On the Fibration of Algebras arXiv:2408.16581

j/w Ahman, Coraglia, Castelnovo, Martins-Ferreira, Reimaa

Fosco Loregian

Tallinn University of Technology Hopf Algebras and Monoidal Categories Ferrara

Plan d'œuvre

- What is a 'fibration of algebras'
- 2 A motivating example: Cartier-Gabriel-Konstant

More structural results

The subject of our study will be functors

$$F: \mathcal{A} \times \mathcal{X} \longrightarrow \mathcal{X}$$

- A: the category of parameters;
- \mathcal{X} : the category of carriers.

Equivalently,

 $F: \mathcal{A} \longrightarrow [\mathcal{X}, \mathcal{X}]$

To each endofunctor $F_A = F(A, -)$ one can associate

- 1. the category of *F*-algebras $Alg(F_A)$
- 2. the category of F-coalgebras $coAlg(F_A)$
- 3. the category of EM-algebras $EM(F_A)$ if F_A is a monad
- 4. the category of coEM-algebras $coEM(F_A)$ if F_A is a comonad
- 5. (Kleisli, coKleisli...)

Each of these associations defines a pseudofunctor (1. and 3. contravariant; 2. and 4. covariant)

 $\mathcal{A} \longrightarrow \mathbf{Cat}$

as such (under the Grothendieck construction) a split fibration (1. and .3) or opfibration (2. and 4.)

Fibrations of algebras

Scope of this work:

• Study the op/fibrations

- Find examples
- Develop a general theory of these gadgets

Keywords:

representation theory, Hopf algebras, category of modules, categorical logic and type theory, graded monads, formal languages, coalgebras, ...

Let k be a char 0 field, algebraically closed.

[CGK reconstruction theorem] Every cocommutative Hopf algebra H over k arises from a semidirect product of a group G (its group algebra k[G]) acting on a Lie algebra L over k.

CCHopf_k is a category of the form $\mathcal{A} \ltimes^{EM} \mathcal{X}$ where

- $\mathcal{A} = \mathbf{Grp}$ is the category of groups;
- $\mathcal{X} = \mathbf{Lie}_k$ is the category of Lie algebras;
- the pseudofunctor

Grp^{op} ----> Cat

sends a group to the category k[G]-Lie of Lie algebras with an action of k[G] (=Eilenberg-Moore for the monad $k[G] \otimes -$).

Fibrations of algebras

Guiding principle

A certain property of the diagram

 $\mathsf{Lie} \longleftarrow \mathsf{CCHopf}_k \longrightarrow \mathsf{Grp}$

can likely be better understood when generalized to a property of

 $\mathcal{X} \longleftarrow \mathcal{A} \ltimes^{\textit{EM}} \mathcal{X} \longrightarrow \mathcal{A}.$

Monadicity

Let $T : \mathcal{A} \times \mathcal{X} \to \mathcal{X}$ be a parametric monad.

Limits in $\mathcal{A} \ltimes^{\text{EM}} \mathcal{X}$ are computed in a particularly straightforward way, created by a forgetful functor

$$\langle \boldsymbol{\rho}, \boldsymbol{V} \rangle : \mathcal{A} \ltimes^{EM} \mathcal{X} \longrightarrow \mathcal{A} \times \mathcal{X}.$$
 (\heartsuit)

In fact,

Theorem

The functor $\langle p, V \rangle$ is monadic.

More is true:

Theorem

 $\mathcal{A} \ltimes^{\text{EM}} \mathcal{X}$ is the Eilenberg-Moore category of a monad

$$\hat{T}: \mathcal{A} \times \mathcal{X} \longrightarrow \mathcal{A} \times \mathcal{X}$$

fibered over the projection $\pi_{\mathcal{A}} : \mathcal{A} \times \mathcal{X} \to \mathcal{A}$. $\hat{T}(\mathcal{A}, \mathcal{X}) = (\mathcal{A}, \mathcal{T}_{\mathcal{A}}\mathcal{X})$

Exactness

Let's study more properties of (\heartsuit). Let again T be a parametric monad Assume

- that X has a terminal object;
- that A has an initial object.

- V has a left adjoint $(\Phi X := \text{free } T_{\varnothing}\text{-algebra}; \text{ in particular } \Phi X := X \text{ iff } T_{\varnothing} \cong id)$
- p^{T} has a right adjoint !(-) ([!]A := terminal object in the fiber/A);

Theorem

Let \mathcal{A}, \mathcal{X} be pointed categories; then there is an exact sequence of left adjoints

$$1 \longrightarrow \mathcal{X} \longrightarrow \mathcal{A} \ltimes^{EM} \mathcal{X} \longrightarrow \mathcal{A} \longrightarrow 1$$

Exactness

This POV goes pretty far:

Proposition

Let \mathcal{A}, \mathcal{X} be pointed categories. There is a 2-category $\mathbf{Seq}^{1}(\mathcal{A}, \mathcal{X})$ of sequences of \mathcal{A} by \mathcal{X}

$$1 \longrightarrow \mathcal{X} \xrightarrow{i} \mathcal{E} \xrightarrow{p} \mathcal{A} \longrightarrow 1.$$

where p is a fibration.

Remark

There is a subcategory **Ext**¹(A, X) spanned by the objects of **Seq**¹(A, X) such that $p \circ i$ is constant at the zero object.

Theorem (teaser)

 $\mathbf{Ext}^{1}(\mathcal{A},\mathcal{X})$ is a symmetric monoidal category.

Torsion theories on $\mathcal{A} \ltimes^{\mathcal{A} lg} \mathcal{X}$

Theorem (Gran, Kadjo, Vercruysse)

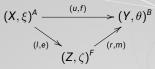
There is a torsion theory on the category \mathbf{CCHopf}_k where

- torsion objects are the primitive Hopf algebras (generated by their primitive elements);
- torsionfree objects are group Hopf algebras (generated by their grouplike elements).

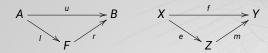
The result in [GKV] is a particular instance of

Theorem

Let \mathcal{A}, \mathcal{X} be semiabelian categories each equipped with a torsion theory $\mathfrak{T} = (\mathcal{U}, \mathcal{V})$ and $\mathfrak{S} = (\mathcal{U}', \mathcal{V}')$, let $T : \mathcal{A} \to [\mathcal{X}, \mathcal{X}]$ a parametric monad such that [assumptions]. Then, there is a torsion theory $\mathfrak{T} \ltimes^{\mathsf{EM}} \mathfrak{S}$ induced on $\mathcal{A} \ltimes^{\mathsf{EM}} \mathcal{X}$. Given factorisation systems on \mathcal{A}, \mathcal{X} separately, the product factorisation system on $\mathcal{A} \times \mathcal{X}$ allows to factor every morphism $(u, f) : (X, \xi)^A \to (Y, \theta)^B$ in $\mathcal{A} \ltimes^{EM} \mathcal{X}$ as follows:



where



are the factorisations in \mathcal{A}, \mathcal{X} respectively.

TAL

Recall that any fibration of spaces $p : E \to B$ renders $E_b = p^{-1}(b)$ a $\pi_1(B)$ -space; there is an analogue of this result here.

Theorem [Monads as pruned fibrations]

Let \mathcal{A} have an initial object, $p: \mathcal{E} \to \mathcal{A}$ be a fibration that

- has a fully faithful left adjoint,
- admits at least coproducts of the form Ø_A + E for every A ∈ A, E₀ ∈ E_Ø;

these are the objects of the full subcategory pFib/A of pruned fibrations over A.

Then there is a canonical way to build a parametric monad $T^p : \mathcal{A} \to [\mathcal{E}_{\varnothing}, \mathcal{E}_{\varnothing}]$ so that the base of *p* acts over the fiber of *p* on the initial object.

Moreover, T^p is a monad such that $T^p_{\emptyset} = id$. (A pruned monad) This is part of a reflection

 $\mathsf{pFib}/\mathcal{A} \xrightarrow{} \mathsf{pMnd}(\mathcal{A})$

identifying pruned monads with their fibration of EM-algebras.

Conclusions

- more examples in representation theory, type theory, the categorical semantics of transition systems... (ideally, there are 'as many examples as there are endofunctors')
- more theorems about the 2-category of extensions, that mimick the 'hands-on' theory of *Ext* groups;
- consequences of monadicity: $\mathcal{A} \ltimes^{EM} \mathcal{X}$ is a 'rigid' object whose nature is specified by the formal theory of monads in Fib/\mathcal{A}
- generalizations to a theory of 1-cells of *Fib*/A monadic over a (bi)fibration other than the trivial one...

It's a long-term project.