On the Fibration of Algebras [arXiv:2408.16581](https://arxiv.org/abs/2408.16581)

j/w Ahman, Coraglia, Castelnovo, Martins-Ferreira, Reimaa

Fosco LOREGIAN

Tallinn University of Technology Hopf Algebras and Monoidal Categories Ferrara

Plan d'œuvre

[A motivating example: Cartier-Gabriel-Konstant](#page-5-0)

[More structural results](#page-11-0)

The subject of our study will be functors

$$
F: \mathcal{A} \times \mathcal{X} \longrightarrow \mathcal{X}
$$

- \bullet \mathcal{A} : the category of parameters;
- \mathcal{X} : the category of carriers.

Equivalently,

 $F: \mathcal{A} \longrightarrow [\mathcal{X}, \mathcal{X}]$

To each endofunctor $F_A = F(A, -)$ one can associate

- 1. the category of *F*-algebras *Alg*(*FA*)
- 2. the category of *F*-coalgebras *coAlg*(*FA*)
- 3. the category of EM-algebras *EM*(*FA*) if *F^A* is a monad
- 4. the category of coEM-algebras $coEM(F_A)$ if F_A is a comonad
- 5. (Kleisli, coKleisli...)

Each of these associations defines a pseudofunctor (1. and 3. contravariant; 2. and 4. covariant)

 $A \longrightarrow$ **Cat**

as such (under the Grothendieck construction) a split fibration (1. and .3) or opfibration (2. and 4.)

Fibrations of algebras

Scope of this work:

• Study the op/fibrations

- Find examples
- Develop a general theory of these gadgets

Keywords:

representation theory, Hopf algebras, category of modules, categorical logic and type theory, graded monads, formal languages, coalgebras, ...

Let *k* be a char 0 field, algebraically closed.

[CGK reconstruction theorem] *Every cocommutative Hopf algebra H over k arises from a semidirect product of a group G (its group algebra k*[*G*]*) acting on a Lie algebra L over k.*

CCHopf_k is a category of the form $\mathcal{A} \ltimes^{\mathsf{EM}} \mathcal{X}$ where

- $A =$ **Grp** is the category of groups;
- $\mathcal{X} =$ **Lie**_{*k*} is the category of Lie algebras;
- the pseudofunctor

Grp^{op} \longrightarrow Cat

sends a group to the category *k*[*G*]-**Lie** of Lie algebras with an action of *k*[*G*] (=Eilenberg-Moore for the monad *k*[*G*] ⊗ −).

Fibrations of algebras

Guiding principle

A certain property of the diagram

Lie \longleftarrow $\textsf{CCHopf}_k \longrightarrow$ Grp

can likely be better understood when generalized to a property of

 $\mathcal{X} \longleftarrow A \ltimes^{EM} \mathcal{X} \longrightarrow A.$

Monadicity

Let $T: A \times \mathcal{X} \rightarrow \mathcal{X}$ be a parametric monad.

Limits in ${\cal A} \ltimes ^{ \textsf{EM} } {\cal X}$ are computed in a particularly straightforward way, <code>created</code> by a forgetful functor

$$
\langle p, V \rangle : A \ltimes^{EM} X \longrightarrow A \times X. \quad \qquad \qquad \textcircled{9}
$$

In fact,

Theorem

The functor ⟨*p*, *V*⟩ *is monadic.*

More is true:

Theorem

A ⋉*EM* X *is the Eilenberg-Moore category of a monad*

$$
\hat{\mathbf{I}}: \mathcal{A} \times \mathcal{X} \longrightarrow \mathcal{A} \times \mathcal{X}
$$

fibered over the projection $\pi_A : A \times X \to A$ *.* $\hat{T}(A, X) = (A, T_A X)$

Exactness

Let's study more properties of (♡). Let again *T* be a parametric monad Assume

- that $\mathcal X$ has a terminal object;
- \bullet that $\mathcal A$ has an initial object.

$$
\mathcal{X} \xrightarrow[\text{V}]{\Phi} \mathcal{A} \ltimes^{\text{EM}} \mathcal{X} \xrightarrow[\text{V}]{\text{P}^T} \mathcal{A}
$$

- *V* has a left adjoint (Φ*X* := free *T*∅-algebra; in particular Φ*X* := *X* iff $T_{\emptyset} \cong id$
- *p T* has a right adjoint ! (−) (!*A* := terminal object in the fiber/*A*);

Theorem

Let A, X *be pointed categories; then there is an exact sequence of left adjoints*

$$
1 \longrightarrow \mathcal{X} \longrightarrow \mathcal{A} \ltimes^{EM} \mathcal{X} \longrightarrow \mathcal{A} \longrightarrow 1
$$

Exactness

This POV goes pretty far:

Proposition

Let A, X be pointed categories. There is a 2-category $\mathbf{Seq}^1(\mathcal{A},\mathcal{X})$ of sequences of $\mathcal A$ by $\mathcal X$

$$
1 \longrightarrow \mathcal{X} \xrightarrow{i} \mathcal{E} \xrightarrow{p} \mathcal{A} \longrightarrow 1.
$$

where *p* is a fibration.

Remark

There is a subcategory $\mathsf{Ext}^1(\mathcal{A},\mathcal{X})$ spanned by the objects of $\mathsf{Seq}^1(\mathcal{A},\mathcal{X})$ such that $p\circ i$ is constant at the zero object.

Theorem (teaser)

 $\mathsf{Ext}^1(\mathcal{A}, \mathcal{X})$ is a symmetric monoidal category.

Theorem (Gran, Kadjo, Vercruysse)

There is a torsion theory on the category **CCHopf***^k where*

- *torsion objects are the primitive Hopf algebras (generated by their primitive elements);*
- *torsionfree objects are group Hopf algebras (generated by their grouplike elements).*

The result in [GKV] is a particular instance of

Theorem

Let A, X *be semiabelian categories each equipped with a torsion theory* $\mathfrak{T} = (U, V)$ *and* $\mathfrak{S} = (\mathcal{U}', \mathcal{V}')$, let $T : \mathcal{A} \to [\mathcal{X}, \mathcal{X}]$ a parametric monad such that [assumptions]. *Then, there is a torsion theory* $\mathfrak{T} \ltimes^{EM} \mathfrak{S}$ *induced on* $\mathcal{A} \ltimes^{EM} \mathcal{X}$.

恐.

Given factorisation systems on A, X separately, the product factorisation system on $\mathcal{A}\times \mathcal{X}$ allows to factor every morphism $(u,f):(\mathsf{X},\xi)^{\mathsf{A}}\to (\mathsf{Y},\theta)^{\mathsf{B}}$ in $\mathcal{A}\ltimes^{\mathsf{EM}}\mathcal{X}$ as follows:

where

are the factorisations in A, X respectively.

TAL

Recall that any fibration of spaces $p:E\to B$ renders $E_b=p^{-1}(b)$ a $\pi_1(B)$ -space; there is an analogue of this result here.

Theorem [Monads as pruned fibrations]

Let A have an initial object, $p : \mathcal{E} \to \mathcal{A}$ be a fibration that

- has a fully faithful left adjoint,
- admits at least coproducts of the form $\varnothing_A + E$ for every $A \in \mathcal{A}$, $E_0 \in \mathcal{E}_{\varnothing}$;

these are the objects of the full subcategory $pFib/A$ of pruned fibrations over A .

Then there is a canonical way to build a parametric monad $\mathcal{T}^p:\mathcal{A}\to[\mathcal{E}_\varnothing,\mathcal{E}_\varnothing]$ so that the base of *p* acts over the fiber of *p* on the initial object.

Moreover, T^p **is a monad such that** $\mathsf{T}^p_\varnothing = \mathsf{id}.$ **(A pruned <mark>monad) This is part of a</mark> reflection**

 $\mathsf{pFib}/\mathcal{A} \xrightarrow{\perp} \mathsf{pMnd}(\mathcal{A})$

identifying pruned monads with their fibration of EM-algebras.

Conclusions

- more examples in representation theory, type theory, the categorical semantics of transition systems... (ideally, there are 'as many examples as there are endofunctors')
- more theorems about the 2-category of extensions, that mimick the 'hands-on' theory of *Ext* groups;
- $\bullet\,$ consequences of monadicity: $\mathcal{A}\ltimes^{E\mathcal{M}}\mathcal{X}$ is a 'rigid' object whose nature is specified by the formal theory of monads in *Fib*/A
- generalizations to a theory of 1-cells of Fib/A monadic over a (bi)fibration other than the trivial one...

It's a long-term project.