A partial Lawvere theory is a DCR category L for which there is
an identity-on-objects DCR functor Par(Finop) → L.

A morphism of partial Lawvere theories is a functor h : L → M
s.t. the following triangle commutes:

Par(Finop)

L M.

qp

h

This defines the category pLaw of partial Lawvere theories.



Partial theories and their models

Mimicking also the definition of model of a Lawvere theory, we
obtain at once the notion of model of a partial Lawvere theory:

Definition (Model of a partial Lawvere theory)

A model for a partial Lawvere theory L is a CR functor
L : L → Par. A homomorphism L → L′ is a lax natural
transformation α : L ⇒ L′.



DCRC to the rescue



The connection between our theorem and the
finit-limit-theories approaches relies on Gabriel-Ulmer duality:

Proposition
• If C is a category with finite limits, Par(C) is a DCR
category.

A converse holds:

• Every restriction category has a subcategory of total
maps, and if C is Cauchy-complete then C = tot(C) has
finite limits.

This sets up an adjunction (in fact, a reflection of Lex,
categories with finite limits in DCRC).



The variety theorem

Theorem
There is a 2-adjunction

Th : LFP ⇆ (DCRC≤)op : Mod,

where DCRC≤ is the 2-category of DCR categories, CR functors
and lax transformations and LFP is the 2-category of LFP
categories, finitary right adjoints and nat. transformations.

The unit of this adjunction is an equivalence, i.e.

K ≃ Mod(Th(K))

i.e. each LFP category is equivalent to the category of models of
its induced theory.



Proof

Define an adjunction

Kt : DCRC≤ ⇆ Lex : Par

Kt acts as follows: given a DCRC X, Kt(X) has

• objects pairs (A,a)with A an object of X and a : A → A a domain
idempotent in X.

• arrows f : (A,a) → (B,b) are arrows f : A → B of X such that
f̄ = a and bf = f.

• composition is given by composition in X.

• The identity on (A,a) is given by a.

Kt(X) has finite limits (painstakingly compute binary products and
equalisers by hand).



• The functor Par acts sending a category with finite limits
into its category of partial maps: spans of morphisms in C
where a leg is a monomorphism. This is a
Cauchy-complete DCR category.

• The two functors arrange in an adjunction Kt ⊣ Par, and
the counit of this adjunction is invertible, giving that Lex is
a 2-reflective 2-subcategory of DCRC≤.



This closes the diagram of adjunctions

(DCRC≤)op (Lex)op

LFP
2

1

and proves the theorem.



Examples



Partial structures



Equivalence relations



Digraphs

(2-sorted)



Categories

(2-sorted)

Note the inequality! This accounts for the laxity of natural tns.



Cartesian (closed) categories



Cartesian (closed) categories



Prospects



Comunque la si giri, (algebraic) theories are monoids

How can we recover a monad-theory correspondence?

As already said, there are problems: one can’t expect the
category of models of a PLT to be monadic over Par.

So?

The more I try, the less I know!

• a formal theory of restriction monads

• cartesian monads on the framed bicategory of polynomial functors

• restriction operads

• …



Tensor product of theories

Law can be equipped with a canonical symmetric monoidal
product operation characterised by the fact that models of
S ⊗ T are

• the S-models in the category of T -models, or equivalently,
• the T -models in the category of S-models:

ModS⊗T ∼= ModS(ModT ).

Find an analogue of this monoidal structure for partial theories.



Free space for discussion.



Free space for discussion.



Free space for discussion.



Free space for discussion.



Free space for discussion.


