On the Fibration of Algebras arXiv:2408.16581

j/w Ahman, Coraglia, Castelnovo, Martins-Ferreira, Reimaa

Fosco Loregian

Tallinn University of Technology XXVIII Incontro di Logica AILA

Plan d'œuvre

2 Motivating examples: simple types, polynomials

Action of $\pi_1 B$ on zero sections

The subject of our study will be functors

$$F: \mathcal{A} \times \mathcal{X} \longrightarrow \mathcal{X}$$

- A: the category of parameters;
- \mathcal{X} : the category of carriers.

Equivalently,

 $F: \mathcal{A} \longrightarrow [\mathcal{X}, \mathcal{X}]$

Fibrations of algebras

To each endofunctor $F_A = F(A, -)$ one can associate

- 1. the category of *F*-algebras $Alg(F_A)$
- 2. the category of F-coalgebras $coAlg(F_A)$
- 3. the category of EM-algebras $EM(F_A)$ if F_A is a monad
- 4. the category of coEM-algebras $coEM(F_A)$ if F_A is a comonad
- 5. (Kleisli, coKleisli...)

Each of these associations defines a pseudofunctor (1. and 3. contravariant; 2. and 4. covariant)

 $\mathcal{A} \longrightarrow \mathbf{Cat}$

as such (under the Grothendieck construction) a split fibration (1. and .3) or opfibration (2. and 4.)

{pseudofunctors $\mathcal{A} \to \mathbf{Cat}$ } \cong {fibrations $\to \mathcal{A}$ }

Fibrations of algebras

Scope of this work:

Study the op/fibrations

- Motivate 'semidirect product' notation
- Find examples
- Develop a general theory of these gadgets

Keywords:

representation theory, category of modules, categorical logic and type theory, graded monads, formal languages, coinduction for coalgebras, ...

A motivating example: the simple fibration.

Let \mathcal{A} be a category with finite products; then there is a comonad

 $\mathcal{A} \rightarrow [\mathcal{A}, \mathcal{A}] : \mathcal{A} \mapsto \mathcal{A} \times -$

the coKleisli category of which is the simple slice over A. It has

- the same objects of A;
- morphisms $X \to Y$ are $\mathcal{A}(A \times X, Y)$

The Grothendieck construction gives rise to the simple fibration $\mathbf{s}\mathcal{A} \to \mathcal{A}$ over \mathcal{A} , where people in CLTT integret simple type theories.

Similarly, one can collect the coEilenberg-Moore categories of $S_A = A \times -$; this gives the slice \mathcal{A}/A as fiber (and the codomain $cod : \mathcal{A}^{\rightarrow} \rightarrow \mathcal{A}$ as associated opfibration).

Other examples come from the theory of automata / transition systems:

- Mealy-type automata are coalgebras for the parametric functor $R_{AB} = (A \times -)^{B}$ (parametric in input and output);
- labeled transition systems are coalgebras for Q_A = 2^{A×-} (parametric in the set of labels);

In the first case, one can define an endofunctor \hat{R} : $(A, B, X) \mapsto R_{AB}X$,

so that Set \ltimes_R^{coAlg} Set is just $coAlg(\hat{R})$. Similarly for LTSs. Another example is given by polynomial functors on a Grothendieck topos ${\cal E}$: define the category ${\rm pol}$ having

- objects the sequences $\mathfrak{p}: I \leftarrow B \rightarrow A \rightarrow I$;
- morphisms suitable cartesian squares $(B \rightarrow A) \rightarrow (B' \rightarrow A')$.

Gambino and Kock define polynomial functors $P_{\mathfrak{p}} : \mathcal{E} \to \mathcal{E}$, associated to each polynomial shape \mathfrak{p} in a way that $\mathfrak{p} \mapsto Alg(P_{\mathfrak{p}})$ is a pseudofunctor **pol**^{op} \to **Cat**.

The category **pol** $\ltimes_P^{Alg} \mathcal{E}$ is the fibration of polynomials.

Gambino and Hyland: «assume an initial algebra for polynomials in one variable exists, then one exists for polynomials in all variables.»

Theorem

[GH] \iff Initial objects are created by reindexing functors in **pol** $\ltimes_P^{Alg} \mathcal{E}$.

Let $T : \mathcal{A} \times \mathcal{X} \to \mathcal{X}$ be a parametric monad. (All will dualize to comonads) Limits in $\mathcal{A} \ltimes^{EM} \mathcal{X}$ are computed in a particularly straightforward way, created by the forgetful functor

$$\langle \boldsymbol{p}, \boldsymbol{V} \rangle : \mathcal{A} \ltimes^{EM} \mathcal{X} \longrightarrow \mathcal{A} \times \mathcal{X}.$$
 (\heartsuit)

In fact,

Theorem

The functor $\langle p, V \rangle$ is monadic.

More is true:

Theorem

 $\mathcal{A} \ltimes^{\textit{EM}} \mathcal{X}$ is the Eilenberg-Moore category of a monad

$$\hat{\mathcal{T}}: \mathcal{A} \times \mathcal{X} \longrightarrow \mathcal{A} \times \mathcal{X}$$

fibered over the projection $\pi_{\mathcal{A}} : \mathcal{A} \times \mathcal{X} \to \mathcal{A}$. $\hat{T}(\mathcal{A}, \mathcal{X}) = (\mathcal{A}, \mathcal{T}_{\mathcal{A}}\mathcal{X})$

Let again T be a parametric monad

Assume

- that X has a terminal object;
- that \mathcal{A} has an initial object.

$$\mathcal{X} \xrightarrow{\Phi} \mathcal{A} \ltimes^{EM} \mathcal{X} \xrightarrow{p^{\mathsf{T}}} \mathcal{A}$$

- V has a left adjoint ($\Phi X :=$ free T_{\varnothing} -algebra; in particular $\Phi X := X$ iff $T_{\varnothing} \cong id$)
- p^T has a right adjoint !(-) ([!]A := terminal object in the fiber/A);

Theorem

Let \mathcal{A}, \mathcal{X} be pointed categories; then there is an exact sequence of left adjoints

 $1 \longrightarrow \mathcal{X} \longrightarrow \mathcal{A} \ltimes^{EM} \mathcal{X} \longrightarrow \mathcal{A} \longrightarrow 1$

This POV goes pretty far:

Proposition

Let \mathcal{A}, \mathcal{X} be pointed categories. There is a 2-category $\mathbf{Seq}^1(\mathcal{A}, \mathcal{X})$ of sequences of \mathcal{A} by \mathcal{X}

 $1 \longrightarrow \mathcal{X} \xrightarrow{i} \mathcal{E} \xrightarrow{p} \mathcal{A} \longrightarrow 1.$

where *p* is a fibration and $p \circ i = 0$.

There is a subcategory $\mathbf{Ext}^{1}(\mathcal{A}, \mathcal{X})$ spanned by the objects of $\mathbf{Seq}^{1}(\mathcal{A}, \mathcal{X})$ such that $p \circ i$ is exactly constant at the zero object.

Theorem (teaser)

 $Ext^{1}(\mathcal{A}, \mathcal{X})$ is a symmetric monoidal category.

Recall that any fibration of spaces $p : E \to B$ renders $E_b = p^{-1}(b)$ a $\pi_1(B)$ -space; there is an analogue of this result here.

Sending $T \mapsto \mathcal{A} \ltimes^{EM}_T \mathcal{X}$ is functorial.

Given any fibration $p : \mathcal{E} \to \mathcal{B}$ [+ assumptions*], there is a canonical way to build a parametric monad $T_p : \mathcal{B} \times \mathcal{E}_{\varnothing} \to \mathcal{E}_{\varnothing}$ so that the base of p acts over the fiber of p on the *initial object*.

This is part of a reflection

$$\mathsf{Fib}/\mathcal{A} \xrightarrow{\perp} \mathsf{Mnd}_{\varnothing}(\mathcal{A})$$

identifying pruned ($T_{\emptyset} = 1$) monads with pruned* fibrations.

This is saying 3 interesting things:

- FOAs give an analogue of the action of π_1 ;
- almost every fibration has a canonically associated FOA;
- pruned monads embed in pruned fibrations via the FOA construction!

Summing up

There are

- more examples in representation theory, algebraic topology, categorical algebra... (ideally, there are 'as many examples as there are endofunctors')
- more theorems about the 2-category of extensions, that mimick the 'hands-on' theory of Ext groups;
- consequences of monadicity: $\mathcal{A} \ltimes^{EM} \mathcal{X}$ is a 'rigid' object whose nature is specified by the formal theory of monads in Fib/\mathcal{A}
- generalizations to a theory of 1-cells of *Fib*/A monadic over a (bi)fibration other than the trivial one...

It's a long-term project.