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Nerve-realization paradigm
Let D be a cocomplete small category; it is a common knowledge that for any
other small category C there exists an equivalence

Fun(C,D) � Adj(Ĉ,D)

realized sending Q : C→ D in the adjoint pair | − |Q a NQ , where we consider
the functors

D-shaped nerve: NQ : D→ Ĉ : d 7→
(
NQ (d) : c 7→ C(Q (c), d)

)
;

D-oidal realization, | − |Q = LanyQ, obtained from the diagram

C Q //

y
��

D

Ĉ
Lany Q

@@

Checking that LanyQ a NQ is mere adjoint-yoga and the assignment
Q 7→

(
| − |Q a NQ

)
is functorial in Q by evident reasons; fully faithfulness

of this correspondence can be proved via

Nat(Q ,Q′) � Nat(Q , LanyQ′ ◦ y) � Nat(LanyQ , LanyQ′).
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Localization theory in a nutshell
Idea: categorify localization of rings categories ∼ multi-object monoids).

Everybody is comfortable with the construction building Q out of Z;
Everybody is comfortable with the construction building R[S−1], out of a
commutative domain R: for S a multiplicative system S,

R
f //

i
��

S

R[S−1]
∃!h

::

Localization theory for categories is the exact formal analogue in the world of
many-object-monoids: for S ⊆ Mor(C),

C F //

i
��

D

C[S−1]
∃!H

::

It always exists in a suitably large universe ([Gabriel-Zisman], 1967), but it is
extremely difficult to describe explicitly.
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Homotopical and model categories

Definition
A homotopical category consists of a pair (C,wk) where wk is a class of
arrows in C satisfying the 2-out-of-6 property: given a commutative diagram

•
h //

��

•

g

�� ��
•

f
// •

if both fg, gh ∈ wk, then all f , g, h , fgh ∈ wk.

Quillen’s motivation to introduce model categories was to find a way to
express the fact that two homotopical categories (hopefully with additional
structure) give rise to the same “homotopy theory” once localized à la
Gabriel-Zisman.

The other is that GZ-localization becomes far more easier in the presence of a
model structure on (C,wk): C[wk−1] � Ccf/ '.
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Two homotopical categories (C,wk), (D,wk′) are Quillen equivalent if they are
linked by an adjunction

F : C� D : G

which becomes an equivalence once localized; the extremely beautiful
simmetry hidden in the theory entails that even the class of homotopical
categories has an homotopical structure on its own: being Quillen
equivalent is kind of like being homotopic.

So we are allowed to think that two models (i.e. two categories equipped with
a class of “weak equivalences”) describe the same homotopy theory if they
are in the same “homotopy class”.

Among other things, [Quillen] shows that simplicial sets and (certain)
topological spaces really are different models for the same homotopy theory:
there is a Quillen equivalence (given by the nerve-realization paradigm)
sSet� Top.

We are interested in unraveling other (maybe all?) models for the
homotopy theory of topological spaces
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Aspects of
Hot

Top //

∆̂oo
//Catoo

Hot

;;
dd

OO
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The Hot category: topological model

In all what follows Top will denote be a nice category to do
Algebraic Topology (either compactly generated Hausdorff
spaces CGHaus or CW-complexes CW will do the trick).
The homotopy category of Top is defined to be the
GZ-localization of Top with respect to the class of homotopy
equivalences, namely the class W of arrows such that
πn(f ) : πn(X ) → πn(Y ) is an isomorphism (between pointed sets,
groups, abelian groups) for any n ≥ 0.

Now, the homotopy category of Top has many other models! We
concentrate on two of them for the moment, building Quillen
equivalences between Top and the category of simplicial sets
and small categories.
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The simplicial model for Hot
Recall that the category of simplicial sets is defined to be the category ∆̂ of
presheaves on the category of nonempty, finite linear orders ∆, having

as objects finite nonempty linearly ordered sets {0 < · · · < n};
as arrows, (weakly) monotone mappings betweens sets.

Being Top cocomplete, the nerve-realization paradigm applied to
j : ∆→ Top : [n] 7→ ∆n ⊂ Rn+1 gives an adjoint pair

∆̂

| · |
//
Top

Nj

oo

which coincides with the classical nerve-singular complex of simplicial
sets-spaces: given X∗ ∈ ∆̂, the Kan extension |X∗ | can be expressed as the
coend

|X∗ | =
∫ m∈∆

Km × ∆
m � coeq

( ∐
m→n

Km × ∆
n ⇒

∐
n∈∆

Kn × ∆
n
)
.

The adjunction | · | a Nj is a Quillen equivalence: we can characterize
simplicial weak equivalences to be those simplicial maps whose geometric
realization is a (topological) homotopy equivalence.
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The categorical model for Hot
We can repeat the trick: the nerve-realization paradigm applied to the functor
ι : ∆→ Cat regarding the poset [n] as a category, gives an adjoint pair

∆̂

| · |
//
Cat

N
oo

where a simplicial set X∗ is categorically realized (same definition as a Kan
extension along the Yoneda embedding), and the categorical nerve is defined
to be the classical nerve of a category sending C to the simplicial set
[n] 7→ Cat(n,C).

A categorical weak equivalence is defined to be a functor F : C→ D such that
the simplicial map induced between the nerves is a simplicial weak
equivalence; categorial weak equivalences form the homotopical class
W∞ ⊂ Mor(Cat).
Again, there is an adjoint pair which realizes a Quillen equivalence between
Top and Cat; anyway the nerve is not the right functor: instead one has to
consider the category of elements∫ ∆

(−) : ∆̂→ Cat
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Definition
Let (f ∗ , f∗) : E → F be a geometric morphism between (Grothendieck)
toposes; it is called an Artin-Mazur equivalence if for any m ≥ 0 the morphism
induced in (the) cohomology (of the toposes)

Hm (F ,P) → Hm (E , f ∗P)

is invertible for any locally constant sheaf P ∈ F .

Remark
An alternate description of categorical weak equivalences can be obtained via
topos cohomology and AM-equivalences; a functor F ∈ Cat(C,D) belongs to
W∞ iff the geometric morphism induced by F between presheaf toposes
Ĉ� D̂ is an AM-equivalence.

Sheaves on the space BC = |NC| are in AM-equivalence with Ĉ; we can accept as a
classical result (see for example [Moerdijk]) that the cohomology of the topos of
sheaves on a tame space corresponds degree-wise with the classical cohomology of
X . Then a continuous map of spaces is a quasi-isomorphism iff the induced geometric
morphism is an AM-equivalence.
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The central problem adressed by Grothendieck in its monumental letter is:
how can we determine the modelizers of the category Hot, namely all the
homotopical categories (C,W ) whose GZ-localization is equivalent to the
category Hot?
In particular, Grothendieck tries to find the canonical modelizers of Hot, i.e.
those modelizers such that the class of weak equivalences is uniquely
determined by some other data inherent in the category C.

Remark (Induced homotopical structure on E)

It’s worth to mention that AM-equivalences define an homotopical
structure on any topos: if we denote E/X the co-slice category on X ∈ E , we

can define WĈ = {A
φ
−→ A ′ | E/A → E/A ′ è un’equivalenza di Artin-Mazur}. In

particular if E = Ĉ, then a morphism between presheaves P → Q is a weak
equivalence iff the geometric morphism E/P → E/Q is an AM-equivalence.
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Definition
Consider the functor

ıC : Ĉ // Cat

sending a presheaf to its category of elements (via the so-called Grothendieck
construction), and denote

ıC : Ĉ[W −1
Ĉ

] // Cat[W −1
∞ ]

the induced functor between homotopy categories.

Notice that this situation generalizes the previous one, since if C = ∆ then
ıC =

∫ ∆
(−) : ∆̂→ Cat, is the functor we defined before, giving a Quillen

equivalence. This simple remark lead Grothendieck to define the

Central problem: find necessary and sufficient conditions
so that ıC is an equivalence of categories.
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Test
Categories

Cat[W −1
∞ ] � C[W −1

Ĉ
]
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As it is stated, the central problem is extremely difficult. So Grothendieck gives
an additional hypotesis leading to the extremely neat theory of test categories:

The functor i∗C : Cat→ Ĉ, right adjoint to iC, sending a category D in the
presheaf c 7→ Cat(C/c ,D), is homotopical. In such a case the category C
is called weak test category (WTC), and the functor induced by ı∗C
between the localizations is an equivalence of categories, whose
quasi-inverse is exactly ıC.
Grothendieck obtains an extremely simple characterization of WTCs: D is
a WTC if and only if F = i∗C(D) ∈ Ĉ is an aspherical presehaf, i.e. such that

the unique arrow
∫ Cop

F → 1 in Cat is a weak equivalence.
A WTC such that all its slices C/X are again WTC is called local test
category (LTC); Ĉ is called elementary modelizer and C is called a test
category, if C is both a LTC and a WTC.

Criterion: C is a LTC if and only if F = i∗C({0→ 1}) is locally

aspherical, namely the induced functor C/X → C
F
−→ Sets is

aspherical for any slicing C/X.
Criterion: A LTC C is a test category if and only if the unique arrow
C→ 1 belongs to W∞ (weak equivalences in Cat). In such a case
the category C is called aspherical.
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Digression: geometric shapes for HCT
The archetypal example of test category is of course the simplex category ∆;
the formalism of TCs, together with the notion of Reedy category, gives a
recognition principle to find good geometric shapes for higher structures i.e.
reasonable models to formalize the notion of higher category and higher
morphism.

The categories ∆, {Θn | n ≥ 2}, Γ, Ω, {Ψn | n ≥ 2} of simplices, Joyal Θ- or
Segal Γ-spaces, dendroidal and globular sets,. . . are all examples of test
categories, presenting (via the Yoneda embedding) categories (using ∆,
categories are suitable simplicial sets), n-fold categories (using Θn, a n-fold
category is a suitable presheaf on Θn), or globular sets (see [Leinster] and
[Joyal]), multicategories (presheaves on Ω).

The category Ψn is defined to be the free category on the graph

n n − 1
tn

oo

snoo
n − 2

tn−1

oo

sn−1oo
. . . 0

t1
oo

s1oo

modded out by the relations sisi−1 = tisi−1 and si ti−1 = ti ti−1 for any 0 ≤ i ≤ n. An
n-globular set is a presheaf on Ψn.
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Test functors
Test functors arise as a generalization of the simplicial nerve-realization pair.
Suppose A is a WTC: then we would like to call (weak) test functor any
functor i : A→ Cat such that the Yoneda extension i∗ = Lany i : Â→ Cat is a
homotopical functor with respect to the implicit homotopical structures on both
categories.
The definition of a QTC gives a natural example of weak test functor:
J : a 7→ A/a.

Definition
A weak test functor consists of a functor i : A→ Cat, where the domain is a
WTC, whose essential image is made by aspherical categories.

The following conditions are equivalent:
i : A→ Cat is a weak test functor;
For any aspehrical category C ∈ Cat, i∗C is an aspherical presheaf.

This criterion is also local: A is a LTC (i.e. A/X → A→ Cat is a weak test
functor for any X ∈ A) if and only if for each aspherical C ∈ Cat, the presheaf
i∗C is locally aspherical.
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Elemental localizers
Grothendieck notices that the following “recognition principle” to identify
categorical weak equivalences

Theorem (Quillen’s A -theorem)

If F : C→ D is a functor such that for any d ∈ D the functor
F/d : (C ↓ d) → D/d belongs to W∞, then F itself belongs to W∞.

has an extremely natural interpretation in terms of topos morphisms, which
turns it into a natural criterion to recognize the asphericity of a map: this leads
to the following definition

Definition (Elemental localizer)

We call elementa localizer any class W ⊂ Mor(Cat) of arrows such that
W defines a replete subcategory of Cat, satisfies the 2-out-of-3 property
and is closed under retracts (we say that W is quasisaturated);
If A ∈ Cat has a terminal object, then the terminal morphism A→ 1 is in
W (this is a property of W∞: prove it!);
Quillen’s A -theorem applies to W .

(sissa) Grothendieck Homotopy Theory in a nutshell December 11, 2013 17 / 1



homotopy Kan extensions,
smooth and proper functors
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Choose your favourite homotopical category (M,W ) and a small category I;
give Fun(I,M) the Reedy homotopical structure: weak equivalences are the
objectwise weak equivalences in M. Denote Fun(I,M)W this homotopical
category.

Now, any functor G : I → J induces an inverse image

G∗ : Fun(J ,M)W → Fun(I,M)W

which is obviously homotopical with respect to the Reedy structures.

Definition
The homotopy left (right) Kan extension along G consist of the left (right) Quillen
adjoint to the functor G∗:

Fun(J ,M)W G∗ // Fun(I,M)W

hoRanGoo

hoLanG

oo
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Theorem (Quillen-Thomason)
If (M,W ) is quillenizable, namely if there is a model structure
(wk, Fib ∩ wk) “extending” the given homotopical structure, i.e.
such that wk = W , and furhtermore M is complete (cocomplete),
then the right (left) homotopy Kan extension of any functor
Fun(G ,M)W exists.

Choose (M,W ) = (Cat,W∞) (which is quillenizable): then the
homotopy left Kan extensions of a functor Fun(G ,M)W can be
characterized in a more hands-on way, by means of the

Grothendieck construction for a functor F : I → Cat: if
∫

F
Φ
−→ I is

its universal Grothendieck fibration, and G : I → J is a functor,
then there exists

∫
F

G◦Φ
−−−→ J, inducing the functor

J → Cat : j 7→ (
∫

F ↓ j)
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The correspondence

Fun(I,Cat) // Fun(J ,Cat)

F � //
(
j 7→ (

∫
F ↓ j)

)
descends to GZ localizations, inducing a functor

Fun(I,Cat)W∞ → Fun(J ,Cat)W∞ .

This functor is easily seen to be isomorphic to hoLanG.

Now, the existence of a homotopy left Kan extension can be
translated almost verbatim to the case of a generic elemental
localizer W di Cat.
We would like to address the dual problem, ensuring the
existence of a right Kan extension: this is much more difficult,
since it involves subtle set-theoretic issues, linked to the
accessibility of the localizer. We address the interested audience
to [Maltsiniotis]
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Smooth and proper functors

Denote by HotW (I) the GZ localization of Fun(I,Cat)W , given an elemental
localizer (Cat,W ).

Given an elemental localizer (Cat,W ) and a pullback square

A′
y

w //

u′

��

A

u
��

B′ v
// B

we say that u is a W -proper functor if the canonical 2-cell

u′!w
∗ =⇒ v∗u!

is invertible for any v, where u! : HotW (A) → HotW (B),
u′! : HotW (A′) → HotW (B′) denote the (localizzations of the) homotopy left
Kan extensions of u, u′.
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Smooth and proper functors

Denote by HotW (I) the GZ localization of Fun(I,Cat)W , given an elemental
localizer (Cat,W ).

Given an elemental localizer (Cat,W ) and a pullback square

A′
y

w //

u′

��

A

u
��

B′ v
// B

we say that v is a W -smooth functor if the canonical 2-cell

w!(u′)∗ =⇒ u∗v!

is invertible for any u, where w! : HotW (A′) → HotW (A) and
v! : HotW (B′) → HotW (B) denote the (localizzations of the) homotopy left Kan
extensions of w , v.
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In Algebraic Geometry smooth and proper morphisms can be characterized to be
those classes realizing the Beck-Chevalley isomorphism for the adjunction (−)! a (−)∗.

However, it is worth to mention that the categorical and the geometric notion of
smoothness and properness deeply differ: in fact Grothendieck is able to show that
in the categorical sense, the two notions are perfectly dual:

u : A→ B is proper ⇐⇒ uop : Aop → Bop is smooth.

but this is by no means true on the geometric side!

Base-change along flat functors turns out to be a fundamental tool in Grothendieck
homotopy theory: the two notions can be thought to be the “building blocks” of an
elemental localizer (Cat,W ): the result concluding [Maltsiniotis] in fact shows that (thm
3.2.45)

Theorem

Any functor F : C→ D admits a factorization

C
W
−−→ K

U
−→ D

where W is a weak categorical equivalence, and U is both proper and smooth.
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