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1 A short intro to Topos Theory.

I have to state my position on the most controversial question in the whole
of topos theory: how to spell the plural of tòpos. The reader will already
have observed that I use the English plural; I do so because (in its
mathematical sense) the word is not a direct derivative of its Greek root
τόπος but a back-formation from topology. I have nothing further to say
on the matter, except to ask those toposophers who persist in talking about
τόποι whether, when they go out for a ramble on a cold day, they carry
supplies of hot tea with them in θέρμὸι.

[Johnstone], pag. XX

NOTATIONS AND CONVENTIONS. Sets are supposed to be all small with respect to a given
Grothendieck universe U; categories are all U-small and denoted by boldface letters as C,D. Functors
between them are denoted plainly as F,G,H or sometimes in lowercase letters f ,g,h. Natural
transformations are usually denoted by greek letters α : F ⇒ G. The Yoneda embedding C ↪→
[Cop,Sets] = Ĉ is denoted as Y : C 7→ Y(C) = C(−,C). Initial/terminal objects in a category are
denoted respectively as /0,0 and ∗,1 or suchlike symbols. The category of functors between C and D
is denoted [C,D].

INTRODUCTION. One of the most famous books about topos theory is the (still in-
complete) monography Sketches of an Elephant ([Johnstone2]); the title was inspired to
Johnstone by the Jain parable of the six (or four) blind men that coming across an elephant
try to understand which kind of animal it is.

The first blind man, touching the trunk of the elephant, claimed the animal was like
a sort of drain pipe. For another one whose hand reached its ear, the animal seemed like
a kind of fan. As for another person, who touched its leg, he said: “I perceive the shape
of the elephant to be like a pillar, or a tree”. And the one who placed his hand upon its
back said: “Indeed, the elephant is like a throne”. Each of them presented a true aspect
when he related what he had gained from experiencing the elephant. None of them had
strayed from the true description of the elephant, yet they fell short of fathoming the true
appearance of the elephant.

So are toposes: chimeric entities which can be viewed at the same time as generalized
topological spaces, generalized universes where we can develop set theory in a constructive
way, categorified versions of the notion of Heyting algebra, the ideal setting in which to
develop the analytical aspects of nonstandard analysis, . . .

The parable of the six blind men is intended to teach the Jain principle of anekānta
“manifoldness of thought”, pluralism and multiplicity of viewpoints), according to which
truth and reality are differently perceived from diverse points of view, and no single point
of view embodies a global truth. Similarly, there’s no hope to capture the essence of topos
theory without accepting to look at mathematics as a whole subject, and maybe the extent
of a lifetime is not enough to get acquainted even with the surface of the topic. This said,
the aim of this first introductory section is twofold:
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i. Provide the reader with the minimal amount of intuition of the intrinsic geometric
nature behind the notion of (Grothendieck) topos;

ii. Collect the minimal amount of theory needed to appreciate the central part of this
note, devoted to link the geometric notion of stack used in algebraic geometry to the
(fairly more homotopical) notion of fibrant object in a model category.

As for the first task, the notion of Grothendieck topos was a pleasant byproduct of Grothen-
dieck and Deligne’s battle against Weil conjectures during the ’60s, and can be viewed as
a “generalized topological space”. The original idea of Grothendieck was to interchange
the rôles of the two notions, seeing the former (topological spaces, or better sheaves on
topological spaces) as a really particular case of the latter (toposes: sheaves on a site, i.e.
-roughly speaking- on a category endowed with a notion of covering for any object U).

Such a general viewpoint can now be justified in several ways, and even if the most
evident “killer application” is still the proof of Weil conjectures given in [SGA4], there are
plenty of applications to other fields of mathematics, or to the task of unify mathematics
under the aegis of a single ubiquitous idea: here are the most important two insights
according to Grothendieck’s philosophy.

• Spaces are better described via sheaves, rather than via the collection of their open
sets (which can be recovered from the category Sh(X), under really mild hypoteses
on the spaces). More precisely, any space X can be “probed” through various kind of
sheaves allowing to capture its different “facets”, which can be merely topological
(i.e. encoded in the sheaf of continuous functions U 7→C0(U)), smooth (i.e. encoded
in the sheaves of smooth functions U 7→Cκ(U), where κ ∈ N∪{∞,ω}), complex-
smooth (i.e. encoded in the sheaf of holomorphic functions U 7→H(U)), or algebraic
(i.e. encoded in the sheaf of polynomial functions U 7→ OX (U)).

Such a general point of view in Geometry can be traced back to Gel’fand-Naimark’s
theorem, asserting an (anti-)equivalence of categories

C∗-Algc
∼= LCHaus (1)

between tha category of (locally compact Hausdorff) topological spaces and the
category of (commutative) C∗-algebras; the topology of X is entirely recovered by
the spectrum of its algebra of continuous global functions C(X) = { f : X → C}.

• The definition of (Grothendieck) topos is modeled in such a way that the following
leading principle holds: the category Sh(X) of sheaves of sets on a topological
space is the archetypal example of a topos; Sh(X) “mimics” in a suitable sense any
geometric feature of X , because given suitable (and rather natural from a categorical
wiepoint) definitions of “homotopy and (co)homology groups” of a topos, then1 we
have an isomorphism between those groups and the “classical” homotopy/homology

1At least in the case where X is sufficiently tame (for example when its homotopy type is that of a CW-
complex): see the introduction to [Moerdijk2] for more informations. The case of cohomology is somewhat
subtler and has been studied in full generality by [Duskin]; the technical property of having a natural number
object is alwawys fulfilled at least by Grothendieck toposes (see [Moerdijk], ch. VI).
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groups of X :

πn(Sh(X), p0)∼= πn(X ,x0)

Hn(Sh(X),Z)∼= Hn(X ,Z)

1.1 Grothendieck toposes.
Often in mathematics one has to consider correspondences which, albeit exhibiting a
“sheafy” behaviour, can’t be reduced to mere sheaves on spaces, either because of size
issues (the domain category might be far from being as small as the posetal category of
open subsets of some topological space X) or because sheaf-conditions do not seem to
apply in any reasonable sense.

So, at least at first sight, there’s no hope to consider a category C and a functor
F : Cop→ Sets (i.e., a presheaf), and turn the question “is F a sheaf ?” into a meaningful
one. In a few words, the problem reduces to state the sheaf conditions

• For any U ⊆ X , and for any covering {Ui} of U , if s|Ui = t|Ui n F(Ui) for any i ∈ I
the s = t as sections in F(U).

• For any U ⊆ X , and for any covering {Ui} of U , if a family of sections {si ∈ F(Ui)}
is such that si|Ui∩U j = s j|Ui∩U j then there exists a section s∈ F(U) such that si = s|Ui .

in a way which is purely categorical on the one hand, and geometrically meaningful on the
other. It is a well-known truism that the two condition summarize to the exactness of the
sequence

F(U) // ∏i∈I F(Ui)
b
//

a //
∏i, j∈I F(Ui∩U j) (2)

(meaning that F(U) ∼= eq(a,b), where the maps a,b are obtained via the UMP of the
product). But now, what does “being covered” by a family {Ui} mean, for an object
U ∈ C?

Grothendieck’s intuition that sheaf axioms are all about “what is being covered” led to
the following definition of a site or category with a Grothendieck topology:

Definition 1.1. Let C be a category with pullbacks. A (Grothendieck) topology on C
consists of a function which assigns to any object U in C a collection COVC(U) of families
of arrows2 { fi : Ui→U}i∈I , called coverings of U , such that

i. If V →U is an isomorphism, the singleton {V →U} is in COVC(U): in particular
{1U : U →U} is always a covering of U , for any U ∈ Ob(C) (this reads as “any
open set U ⊆ X is trivially covered by {U}”);

ii. (change of base) If {Ui → U} ∈ COVC(U) and V → U is any arrow in C, then
{Ui×U V →V} ∈ COVC(V );

2Notice that you are considering a collection each element of which is a set-indexed family of arrows to U :
this issue is in principle able to lead to serious set-theoretic hardships in absence of Grothendieck’s axiom of
universes.
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iii. (refinement) If { fi : Ui → U} ∈ COVC(U) and for any i ∈ I there is {gi j : Vi j →
Ui} j∈J(i) ∈ COVC(Ui), then { fi ◦gi j : Vi j→Ui→U} ∈ COVC(U).

A category C endowed with a (Grothendieck) topology COVC is called a (Grothendieck)
site and it is denoted (C,COVC).

Notice that the combined action of base-change and refining axioms entails that if
{Ui→U},{Vj→U} ∈ COVC(U), then {Ui×U Vj→U} ∈ COVC(U).

Example 1.1. Let X be a space, and denote with Ouv(X) the category of its open subsets,
regarded as a poset and hence as a category. It should be a truism that coverings of
objects in Ouv(X) are exactly coverings of open sets. We can indeed turn Ouv(X) into a
Grothendieck site choosing COVOuv(X)(U) precisely as the set of all coverings of U .

Axioms are easily checked once we noticed that if V1 → U,V2 → U are arrows in
Ouv(X) the V1,V2 ⊆U . Then the pullback V1×U V2 is the intersection V1∩V2.

Definition 1.2. Call a family of functions { fi : Ui→U}i∈I jointly surjective if
⋃

i fi(Ui) =
U .

Example 1.2 (The classical site of topological spaces). Consider the category Top of
topological spaces and continuous maps and define a covering COVcl(U) of U as a jointly
surjective family of continuous open embeddings Ui→U . Notice that mere inclusions
are not enough to define a site structure: axiom (i) in Definition 1.1 entails that any
homeomorphism V ∼= U has to be considered as a covering of U .

Example 1.3 (The global étale site of topological spaces). Consider again the category
Top of topological spaces. For any space Y define a covering COVét(U) of Y as a jointly
surjective family of local homeomorphisms E→ Y .

(Top,COVét) is the global étale site.

Example 1.4 (The small étale site of a scheme). Let X be a scheme. Consider the
full subcategory (Sch/X)ét of Sch/X , consisting of morphisms U → X locally of finite
presentation and étale. If U → X and V → X are objects of (Sch/X)ét, then an arrow
U → V over X is necessarily étale. A covering of U → X in the small étale topology
consists of a jointly surjective collection of morphisms Ui→U .

Let’s continue to consider the category Sch/X of schemes over a fixed scheme X .
There are a number of topologies that one can put on it. Here are the most useful.

Example 1.5 (The global étale topology). A covering { f : Ui → U} ∈ COVét(U) is a
jointly surjective collection of étale maps locally of finite presentation.

Example 1.6 (The global Zariski site). Here a covering { f : Ui→U} ∈ COVZar(U) is a
collection of open embeddings covering (in the topological sense) U . As in the example of
the global classical topology, an open embedding must be defined as a morphism V →U
that gives an isomorphism of V with an open subscheme of U , and not simply as the
embedding of an open subscheme.
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Example 1.7 (The fppf site). A covering { f : Ui→U} ∈ COVfppf(U) is a jointly surjective
collection of flat maps locally of finite presentation.

The abbreviation fppf stands for “fidèlement plat et de présentation finie”, which
translates to faithfully flat and finitely presented.

Separation and gluing axioms, defining the sheaf condition, can be rephrased in any
Grothendieck site (C,COVC), providing the notion of intersection is changed with that of
pullback of the domains of elements of a covering:

Definition 1.3. Let (C,COVC) be a Grothendieck site and F : Cop → Sets a presheaf.
Then F is said to be

• A separated presheaf if, for any { fi : Ui→U}i∈I ∈ COVC(U)and a,b ∈ F(U) such
that F( fi)(a) = F( fi)(b) for any i ∈ I, then a = b.

• A sheaf if the following condition is satisfied:

Given a covering { fi : Ui→U}i∈I and a family of elements {ai ∈F(Ui)}i∈I , if for
any i, j ∈ I we denote pi : Ui×U U j→Ui, p j : Ui×U U j→U j, and assume that
F(pi)(ai) = F(p j)(a j), then there exists a unique a∈ F(U) such that F( fi)(a) =
ai for any i ∈ I.

The collection Sh(C,COVC) happens to be a full reflective3 subcategory of PSh(C) =
[Cop,Sets]; this means that a morphism F → G between two sheaves is nothing more than
a natural transformation of functors.

Definition 1.4. A Grothendieck topos is defined to be a category E equivalent to Sh(C,COVC),
for some category C and Grothendieck topology COVC on C.

1.1.1 Giraud characterization of toposes.

Giraud offered an intrinsic characterization of Grothendieck toposes as categories fulfilling
suitable exactness conditions:

Theorem 1.1 (Giraud’s Theorem). A category E is equivalent to a Grothendieck site
Sh(C,COVC) if and only if

• E is complete and cocomplete;

• E has disjoint and pullback-stable coproducts, i.e. for any family {Ei} of objects of
E the square

qi∈IEi Ekoo

Ek

OO

/0oo

OO
(3)

is a pullback for any j,k ∈ I ( /0 is the initial object of E) and the functor B×A−
respects coproducts, for any B→ A and family of arrows Ei→ A.

3In order to find an adjoint to the inclusione, try to mimic the sheafification functor (−)a : [Cop,Sets]→
Sh(C,COVC). Morally, one has to identify section “agreeing on any covering of any object” and lift families of
sections which are compatible on a covering of U to a section on the whole U .
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• Given an equivalence relation ρ : R ↪→ E×E on an object E ∈ E, the coequalizer

R
π1ρ
//

π2ρ
// E // C (4)

exists (and is denoted E/R).

• Any epimorphism p : E� B admits a kernel pair (i.e. the pullback E
q2←− E×B E

q1−→
E exists) and p is the coequalizer of its kernel pair (i.e. the diagram

E×B E
q1 //

q2
// E

p
// B (5)

is exact).
X×A E×B E

����

// E×B E

����

X×A E

��

// E

��

X×A B

��

// B

��

X // A

• Given any diagram shaped like the one besides, for X → A any arrow in E, the
diagram

X×A E×B E //
// X×A E // X×A B (6)

is again exact.

• E admits a generating family, i.e. a set of objects {S j} such that {E(S j,−)} is a
jointly faithful family of functors.

1.2 Elementary toposes.

Fortunately it is not necessary to deal with such a nasty definition, because a more general
and elegant notion, unraveled by Lawvere and Tierney, is available to us.

This shed some light on another interpretation of the notion of topos, namely that a
topos is a “generalized universe of sets” (something even Grothendieck was aware of, but
that he wasn’t able to communicate in the right manner to logicians). In a few words, any
topos can be regarded as offering an alternative model for ZF set theory (often without the
Axiom of Choice, but if you do Geometry you probably want to get rid of it in any case),
because any topos offers a setting where set theory can be rephrased in a suitable “internal
semantics”.

This note being intended to present the geometric side of the story, we will not deepen
this (rather vast) topic, but we address the interested reader to [Moerdijk], chap. VI, and
to the whole work of [Johnstone].

The main insight in Lawvere-Tierney definition of an “elementary” topos is that of a
subobject (or truth) classifier:

Definition 1.5. An category E is an elementary topos if

• E is finitely complete (i.e. it admits any finite limit);

• E is cartesian closed, i.e. the functor −×B has a right adjoint (−)B, for any B ∈ E;
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• The functor of subobjects SubE(−) sending A ∈ E to the collection of (isomorphism
classes) of monics B ↪→ A is representable by an object Ω, called subobject (or truth)
classifier, in such a way that any B ↪→ A results as the pullback of a universal map
true : ∗→Ω, along an arrow χB : B→ A:

B //

��

∗

true
��

A
χB
// Ω.

(7)

The bijection
SubC(A)∼= E(A,Ω) (8)

is realized by the correspondence [B ↪→ A] 7→ χB, the “characteristic map” of B⊆ A.

EXERCISE 1 : Define the functor SubC(−) on arrows; show that true corresponds to 1Ω

via the bijection (8).

EXERCISE 2 [Sets IS A TOPOS]: The name for χB betrays the fact that the category Sets
is a topos. In fact, it is an elementary topos (show that Ω = {0,1}, and χB is exactly the
characteristic function of B⊆ A, sending B to 1 and A\B to 0).

Show that Sets is also a Grothendieck topos finding a Grothendieck site X such that
Sets∼= Sh(X).

COROLLARY 1 [FSets IS A TOPOS]: Finite limits of finite sets are finite, and for any
A,B ∈ FSets the set BA = hom(A,B) has |B||A| elements. Then any limit computed in
Sets commutes with the forgetful functor U : FSets ↪→ Sets, hence Ω = {0,1} classifies a
fortiori subsets of finite sets.

Example 1.8 ([Cop,Sets] is a topos). Completeness is obviously inherited by Sets. The
only non-trivial problem is to define the exponential object GF such that the bijection

Nat(H×F,G)∼= Nat(H,GF) (9)

is natural both in H and in G. Suppose it exists, then by the Yoneda lemma we must have

GF(A)∼= Nat(Y(A),GF)∼= Nat(Y(A)×F,G) (10)

hence we define GF to act on A in this precise way, and the category is automatically
cartesian closed4.

Again by Yoneda lemma, if [Cop,Sets] has a subobject classifier, then it must be defined
as

Ω(A)∼= Nat(Y(A),Ω)∼= Sub(Y(A)) (11)

hence Ω(A) := {S | S ↪→ Y(A)} The truth classifier is defined to be the natural transforma-
tion Y(∗)→Ω(A) : {∗}→ Y(A) = C(−,A), the maximal subfunctor.

4This result can be deduced from a pure categorical argument involving bicompleteness of Sets and its
cartesian closure: indeed it is possible to prove that the end

∫
Y

(
∏ f :Y→C G(Y )F(Y )

)
is the desired exponential

object applied to C ∈ C.
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EXERCISE 3 : Unravel the details behind the definition of Ω(−), showing that it actually
represents the subobject functor in [Cop,Sets].

EXERCISE 4 : Notice that Ω can be really far from the constant presheaf on ∗q∗; what
does Ω(X) look like if C = Ouv(X) is the category of open subsets of a topological space?

Remark 1 ([C,Sets] is a topos). The same argument obviously holds in the case of the
category of copresheaves [C,Sets] = [(Cop)op,Sets].

Any Grothendieck topos is an elementary topos: this can be shown with a little effort in
view of the preceding remarks (the subobject classifier of Sh(C,COV) is the same as that
in [Cop,Sets], because Ω is indeed a sheaf; exponential object are the same too. because if
G is a sheaf, then so is GF for any F ∈ [Cop,Sets]). On the contrary, not every elementary
topos is the topos of sheaves on a site: consider for example the topos of finite sets as in
Example 1.

In fact, despite the number of examples we gave, “being a topos” is rather a lucky
situation, because the condition that SubC(−) is representable is kind of a strict one.

Even categories which are really “tame” in other respects rarely happen to be toposes.
For example

EXERCISE 5 : Show that

• Grp is not an elementary topos;

• There is no non-trivial abelian category which is a topos;

• The category of compactly generated, Hausdorff topological spaces CGHaus is an
elementary topos (find the right topology on its subobject classifier!), but Ab(Top)
(the category of topological abelian groups, which in any case is not abelian) is not.

1.3 Morphisms of topoi.

As you are probably aware, category theory is totally about arrows. Once defined the
objects, we want to turn the collection of those objects into a category defining morphisms.

Morphisms of toposes come as suitable pairs of adjoint functors: the definition of such
morphisms is modeled on the following paradigmatic example, which is well-known as a
basic fact in sheaf theory.

Let X ,Y be topological spaces and f : X → Y a continuous function. It is a truism that
the pair of functions f← : Ouv(Y )�Ouv(X) : f∗ defines a Galois connection between the
posets Ouv(X),Ouv(Y ). In the same manner, it is a well-understood fact in sheaf theory
that this Galois connection lifts to an adjunction between the categories Sh(X),Sh(Y ). We
recall this, basically copying [Schapira].

Definition 1.6 (Direct Image Sheaf). Let G ∈ Sh(X). Define the sheaf f∗G on Y as
U 7→ G( f←U), and for any ϕ : G → G ′ morphism of sheaves on X , f∗ϕ : f∗G → f∗G ′ is a
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morphism between sheaves on Y defined by ϕ ∗ f←:

G( f←U)

res
��

ϕ f←U
// G ′( f←U)

res
��

G( f←V )
ϕ f←V

// G ′( f←V )

(12)

Definition 1.7 (Inverse Image Sheaf). Let F ∈ Sh(Y ), define f−1F to be the sheaf on X
associated to the presheaf

V 7→ lim−→
U⊇ fV

F (U) (13)

Restriction are determined by the fact that (calling I(V ) the set of neighborhoods of f (V )
in Y ) W ⊆V ⇒ I( fV )⊆ I( fW ); hence there exists lim−→U∈I(V )

F (U)→ lim−→U∈I(W )
F (U).

Given a morphism between sheaves ϕ : F → F ′, the induced map between sheaves on
X is simply determined by

lim−→U
F (U)

lim−→ϕU
//

res

��

lim−→U
F ′(U)

res

��

lim−→U
F (U)

lim−→ϕU

// lim−→U
F ′(U)

(14)

Remark 2. Let R be a sheaf of rings on X , f−1R ∈ Sh(Y ). If S is a sheaf of rings on Y ,
then f∗S ∈ Sh(X). These two correspondences induce functors

f∗ : Mod(S )→Mod( f∗S )

f−1 : Mod(R)→Mod( f−1R)

Remark 3. The two functors f−1 : Sh(Y )� Sh(X) : f∗ are adjoints in such a way that
f−1 a f∗: counit and unit of the adjunction are respectively

ε : f−1 ◦ f∗→ 1 (15)

induced by the fact that ( f−1 ◦ f∗G)(V ) = lim−→W⊇ fV
G( f←W ), and that if W ⊇ fV , then

f←W ⊇ V (as immediately follows from the chain of inclusions f←W ⊇ f← fV ⊇ V ):
this entails that for any W ⊇ fV there exists G( f←W )→ G(V ), hence an arrow ( f−1 ◦
f∗G)(V ) = lim−→W⊇ fV

G( f←W )→ G(V ), and the transformation

η : 1→ f∗ ◦ f−1 (16)

induced by ( f∗ ◦ f−1F )(U) = lim−→W⊇ f ( f←U)
F (W ), hence U contains f ( f←U): this entails

that there exists a map F (U)→ ( f∗ ◦ f−1F )(U) = lim−→W⊇ f ( f←U)
F (W ).
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In view of the previous paradigmatic example we are led to define a morphism of
toposes in the following way

Definition 1.8 (Geometric Morphism). Let E,F be (either elementary or Grothendieck)
toposes. A geometric morphism f : F→ E consists of a pair of adjoint functors

F
f∗

//
E

f ∗
oo (17)

such that the left part f ∗ is left exact, i.e. it commutes with finite limits. The functor f ∗ is
called the left or inverse image part of the morphism, and f∗ is called the right or direct
image part.

It is customary to denote the domain/codomain of a geometric morphism as the
domain/codomain of its right part f∗.

Proposition 1.1. Suppose F = Sh(X),E = Sh(Y ) for two sober spaces X ,Y . Then any
geometric morphism F→ E comes from a unique continuous function f : X → Y .

Proof. See [Moerdijk], pp. 348-349 for a proof in the case Y is T2. The proof of the
general case is folklore but it is more involved.

Notice that this result means that for any f ∗ : F� E : f∗ there exists a unique continu-
ous map ϕ : X → Y such that, in the notations before,

ϕ
← = f ∗, f∗ = ϕ∗. (18)

Example 1.9. The category of presheaves on C, [Cop,Sets], can be turned into a site in
various ways; one of its most useful Grothendieck topologies is the finest for which every
representable functor Y(C) = hom(−,C) is a sheaf: it is called the canonical topology on
[Cop,Sets].

The functor i : Sh(C,COVC) ↪→ [Cop,Sets] is known to admit a left adjoint5, the sheafi-
fication functor (−)a : F 7→ Fa. This turns Sh(C,COVC) into a reflective subcategory of
[Cop,Sets], and the pair of adjoint functors

Sh(C,COVC)
i //

[Cop,Sets]
(−)a

oo (19)

is a geometric morphism once the category [Cop,Sets] is endowed with the canonical
topology.

Example 1.10. Let E be a(n elementary) topos. For any object B ∈ E the slice cate-
gory E/B, whose objects are arrows X → B is again a topos (this is Theorem IV.7.1 in
[Moerdijk]). Any morphism k : B→ B′ induces a functor E/B′→ E/B by pulling back
X → B′ along B→ B′, and we does expect that this defines (the left part of) a geometric
morphism E/B→ E/B′. Indeed this is true, because k∗ can be shown to admit both a left
and a right adjoint, respectively ∑k and ∏k (this is [Moerdijk], thm. IV.7.2), hence the
adjunction k∗ a∏k defines the desired morphism.

5This can be viewed either mimicking the topological construction of the case C = Ouv(X) for some space X
or better, by means of a purely categorical argument.
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Definition 1.9. A morphism between toposes often happens to be geometric because its
left part f ∗ admits a left adjoint f!; these geometric morphisms are called essential.

Remark 4. Let f : X→Y be an étale morphism of schemes. This gives rise to a geometric
morphism of topoi f : Sh(X)→ Sh(Y ) which is always essential.

Indeed, if we denote as Ét(X), Ét(Y ) the sites of sheaves with the étale topology, then
the functor f! : Sh(X)→ Sh(Y ) : p 7→ f ◦ p is both cocontinuous ([SGA4], III.2.1) and
continuous (ibi, III.1.1), and by ibi, III.2.6 f! induces the string of adjoints

f! a f ∗ a f∗, (20)

hence an essential geometric morphism f : Sh(X)→ Sh(Y ).
A similar argument applies to the classical Grothendieck site (Top,COVcl): an open

embedding j : U→Y always induces an essential geometric morphism j : Sh(U)→ Sh(X),
where j! a j∗ a j∗ is defined to act as “extension by /0”: it suffices to sheafify the presheaf
defined by

j!F (W ) =

{
F (W ) if W ⊆U
/0 otherwise

(21)

(it is worth to notice that [Schapira], Proposition 2.3.6 shows that any other sheaf satisfying
the same condition must be isomorphic to j!F ).

1.4 The topos of group actions.

The following section is devoted to present a topic which is ubiquitous in both the following
discussion about Joyal’s strong stacks and in general topos theory. Despite the fact that
toposes are rather rare structures, there exists a huge family of well-behaved categories
obtained from a given topos E, which are themselves toposes: these are categories of G-
objects in E, i.e. objects X ∈ E endowed with an action of an internal group G ∈ Grp(E).

It is completely straightforward to define such a notion in the case E = Sets, where G-
objects are nothing more than G-sets in the classical sense, morphisms are equivariant maps
f : XG→ YG such that f (g.x) = g. f (x) (i.e. they commute with the action α : G×X →
X : x 7→ g.x). The only subtlety is, as usual, to find the representative for the functor of
subobjects; what is a “sub-G-set” of a G-set XG?

We now want to extend the notion of G-action to the case of an object X ∈ E: to this
end we need to get acquainted with the notion of internalization of an algebraic structure
in a (finitely complete) category.

1.5 Internalization: monoids, groups, categories.

It is straightforward to notice that given a monoid (M, ·,1), the associative property of the
multiplication m : M×M→M and the fact that m(a,1) = a = m(1,a) can be expressed in
a purely diagrammatical way, via the arrows m : M×M→M and e : {∗}→M ({∗} is a

14



particular choice of a terminal object in Sets) in the diagrams

M×M×M
idM×m

//

m×idM
��

M×M

m
��

M×M m
// M

{∗}×M
e×idM // M×M

m
��

M×{∗}
idM×e
oo

M
(22)

Definition 1.10 (Monoid in C). A monoid in a finitely complete category C consists of a
triple (M,m : M×M→M,e : 1→M) such that diagrams in (22) commute.

We often abuse notations and call monoid the object M alone.

Definition 1.11 (Category of monoids in C). Monoids (M,mM,eM) can be arranged to
form a category whose morphisms (M,mM,eM)→ (N,mN ,eN) are arrows h : M→ N in C
which “commute with multiplication and respect identities”.

Remark 5. As for the notion of structure, the notion of action of a structured set on
another set can be generalized to the notion of action on an object, once we translated it
into a diagram to be valid in any finitely-complete category C.

Suppose (M,m,e) is a monoid in such a C; then an action of M on an object S ∈ C
consists of an arrow a : M×S→ S such that the diagram

M×M×S
idM×a

//

m×idS
��

M×S

a
��

M×S a
// S

1×S

$$

e×id
// M×S

a
��

S

(23)

commute. The first equality amounts to ask that h.(g.x) = (h ◦ g).x; the second is the
request that eG.x = x for any x ∈ S.

EXERCISE 6 : Let C be a category. A monad consists of a monoid in the category of
endofunctors [C,C].

• Unravel the definition of a monad in terms of a functor T : C→ C endowed with
two natural transformations µ : T ◦T → T , η : 1→ T (1 is the identity functor of
C) subject to suitable commutativity conditions;

• Show that any pair of adjoint functors 〈F aG,η ,ε〉 gives rise to a monad where T =
GF , the multiplication µ is defined to be the natural transformation GεF : G(FG)F→
GF , and the unit η : 1→ GF is precisely the unit of the adjunction.

1.5.1 Internal groups and rings.

Once we understood how to “categorify” the notion of monoid, an analogous procedure
allows to define groups and rings internal to a finitely complete category: suitable dia-
grams will translate via categorical semantics additional operations, their properties and
morphisms between them, defining Grp(C), and Rng(C).

15



Definition 1.12 (Internal group). Let C be a finitely complete category. A group in C
consists of a monoid (G,m,1) ∈Mon(C) endowed with an arrow i : G→ G (inversion)
such that i◦ i = idG and such that the diagram

G×G

1G×i
��

G ∆ //∆oo

u
��

G×G

i×1G
��

G×G m
// G G×Gm
oo

(24)

commutes, where we denoted as ∆ = 〈1G,1G〉 the diagonal morphism G→ G×G.
G h //

i
��

b

H

i
��

G
h
// H

Definition 1.13 (Group morphism in C). A morphism h : G→H between groups consists
of a morphism of monoids which commutes with i, in the sense that the diagram aside
commutes.

EXERCISE 7 : Define an internal ring in a finitely complete category C; define a morphism
of internal rings in such a way that Rng(C) becomes a subcategory of C.

1.6 G-objects form a topos.

The main theorem of this section can be found in [Moerdijk], V.6.1.

Theorem 1.2. Let E be a topos, and G an internal group in E. Then the category EG of
G-objects in E is again a topos.

Notice that in the case E = Sets the result is a direct corollary of Example 1.8 and
Remark 1, because any group can be regarded as a category G with a single object �
such that G(�,�) ∼= G; then the category of right/left G-sets simply is the category of
covariant/contravariant functors G→ Sets.

Sketch of Proof. The forgetful functor U : EG→ E which sends (X ,a : G×X → X) to X
is monadic (its left adjoint is the free-G-action functor, defined by sending X in (A =
G×E,m× 1E : G×A→ A); moreover it creates every limit in EG ([Moerdijk], prop.
IV.4.1), hence EG is complete.

The action on the exponential object CB of two G-objects B,C ∈ E is given by (the
transpose of) the arrow

G×CB×B ∆×CB×B−−−−−→ G×G×CB×B
∼=−→ G×CB×G×B

G×CB×aB−−−−−−→
G×CB×aB−−−−−−→ G×CB×B G×ev−−−→ G×C

aC−−→C

The subobject classifier is inherited by that of E, once we turn true : ∗→Ω into a G-map;
this can be done giving both ∗ and Ω the trivial action π2 : G×Ω→Ω.
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1.7 Internal categories.
A finitely complete category allows one to internalize. . . even the notion of a category!
For the sake of clarity we fix once and for all a Grothendieck topos E to work in.

Definition 1.14. An internal category in E consists of the following arrangement C =
(Co,Ca,s, t,c,e) of objects and arrows in E:

• A pair of objects Co,Ca ∈ E, respectively the object of objects and the object of
arrows;

• Arrows s, t : Ca→Co (source and target), e : Co→Ca (identity), c : Ca×Co Ca→Ca
(composition, where Ca×Co Ca = “composable arrows” is defined to be the pullback
along s, t) such that:

– “the source and the target of the identity map coincide”, i.e. the following
diagram commutes:

Co
e // Ca

t
��

s
��

Co
eoo

Co

(25)

– “the source of g◦ f is the source of f , and the target of g◦ f is the target of g”,
i.e. the following square commutes either if we choose the inner or the outer
arrows:

Ca×Co Ca c
//

c //

p2

��

p1

��

Ca

s
��

t
��

Ca
t //

s
// Co

(26)

– “composition of arrows is associative”, i.e. the following diagram commutes:

Ca×Co Ca×Co Ca
c×Co 1

//

1×Co c

��

Ca×Co Ca

c
��

Ca×Co Ca c
// Ca

(27)

– “e acts like an identity for the composition”, i.e. the following diagram com-
mutes:

Co×Co Ca
e×CoCa

//

p2
&&

Ca×Co Ca

c
��

Ca×Co Co
Ca×Co e
oo

p1
xx

Ca.

(28)

Remark 6. Internal categories can be characterized in various other ways:
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• (see [Johnstone], Remark 2.13 and [Cisinski], p. 19) One can generalize the
categorial nerve-realization paradigm 6 to the setting of internal categories in E,
once noticed that the “classical” nerve is a suitable simplicial set7 functorially
associated to C ∈ Cat(E) in the case E = Sets. Define N(C) ∈ [∆

op
≤3,E], where ∆≤n

is the full subcategory of ∆ with objects {[0], . . . , [n]}, to be the simplicial E-object
having as object of n-simplices the n-fold pullback of Ca along s, t: N(C)0 = Co,
N(C)1 = Ca, N(C)2 = Ca×Co Ca, N(C)3 = Ca×Co Ca×Co Ca. . .

The perseverant reader is invited to check that faces and degeneracy maps are induced
exactly by the source, target, indentity, and composition arrows. The nerve functor
defined in this way is fully faithful, hence the category CatE of internal categories
in E can be faithfully identified with a full subcategory of truncated simplicial sets,
[∆

op
≤3,E].

• (see [Betti]) Define the (2-)category Span E of spans in E having the same objects
of E, and where an arrow X 99K Y consists of a roof X ← A→ Y ; any hom-set in
Span E, say between X and Y , is in addition a category if we define 2-cells to be
η : A→ B such that the following diagram commutes:

A //

��
η
  

Y

X B.

OO

oo

(29)

Now it’s easily seen that internal categories in E bijectively correspond to monads in
Span E (see Exercise 6 for the definition of a monad).

Definition 1.15 (Internal functor). If C = (Co,Ca,s, t,c,e) and D = (Do,Da,s′, t ′,c′,e′)
are internal categories in some ambient category E, then an internal functor consists of two

6This is a rather folkloristic topic in Category Theory: it can be stated as follows: any functor γ : C→ D to a
cocomplete category induces an adjoint pair ρ : Ĉ� D : N, and deduced from the following argument, which
we found for the first time in [Dugger]: the functor ρ (the “geometric realization”) is the left Yoneda extension
of γ , LanY(γ), computed as the coend

∫C Ĉ(Y(C),−) t γ(C) (recall that D is cocomplete, hence cotensored over
Sets), and its right adjoint N (the “nerve”) is defined since we have the following chain of isomorphisms:

D
(
LanYγ(F),D

)∼= D
(∫ C

Ĉ(Y(C),F) t γ(C),D
)
∼= D

(∫ C
F(C) t γ(C),D

)
∼=

∼=
∫

C
D(F(C) t γ(C),D)∼=

∫
C

Sets(FC,D(γ(C),D))∼= Ĉ(F,D(γ(−),D)).

7A simplicial set can be thought as a graded set {Kn} with suitable functions ∂ n
j : Kn → Kn−1 (faces),

sn
j : Kn→ Kn+1 (degeneracies) satisfying suitable simplicial identities (which can be deduced from the fact that a

simplicial set is nothing but a presheaf over ∆ = FinOrd, the category of totally ordered nonempty finite sets
and monotone maps between them: see [Mac Lane], §7.5; similar identities hold in ∆, hence by functoriality
they hold in [∆op,Sets]). The category ∆ is generated by face and degeneracy arrows, modded out by simplicial
identities.
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arrows Fo : Co→ Do, Fa : Ca→ Da which turn suitable diagrams into commutative ones:

Ca
Fa //

OO

s
��

t
��

DaOO

s′

��

t ′

��

Ca×Co Ca
Fa×Fo Fa

//

cC
��

Da×Do Da

c′

��

Co Fo
// Do Ca Fa

// Da

(30)

(the left one commutes anytime you choose as vertical arrows either both s, t or the central
arrow e.) These diagrams obviously express

• The fact that a functor respects source and target of any arrow;

• The fact that a functor respects composition of arrows and identities.

Definition 1.16 (Internal Natural Transformation). Given C = (Co,Ca,s, t,c,e), D =
(Do,Da,s′, t ′,c′,e′) ∈ Cat(E), and internal functors F,G : C→ D, an internal natural
transformation consists of an arrow α : Co→ Da such that

• s′ ◦α = Fo, t ′ ◦α = Go

• c′ ◦ (α ◦ t,Fa) = c′ ◦ (Ga,α ◦ s)

where (α ◦ t,Fa) and (Ga,α ◦ s) are easily seen to be composable with the composition
arrow c : Ca×Co Ca→Ca, as they are arrows Ca⇒ Da such that s′ ◦α ◦ t = Fo ◦ t = t ′ ◦Fa
and s′ ◦Ga = t ′ ◦α ◦ s.

Internal functors compose in the obvious way; internal natural transformation compose
in two different ways (horizontally, i.e. à la façon de Godement, and vertically, as every
pair of 2-cells do in a 2-category: see [Borceux], §7, 8), as they do in the case E = Sets, so
the collection Cat(E) of internal categories, functors and natural transformations in E is the
prototype of an internal 2-category in E (but we do not intend to begin the slippery climp
of higher category theory, even more in the setting on internal categories! We address the
interested reader to the short and neat paper by [Betti]).

As a final remark, we want to propose an internalization of a classical result valid when
E = Sets, which can be found in [Gray]. In a few words there exists a string of adjunctions

π0 a δ a (−)o a G (31)

where the functor π0 : Cat→ Sets sends a category to its set of connected components
obtained as the coequalizer of the pair src, trg : hom(C)→Ob(C), δ is the functor sending
a set to the discrete category on it, (−)o is the functor which sends a (small) category to its
set of objects, and G sends a set X to the maximally connected groupoid on it, obtained
taking X as set of objects and choosing exactly one isomorphism between any two elements
of X .
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This result can be easily internalized obtaining a similar string of adjunctions

Cat(E)

π0

⊥
��

(−)0⊥

44⊥ E
δrr

G

__
(32)

The discrete category functor can be defined as follows: an object X ∈ E is sent to
the category δX = (X ,X ,1,1,∆), where source, target and composition (once identified
X×X X ∼= X) are all identity arrows. This choice entails that an arrow X →Co corresponds
exactly to a functor δ (C)→C: giving such a functor δ (X)→C means we are given arrows
(Fo,Fa) such that sC ◦Fa = tC ◦Fa = Fo and eC ◦Fo = Fa and such that ∆◦Fa×Fa = Fa; on
the other hand to build such a functor it’s enough to know its object part Fo, since Fa must
be equal to eC ◦Fo.

To define the functor G it’s enough to internalize the condition for which any two
objects admit exaclty an isomorphism. This can be done asking that (s, t) : Ca→Co×Co
is an isomorphism in E. The adjunction E(Go,A)∼= Gpd(E)(G,G(A)) is obtained taking
the object-part of functors F = (Fo,Fa) : G→ G(A), and conversely, given Fo : Go→ A
we have only one choice to define a functor F on arrows, according to how we defined
G(A). To check that this correspondences compose to the identity, it’s enough to recal that
the isomorphism between any two objects is unique.

2 Model categories.

Quillen model categories are “convenient categories to do homotopical
algebra in”, and to view them as non-abelian counterparts of Grothendieck
abelian categories.

Tibor Beke

INTRODUCTION. A model category is a category endowed with three suitably interacting
classes of morphisms, weak equivalences, fibrations and cofibrations, that allow us to build
Homotopy Theory(ies) in a purely arrow-theoretic setting.

The definition of model categories as an abstract setting for homotopy theory is due to
[Quillen]’s seminal work (even if a tentative “Abstract homotopy theory” dates back to
Kan’s series of articles on simplicial homotopy published since 1956), and the philosophy
behind that definition is

Thou shalt astray a minimal set of properties that permit to extend homotopy theory
to categories other than topological spaces; moreover, thou shalt try to internalize
classical homotopy-theoretical notions (the theory of fundamental groups and higher
homotopy groups, stable homotopy, action of the π1 on the fibers of a space, the
behaviour of a covering map with respect to paths and homotopies, . . . ) in a suitable
“category with weak equivalences”.

20



Roughly speaking, a weak equivalence in a category C is an arrow in a certain sense “as
similar as possible” to an isomorphism (in classical homological algebra there exists a well-
established notion of quasi-isomorphism), and what we want to do is to pass in a setting
(the homotopy category of C, Ho(C)) where this arrow is a real isomorphism, adding
the inverse it lacks: this apparatus willingly resembles the notion of (weak) homotopy
equivalence in algebraic topology, where such maps are continuous functions f : X → Y
inducing isomorphisms between all homotopy groups. The purely formal procedure of
inversion of all quasi-isomorphisms falls under the name of localization theory, and it has
been introduced by [Zisman] in their famous book: weak equivalences are all we need, or
in a few words

all that matters is what we want to invert,

in the sense that any category with a distinguished class of weak equivalences can be
endowed with an “homotopical calculus” which allows us to define homotopy invariants of
objects. The whole machinery gravitating around weak equivalences serves in fact only to
avoid certain annoying pathologies: fibrations and cofibrations work in sinergy ensuring
that the localized category Ho(C) =: C[WK−1] is not as badly-behaved as it might happen
(set-theoretic issues can prevent Ob(Ho(C)) from being a set). They also ensure that we
can figure the -highly untractable- set Ho(C)(A,Y ) of arrows between A and Y in the
localized category to be the set (and even before, to be a set) of (abstract) homotopy classes
of arrows between A and Y .

In a few words, a model category consists of a 4-uple (C,WK,FIB,COF), where
(C,WK) is a category with a distinguished class of weak equivalences, and FIB,COF
are two additional classes of arrows, the elements of which are called fibrations and
cofibrations, having mutual stability and lifting properties. The leading principle behind
homotopical algebra is that these properties give a tractable, albeit reasonably general, way
to set up the basic machinery of homotopy theory in categories other than “spaces”.

Definition 2.1 (Category with Weak Equivalences). A category with weak equivalences is
a category C with a distinguished class of morphisms WK ⊆Mor(C) which contains all
isomorphisms of C, which is closed under composition and which satisfies the two-out-of-
three property:

For f ,g any two composable morphisms of C, if any two of { f ,g,g◦ f} are in WK,
then so is the third.

Definition 2.2 (Model Category). A (Quillen) model category is a small-complete and
small-cocomplete category endowed with three distinguished classes of morphisms: weak
equivalences, WK; fibrations, FIB; cofibrations, COF, such that the following axioms are
satisfied:

• (C,WK) is a category with weak equivalences;

• WK,FIB,COF are stable under taking retracts. Explicitly, the requirement that f
is a retract of g means that there exist arrows i, j,u and v, such that the following
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diagram commutes:

A
i
//

f
��

1

''A′ u
//

g
��

A

f
��

B
j
//

1

77B′ v // B

(33)

The condition of stability under retracts reads: if g has a retract f and it belongs to
WK,FIB,COF then so does f .

X //

i
��

Z

p
��

Y // W,

• For any commutative square like the one besides, where i ∈ COF and p ∈ FIB, If
either i or p is acyclic (i.e. it also belongs to WK), then there exists a lifting Y → Z.
In other words, acyclic fibrations/cofibrations have the right/left lifting property
(RLP, LLP for short) with respect to fibrations/cofibrations;

• (WK ∩ FIB,COF), (FIB,WK ∩ COF) are (weak) factorization systems in C, i.e.
any arrow can be either factored as the composition of an acyclic fibration and a
cofibration or as the composition of an acyclic cofibration and a fibration (weakness
means that the factorization is not supposed to be unique).

Remark 7. Mutual lifting properties are what really define the notion of model category:
a model category is uniquely determined by the datum of weak equivalences and fibration
or by the datum of weak equivalences and cofibrations: in the first case, cofibrations are
maps having the LLP with respect to acyclic fibrations, and in the second case fibrations
are maps having the RLP with respect to acyclic cofibrations (see Proposition 3.13 in
[Dwyer-Spalinski]).

Examples of model categories live in algebraic, topological and even pure-categorical
contexts. Refer either to [Hovey] or again to [Dwyer-Spalinski] to have plenty of examples
and explicit constructions, e.g. the fact that

• Topological spaces, homotopy equivalences and Serre fibrations/cofibrations form a
model category;

• Simplicial sets, (simplicial) homotopy equivalences and Kan fibrations/cofibrations
form a model category;

• For a given unitary ring R, chain complexes of R-modules, quasi-isomorphisms
as weak equivalences and degree-wise epimorphisms as fibrations define a model
category if we choose as COF exactly the class of maps in LLP(WK∩FIB).

• There are exactly nine model structures on the category of sets and functions8.

Remark 8. We collect in a single paragraph various useful notational remarks.

8http://www.math.harvard.edu/~oantolin/notes/modelcatsets.html.
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• Fibrations and cofibrations are denoted, especially in plotting commutative diagrams,
as “injective” and “surjective” arrows: a cofibration is denoted A ↪→B, and a fibration
X � Y . This is not so astonishing as it is inspired by a paradigmatic example: try to
unravel a model structure on Sets where the fibrations are precisely the surjective
maps of sets.

• An object is said to be (co)fibrant if the unique arrow ( /0→)X → 1 is a (co)fibration.
If it is the case (as it happens in the case of groupoids, cf. Remark 10) that the
process of factorization of an arrow as the composition of an acyclic fibration and a
cofibration is functorial, we can define a functor using the factorization ∅→ X as
∅→ QX

∼
� X , sending X to QX

∼
� X ; this functor is called fibrant replacement.

• Define a completely dual notion of cofibrant replacement X
∼
↪→ RX .

It is again [Dwyer-Spalinski] which says “each of these settings has its own technical and
computational peculiarities, but the advantage of an abstract approach is that they can all
be studied with the same tools and described in the same language.

What is the suspension of an augmented commutative algebra? One of incidental
appeals of Quillen’s theory (to a topologist!) is that it both makes a question like this
respectable and gives it an interesting answer.”

Because of this, model categories and homotopical algebra can be seen not only as a
branch of mathematics, but also as a useful tool to unravel mutual connection between
various fields of modern research. In spite of the extreme neatness (which is nothing
but the result of Quillen’s striving) of the axioms defining it, the task of proving that a
particular choice of weak equivalences and (co)fibrations really gives a model structure is
often extremely long and involved: see for example [Gelfand-Manin], V.1.2-V.2.4 to get
acquainted with the model structure on the category of simplicial sets.

Instead of a systematic presentation of model category theory and homotopical algebra,
we prefer to propose a detailed (read: really pedantic) proof of a paradigmatic (as well
as useful for the following discussion) example of model structure on a category: the
so-called “folk model structure” on the (2-)category Gpd of groupoids.

2.1 The model structure on groupoids.
Recall that a groupoid is a category where every arrow is invertible. Groupoids become
a (full sub)category (of Cat), denoted Gpd, if we define arrows G→ H to be functors,
and a 2-category if we allow natural transformation to turn every [G,H] into a category.
The functor i : Gpd ↪→ Cat is both a left and a right adjoint: for example its right adjoint
sends a category C to its maximal subgroupoid G(C), in such a way that Cat(G,C) =
Cat(iG,C)∼= Gpd(G,G(C)).

Theorem 2.1 (Folk model structure on Gpd). The category Gpd admits a model structure
where

• Weak equivalences are equivalences of groupoids;

• Cofibrations are functors which are injective on objects;
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• Fibrations are Grothendieck fibrations, i.e. functors p : E→ B such that for any
e ∈ E and γ : b→ p(e) there exists some η : e′→ e such that p(η) = γ:

∃e′

00
p

��

e

p

��

b

22 p(e).

Proof. It’s easy to prove that WK is a class of weak equivalences, because if we suppose
that f : E→G,g◦ f : E→G→H are equivalences of categories, then there are arrows

h : G→ E such that f h∼= 1, h f ∼= 1
k : H→ E such that g f k ∼= 1, kg f ∼= 1.

Now it must be ( f k)g = f (kg) = f h ∼= 1, hence g is itself an equivalence of categories
G→H.

WK,FIB,COF are stable under retracts. Let’s consider a diagram shaped like

X i //

f
��

X′ u //

g
��

X

f
��

Y
j
// Y′ v

//

h

OO

Y

(34)

where u ◦ i = 1X, v ◦ j = 1Y, then we have to show that if g ∈ {WK,FIB,COF}, then
f ∈ {WK,FIB,COF}. Now:

• If g is a weak equivalence, then there exists h : Y′→ X′ such that gh ∼= 1,hg ∼= 1;
hence uh j is the quasi=inverse of f , because f uh j = vgh j ∼= v j = 1Y, and uh j f ∼=
ui = 1X.

• If g is a fibration, and we are given an arrow y→ f (x), then maps it in j(y)→ j f (x) =
gi(x), so that there exists x′ such that j(y) = g(x′), i.e. y = vg(x′) = f (u(x′)).

• If g is a cofibration, it means it is injective on objects; hence f (x) = f (y) implies
that j f (x) = j f (y), i.e. gi(x) = gi(y), i(x) = i(y)⇒ x = y.

Anodyne fibrations. The rest of the proof is the difficult part: to acquire more agility,
we define an auxiliary notion which turns out to be an equivalent characterization of trivial
fibrations p ∈WK∩FIB.

Definition 2.3. We call p : E→ B an anodyne fibration if it has the RLP with respect to
any cofibration.

Proposition 2.1. Anodyne fibrations are exactly surjective-on-objects weak equivalences,
i.e. all and only acyclic fibrations.
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Proof. The arrow /0→ B is a cofibration, hence the square besides commutes and has a
filler, which is to say that p is surjective on objects. If we let I = {0∼= 1} be the “interval” /0 //

��

E

p
��

B
s

??

B

groupoid, we can consider the diagram

EqE
(sp,1)

//

q
��

E

p
��

E× I

66

π2
// E p

// B

(35)

The arrow q which sends (e,0) (in the coproduct) in (e,0) in the product is a cofibration,
hence there exists the dotted lifting u. Such an u serves to define a quasi inverse to p,
because uq(e,0) = sp(e),uq(e,1) = e, and the fact that (e,0) is isomorphic to (e,1) in
EqE implies that sp∼= 1, hence p is an equivalence of categories.

Conversely, if p is a surjective-on-objects equivalence of categories and A i−→ C is a
cofibration, the commutative diagram

A
g
//

i
��

E

p
��

C
f
// B

(36)

induces an analogous diagram between the set of objects of the categories involved. In this
diagram there is a diagonal filler

f0 : C0→ E0 =

{
s f0 on C0 \ i(A0)

g0 on i(A0)
(37)

Suppose now c→ c′ is an arrow in C; then f (c→ c′) = p(e→ e′) for some e→ e′ which
is unique because p is fully faithful. Nothing is left to do except defining f̄ (c→ c′) = e→
e′.

Remark 9. Proving that anodyne fibrations coincide with maps in WK∩FIB is a matter of
unraveling definitions: if p : E→B is anodyne it is a weak equivalence; given θ : b→ p(e),
surjectivity on objects gives e′ such that p(e′) = b, and functoriality of Π0 (or if you prefer,
the fact that p is fully faithful), implies that there exist α : e′→ e such that p(α) = θ .

Conversely, if p ∈WK∩FIB then the fibration condition implies that given b ∈ B and
b→ p(e) (there exists at least one,b ecause p is essentially surjective), there is e′ such that
p(e′) = b, hence p is anodyne.

Lifting properties. First of all notice that p is anodyne iff it lifts any cofibration, iff it is
in WK∩FIB, hence in any square

A
g
//

i
��

E

p
��

C v
//

v̄

??

B

(38)
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where p ∈WK∩FIB and i ∈ COF there exists a diagonal filler.
Consider now the same commutative square, but now i ∈ COF∩WK, p ∈ FIB. To

define v̄ start choosing a ∈A, β : c→ i(a), with the convention a = a′, β = 1ia if b = i(a′)
for some a′ ∈ A.

Given c→ c′, there exists an arrow (unique, since C is a groupoid) α : a→ a′ such
that the diagram

c δ //

β

��

c′

β ′

��

i(a)
i(α)
// i(a′)

(39)

commutes (better to say: we can find θ ∈C(i(a), i(a′)) such that β ′δ = θβ , and now since
i is fully faithful, θ = i(α) for a unique α). Since p is a fibration, v(β ) : v(c)→ p(u(a))
and v(β ′) : v(c′)→ p(u(a′)) can be lifted to arrows ε : e→ u(a) and ε ′ : e′ → u(a′), in
such a way the diagram

e //

ε

��

e′

ε ′

��

u(a)
u(α)
// u(a′)

(40)

can be completed by e→ e′ which we define to be v̄(c→ c′).

Factorization properties. Let f : G→H be any functor between groupoids, and con-
sider the triangle

G

f
��

i // (H ↓ f )

p
{{

H

(41)

where (H ↓ f ) is the comma category between the identity functor of H and f 9. We are to
prove that

• The functor p :
(
α : h→ f (g)

)
7→ h is a fibration;

• The functor i : x 7→
(
1 f (x) : f (x)→ f (x)

)
is an acyclic cofibration;

• p◦ i = f (this is trivial).

Define the functor r : (H ↓ f )→ G :
(
α : h→ f (g)

)
7→ g; it’s easy to see that ri = 1G

and ir ∼= 1(H↓ f ), so i is an acyclic (=equivalence of categories) cofibration (=injective-on-
objects functor): since the categories involved are groupoids any natural transformationf g

ir(α)
//

u
��

f g

v
��

h
α
// f g

between ir and 1(H↓ f ) suits; so for α : h→ f (g) it suffices to define ηα : ir(α)# α to

9Its objects are arrows α : h→ f (g), arrows α# α ′ are defined by pairs of arrows h→ h′, g→ g′ such that a
suitable square commutes.

26



be the pair of arrows u = α−1 : f (g)→ h, v = 1 f (g) : f (g)→ f (g), in such a way that the
diagram besides commutes.

If now we are given β : h→ h′, and h′ = p
(
α : h→ f (g)

)
, it suffices to choose (β ,1g)

as a morphism αβ # α , to get the desired lifting, so p ∈ FIB.

Remark 10. Notice that the factorization can be chosen to be functorial.

EXERCISE 8 : Show that in the category Sets any function φ : X → Y can be factored as
the composition of a surjective function X � T , followed by an injective function T ↪→ Y .

To show that (FIB∩WK,COF) is again a factorization system, factor the function on
object f : G→H as the composition

Go

fo   

//
io // GoqHo

po
{{{{

Ho

(42)

where io is the obvious embedding in the coproduct and p = ( fo,1Ho). Now the corre-
spondence io obviously lift to a functor G→ GqH (precisely the embedding into the
coproduct); any definition of a functor p (if it exists) will be a surjective-on-objects func-
tors, so it remains only to prove that it is possible to define pa : GaqHa → Ha to be a
bijection.

3 Torsors and stacks in a topos.
For all the rest of the section E = Sh(C,COVC) is a Grothendieck topos.

Definition 3.1 (Category of G-torsors). Let G ∈ Grp(E); a (right) G-torsor consists of a
G-object /0 6= E ∈ EG such that the right action defines an isomorphism

E×G
〈π,a〉

// E×E. (43)

A morphism of G-torsors consists of an arrow f : F → E such that the diagram besides F×G
f×1G //

aF

��

E×G

aE

��

F
f

// E

commutes.

Remark 11. The category of G-torsors in E is a groupoid.

Proof. See [Johnstone], Lemma 8.31.i.

Torsors solve the following problem:

Given S ∈ E find all objects T which are locally isomorphic to S, i.e. such that
there exists a covering {Ki → T} (in the sense of the topos) and an isomorphism(
K = qKi

)
×T → K×S in E/K:

K×T
∼= //

""

K×S

||
K.

(44)

27



This amounts to ask that there is an isomorphism in the internal sheaf Iso(S,T ); so
there is an open covering on which there are sections (which by no means implies that
this sheaf has a global section!).

Fix S ∈ E and T locally isomoprhic to S, then E = Iso(S,T ) is a (right) Aut(S)-torsor; if
we denote G = Aut(S), then T can be recovered since it is isomorphic to E⊗G S via the
evaluation morphism

ev: E⊗G S // T

[α,s] � // α(s)

(45)

where E⊗G S := coeq
(

E×G×S
E×aS //

aE×S
// E×S

)
and aS : G× S→ S is the obvious re-

striction of ev: SS×S→ S to Aut(S). In other words, we are identifying (aE(e,g),s) and
(e,aS(g,s)) for any e ∈ E,s ∈ S,g ∈ G, or (it is equivalent) we are taking the orbit-object
(E×S)/G for the action g.(e,s) = (e.g−1,g.s).

The correspondence T 7→ Iso(S,T ) defines a bijection{
objects locally
isomorphic to S

}
/∼=

//
{

G-torsors
in E

}
/∼= (46)

A G-torsor over X ∈ E is a G-torsor in the topos E/X .

Example 3.1. A G-torsor over X ∈ SSet = [∆op,Sets] is a principal bundle with base X .

Definition 3.2 (Internal groupoid). An internal groupoid G in E is a category object
(G,s, t,e,c) in E such that there exists an additional arrow i : Ca→Ca, termed inversion,
which turn the diagrams

Ca
∆ //

s
��

Ca×Ca

c◦(i×id)

��

Ca
∆ //

t
��

Ca×Ca

c◦(id×i)
��

Co e
// Ca Co e

// Ca

(47)

into commutative ones.

If G is an internal groupoid in E, there exists a notion of right G-torsor: it is an object
E 6= /0 with an action a : E×Go Ga→ E in E/Go such that

E×Go Ga
〈π,a〉

// E×Go E (48)

is an isomorphism. A G-torsor over X ∈ E is a G-torsor in E/X .
Isomorphism classes of (right) G-torsors over X are collected in the set H1(X ,G), and

this defines a bifunctor
H1 : Eop×Gpd(E)→ Sets (49)

For the sake of simplicity, let’s treat the two components of H1 separately:
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• Given g : Y → X , then g induces a(n essential) geometric morphism E/X → E/Y ,
whose left part g∗ : E/X → E/Y sends monoid/group objects in monoid/group
objects, and G-objects in E/X in g∗G-objects in E/Y . In practice g∗(E×X G)→ g∗E
is the G-torsor on Y given by g∗E×Y g∗G→ g∗E. Something similar happens when
we consider groupoid actions.

• Given a(n internal) functor G→H, notice that H is both a right and a left G-object,
in the obvious way, hence E ⊗G H is a right H-torsor over X (see [Moerdijk],
VII.3.4).

3.1 The category hom(X ,G).

Let G be a groupoid in E. Define the category hom(X ,G) in such a way that

• its objects are arrows f ∈ E(X ,Go);

• arrows between f ,g : X → Go are arrows h : X → Ga in E such that the triangle

Ga

(s,t)
��

X

h
;;

( f ,g)
// Go×Go

(50)

commutes.
X

k

��

h

��

��

Ga×Go Ga

����

Ga

s��

Ga

t ��

Go

• Composition of arrows h : f → g and k : g→ m is defined once we noticed that
th = sk, hence (h,k) ∈ src(c): we can define k � h := c ◦ (h,k), where (h,k) is the
unique arrow X → Ga×Go Ga such that the diagram besides commutes (UMP of the
pullback).

• The identity arrow f → f is e◦ f , where e : Go→ Ga is the identity of the groupoid.
The diagram

Go

X f //

f //

f //

Go
e // Ga

s

OO

t
��

Go

(51)

commutes everywhere.

• Every h : f → g has an inverse h−1 : g→ f defined by i◦h, where i : Ga→ Ga is
the inversion map of G: notice that s◦ j = t, t ◦ j = s.
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Remark 12. The arrow t : Ga→ Go defines a right G-torsor. Indeed, the diagram

Ga×Go Ga //

t◦π
$$

Ga

t
~~

Go

(52)

commutes when we define Ga×Go Ga→ Ga to be the composition arrow. If E = Ga, the
arrow E ×Go Ga → E ×E is an isomorphism with inverse (using generalized elements
x : X → E, y : Y → Ga) (x,y) 7→ (x,c(y, jx)). In the same manner, s : Ga→ Go defines a
left G-torsor.

We can define a functor

FX : hom(X ,G) // H(X ,G) (53)

(where H(X ,G) denotes the collection of G-torsors over X : H1(X ,G) consists of the
connected components of the groupoid of G-torsors: Π0

(
H(X ,G)

)
= H1(X ,G)) defined

on objects by (
f : X → Go

)
7→ f ∗Ga (54)

where f ∗Ga is the pullback of t : Ga→ Go (which is a torsor), along f : X → Go.
Consider the diagram

g∗Ga

��

// Ga×t,t Ga //

��

Ga

��

f ∗Ga //

��

Ga×s,t Ga //

��

88

Ga

��

X h // Ga t
// Go

X
h

// Ga s
//

i

77

Go

(55)

and for the sake of simplicity consider the case where E= Sets: then the map f ∗Ga→ g∗Ga
is defined once we noticed that

f ∗Ga = {(x,α) ∈ X×G1 | f (x) = t(α)},
g∗Ga = {(y,β ) ∈ X×G1 | g(y) = t(β )}.

Given h : X → Ga which sends x ∈ X to an arrow f (x)→ g(x), having

#
α

,, f (x) (56)

we can compose h(x) on the right to obtain

#
α

,, f (x)
h(x)

// g(x) (57)

i.e. the element (x,h(x)◦α) ∈ g∗Ga.
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Definition 3.3. The functor FX can be shown to be fully faithful. The groupoid G is said to
be a stack if FX is an equivalence of categories, for any X ∈ E (i.e. if any FX is essentially
surjective: for any G-torsor E→ X there is f : X → Go such that E ∼= f ∗Ga).

[Joyal-Tierney2] offers a characterization of those groupoids which are stacks in
terms of a weak lifting condition which will be shown to distinguish some stacks as
the class of fibrant objects for the folk model structure on Gpd(E) (which can be easily
internalized repeating the proof of Theorem 2.1): let’s first of all show [Joyal-Tierney2]’s
characterization of stacks in E.

Theorem 3.1. The following conditions are equivalent for a groupoid G ∈Gpd(E).

i. G is a stack;

ii. Any G-torsor E→ X admits a section X → E;
A // F //

A
��

⇐

B

W
��

G

iii. Any span of groupoids G← A F−→ B, where F is an equivalence of categories injec-
tive on objects, admits an extension B→G making the triangle besides commutative
up to an invertible 2-cell W ◦F ⇒ A.

iv. Any span of groupoids G←A F−→B, where F is an equivalence of categories, admits
an extension B→G making the same triangle commutative up to an invertible 2-cell
W ◦F ⇒ A.

Proof. It’s clear that (iv) implies (iii), and it’s easy to see that (i) is equivalent to (ii):
indeed if G is a stack, i.e. if any G-torsor E→ X results as the pullback of t : Ga→Go via
some fE : X → Go, then we can find a section for E→ X thanks to the fact that t admits a
section e : Go→ Ga (the arrow of identity, cfr. Definition 1.14): the diagram

X
f
//

1

  

Go

e
��

1

��

E q
//

y

p

��

Ga

t
��

X
f
//

B

Go

(58)

commutes, and by the UMP of the pullback B, there exists a (unique) r : X → E such that
e f = qr and pr = 1X . On the contrary, if any G-torsor admits a section, let p : E→ X and
s : X → E be such a torsor and such a section. Then the pullback of t along α ◦ s is exactly
p : E→ X .

Let’s show now that (iv) implies (i): let E → X be a G-torsor over X , implicitly
regarded as an object in E/Go (i.e. as an arrow θ : E→ Go) and endowed with an action
α : E×Go Ga→ E (regarded again in E/Go). Then we can define a groupoid E having
objects Eo = E and arrows Ea = E×Go Ga, identity j : E→ Ea determined as the unique
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arrow completing the diagram

E
j

##

e◦θ

""

1
E×Go Ga //

��

Ga

t
��

E
θ

// Go

e

OO

(59)

(use the UMP of the pullback!) and having as source-target pair (σ ,τ) the arrows
(α,π1) : E ×Go Ga → E ×E. Composition of arrows is the law � : Ea×Eo Ea → Ea de-
fined by (u, f )� (v,g) = (u, f .g), for any pair (u, f ),(v,g) ∈ Ea = E×Go Ga (the dot is the
composition in G): axioms (25)-(28) for an internal category are easily seen to hold.

Now, the correspondence

Ea
σ //

τ
//

π2

��

E

θ

��

Ga
s //

t
// Go

(60)

defines a(n internal) functor F : E→G. If now we call δ (X) the discrete category on anE F //

W
��

G

δ (X)

U

==

object X (which is simply obtained by putting (δX)o = (δX)a = X and s = t = e = 1X ;
the composition is again 1X , once we identified X×s,t X ∼= X), then there is an equivalence
of categories10 W : E→ δ (X), which by (iv) admits a filler W : δ (X)→G in the diagram
besides.

This triangle commutes up to an invertible 2-cell ϕ : F ⇒UW ; in other words there is
an arrow ϕ : E→ Ga: the naturality condition for ϕ exactly amounts to ask that the square

E
ϕ
//

p

��

Ga

t
��

X
Wo
// Go

(61)

commutes and is a pullback, so the groupoid G is a stack as f ∗Ga ∼= E.

Definition 3.4. Let G ∈Gpd(E); we define a stack completion for G an equivalence of
categories G→G, where G is a stack.

10see [Bunge] and [Everaert] for the definition: the rough idea is that an internal equivalence is a pair
of functors with two natural transformations η : 1⇒ G ◦ F and ε : F ◦G⇒ 1 which are “componentwise
isomorphisms”. Nevertheless one has to pay attetion to some subtleties (which we do not intend to unravel) linked
to the internal logic of the topos, namely the fact that in a generic topos the Axiom of Choice, which is equivalent
to the statement “any fully faithful, essentially surjective functor lifts to an equivalence of categories” usually
fails to hold. The fussy reader might distinguish between the two notion of weak equivalence of categories (=fully
faithfulness and essential surjectivity) or strong equivalence (=having a quasi-inverse).
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Remark 13. Any two stack completions of G are equivalent as groupoids. If G admits a
stack completion, functoriality of H(X ,−) entails that H(X ,G)∼= H(X ,G)∼= hom(X ,G),
hence G represents the functor H(−,G).

3.2 Strong stacks as fibrant objects.
Following [Joyal-Tierney2], a strong stack is a groupoid G ∈Gpd(E) such that condition
(iii) in Theorem 3.1 holds on the nose, i.e. if any span of groupoids G←−A F−→B, where F is
an acyclic cofibration in the internal folk model structure, admits an extension W : B→G
such that W ◦F = A.

The notion of strong stack completion is the exact analogue of Definition 3.4.

Definition 3.5. Let G∈Gpd(E); we define a strong stack completion for G an equivalence
of categories G→G, where G is a strong stack.

Remark 14. Any two strong stack completions of G are equivalent as groupoids. We can
prove that any G ∈Gpd(E) admits a strong stack completion: indeed strong stacks can be
characterized as fibrant objects for the folk model structure on Gpd(E); hence we can see
G→G to be the object part of the fibrant replacement functor.

Let’s make the discussion more precise:

Theorem 3.2 (Folk model structure on Gpd(E)). The category Gpd(E) of internal
groupoids in E admits a model structure such that

• WK is the class of (internal) equivalences of groupoids;

• Cofibrations are internal functors which are injective on objects;

• Fibrations are functors in RLP(WK∩COF).

The proof consists in rephrasing Theorem 2.1 in the internal semantics of the topos E.
See also [Joyal-Tierney2].

In the internal folk model structure there is an analogous characterization of acyclic
fibrations in terms of anodyne maps:

Lemma 3.1. An arrow p : E→ B between internal groupoids in E is an anodyne fibration
(i.e., it lifts any cofibrations) if and only if it is an internal equivalence of categories and
Eo→ Bo is injective as an object of E/Bo

11.

Proof. Given the adjunction δ a (−)0 established in [Gray] (which can be easily internal-
ized in E), any diagram like the following left one

A //

��

Eo

po

��

C //

??

Bo

δA //

��

E

p
��

δC //

>>

B

(62)

11It is not so surprising that the RLP is somewhat linked to a lifting condition: try to describe what “being an
injective object” mean for an object A→ X of C/X .
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is equivalent to a diagram like one on the right in Gpd(E). The second one admits a dotted
filler, since the arrow δA→ δC is a cofibration. On the other hand, using again the same
adjunction, this implies that the initial square admits a diagonal filler C→ Eo, hence p
is an injective object in E/Bo. The fact that anodyne fibrations are equivalences follows
immediately rewriting in E the proof given for Sets during Theorem 2.1.

Conversely, suppose p : E→ B is fully faithful and po is an injective object in E/Bo;
given a cofibration A ↪→ C fitting in the square

A //

��

E

p
��

C // B

(63)

then there exists a lifting once we apply the functor (−)0, since p is injective as an object
of E/Bo. This is the object-part of the desired lifting g : C→ E. We can now exploit
fully faithfulness to define g on arrows (and for the sake of clarity we use generalized
elements in the topos): given α ∈Ca, f (α) = pg(α), which comes from a unique arrow
β := g(α).

In the case E = Sets this is precisely the definition of anodyne fibration.
Ea

fa
��

t // Eo

fo
��

Ba t
// Bo

Definition 3.6. A functor f : E→B between groupoids in E is said to be discrete fibration
if the square besides is a pullback.

As the name may suggest, discrete fibrations are particular fibrations for the internal
folk model structure: they are precisely those fibration which lift uniquely any acyclic
cofibration.

This characterization becomes evident when we notice that in the case E = Sets a
discrete fibration between small groupoids is simply a functor such that the lifting property
defining fibrations holds uniquely: being a discrete fibration means that the natural map of
sets

Ca // {(α,C) | f (c) = s(α)}

β
� //

(
F(β )
s(β )

) (64)

is a bijection.

Proof. First of all let’s recall that (an internalization of) a general result in Category Theory
asserts an equivalence of categories between B based discrete fibrations and (internal)
presheaves on B. Let’s limit ourselves to the case E = Sets: then this equivalence can be
realized seding a B-presheaf F on the forgetful functor

∫
F→B, which is easily seen to be a

discrete fibrations12, and a discrete fibration f : E→B in the presheaf B 7→ {E | f (E) = B}.
Since discrete fibrations are stable under pullback (as it can be immediately seen), it

suffices to show that if i : A→ B is an acyclic cofibration in Gpd(E), and if i∗(E) has a

12The category
∫

F is the category of elements of F , defined having as objects pairs (b,x), where B ∈ B and
x ∈ F(B); the general definition uses internal functor as defined in [Borceux], §8.2: a B-based presheaf consist
of a suitably defined functor Bop→ E.
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section s over A, then there exists a unique section r of f over B, extending s. In other
words we have to prove that

A
∃s // i∗E

i∗( f )
oo

~~

A

=⇒ B
∃!r // E

f
oo

��

B

(65)

This is indeed true, as i∗ is an equivalence of categories, and a section s of i∗( f ) over A is
an arrow 1A→ i∗( f ): since i∗ is full and faithful, and i∗(1B)∼= 1A there exists a unique
r : 1B→ E over B such that i∗(r) = s, and such r has exactly the desired property.

Remark 15. The preceding result provides a number of examples of strong stacks: In fact,
if we know that E→G is a discrete fibration and G is a strong stack, then E is a strong
stack too: this follows from the fact that FIB is a compositive class in any model structure,
hence E�G� ∗ must be a fibration, hence

the category of elements of a G-torsor E is always a strong stack

(a result which is, more or less tacitly, used in [Joyal-Tierney2]). Again, for any object
X ∈ E the discrete category δX is a strong stack with unique lifting, since δX → ∗ is
a discrete fibration (∗ is the discrete category on the terminal object, i.e. the terminal
object of Cat(E): for a comprehensive treatment of limits and colimits internal to a
complete/cocomplete category cf. [Borceux], §8).

There are indeed other equivalent conditions to recognize whether a given groupoid G
is a strong stack:

Proposition 3.1. Let p : E� B an epimorphism in E, and let E be the equivalence relation
obtained by p pulling it back along itself; one can see it as a groupoid having objects E and
source-target pair (s, t) : E×B E ↪→ E×E, and it is possible to prove that this groupoid
is exactly the groupoid of elements of the torsor over B, as it has been defined along the
proof of Theorem 3.1; then E (regarded as an internal groupoid) is a strong stack if and
only if p is ain injective object in E/B.

Proof. The characterization of acyclic fibrations implies that the equivalence of categories
E→ δB induced by p is an acyclic fibration if and only if its object part p : E→ B is an
injective object in E/B, i.e. if and only if p lifts any cofibration.

The discrete groupoid δB is always a strong stacks, hence if we suppose that p : E→ B
is injective, then E is a strong stack too.

Conversely, suppose E is a strong stack and i : A ↪→ C is an acyclic cofibration, in the
square

A
f
//

i
��

E

p
��

C g
//

h

>>

δB

(66)
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we can find a dotted filler such that at least the upper square commutes. The lower square
now leaves us with two functors ph,g : C→ δB which coincide on A, hence on C because
E→ δB is a discrete fibration.

Proposition 3.2. An internal groupoid G in E is a strong stack if and only if for any X ∈ E,
any G-torsor E → X is an injective object in E/X , namely if for any monomorphism
A ↪→ B, any commutative square

A //
��

��

E

��

B //

??

X

(67)

admits a dotted filler.

To conclude the discussion, we present an example of a strong stack completion, as it is
given in [Joyal-Tierney2]; recall (e.g. from [Johnstone], §8) that the category of internal
abelian groups in a topos is an abelian category with enough injectives, monadic over E
(in particular the forgetful functor U : Ab(E)→ E admits a left adjoint, the free internal
abelian group functor X 7→ Z(X)).

Hence given an internal abelian group A ∈ Ab(E) we can embed it into an injective
object J and we can consider the quotient B = J/A. If we write p : J→ B for the natural
quotient map, and let (s, t) = (πB,q) be arrows B× J→ B×B, defined respectively as the
first projection and the arrow (x, j) 7→ x + p( j), then we have the following

Proposition 3.3. The arrangement of objects and arrows (s, t) : B× J→ B×B as defined
before is a groupoid A where composition is given by addition, and it is a strong stack
completion of A (regarded as a one-object groupoid A = (Ao,Aa) = (∗,A) where s, t : A→
∗, and composition is the internal addition).
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