
Vertical categorification
of classical .
February 18, 2013

1



2



Contents
1 Monoidal and Premonoidal Categories. 4

1.1 Tensors, braidings and dualities. . . . . . . . . . . . . . . . . . . 4

2 Premonoidal Categories. 7

3 Von Neumann Categories. 12
3.1 Von Neumann Algebras. . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Premonoidal ∗-structures and Von Neumann categories. . . . . . . 13

4 Algebraic Quantum Field Theory. 17
4.1 An application: premonoidal crossed products. . . . . . . . . . . 19
4.2 A further application: categorification of . . . . . . . . . . . . 21

4.2.1 The category of transportable endomorphisms. . . . . . . . 21
4.2.2 . . . and its categorification. . . . . . . . . . . . . . . . . . 22

Introduction. Classical  can be defined as a cosheaf A of C∗-algebras, de-
fined on the manifold of space-time (or more generally on a suitable lorentzian
manifold playing such rôle) M, satisfying two axioms:

• (locality condition) for any two open sets U,V ⊆ M such that U ⊆ V , the
algebras A(U),A(V) are in the same inclusion relation. Physically speaking
this means that observables in an open region are a fortiori observables in
any superset of that region; from a sheaf-theoretic point of view this amounts
to impose a flabbiness condition to the functor A .

• (Einstein causality) If U,V are spacelike separated regions, then A(U) and
A(V) pairwise commute in the quasilocal algebra A◦ =A(M)= lim

−−→U⊆M
A(U).

Now what if we want to suitably categorify this notion, extending it to the realm
of tensor categories (that is, categories equipped with a tensor ⊗ subject to suitable
axioms)? Thanks to [Coecke], the process of reformulation of classical Quantum
Mechanics (which happens to be localized at the category Hilb of complex Hilbert
spaces) in the classical language of compact closed dagger categories and C∗-
categories can be given a deep motivation.

A C∗-category is, roughly speaking, a category C enriched over the symmetric
monoidal category of (complex) Banach ∗-algebras, such that for any X ∈C the set
homC(X,X) is a unital C∗-algebra: see [Warner], ch. 15 for the precise Definition.
The class of all C∗-categories becomes a (2-)category if we define 1-cells C→ D
to be the collection of all ∗-functors F : C→ D, and 2-cells to be bounded natural
transformations F → G .

The problem of the categorification of s is strictly linked with the problem
of categorifying Einstein causality. In our main reference [Comeau] proposes to
model the theory in such a way that Einstein causality corresponds to an higher-
categorical analogue of the notion of Von Neumann algebra, a subalgebra A≤ B(H)
which equals its double commutant A′′ (see the first section of [Halvorson], or the
verbatim transcription in Section 3.1).
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This higher-categorical counterpart is a Von Neumann category, where a suit-
able notion of categorical commutant plays the rôle of the set-theoretic one. A
tensor subcategory of a tensor (premonoidal) category (C,⊗, I) is “Von Neumann”
precisely if it equals its (suitably defined) double commutant A′′.

This simple idea is founded on two cornerstones:

• The notion of binoidal category, where instead of a functor C×C→C play-
ing the role of a tensor product, we have two collections of functors, RA,LB,
which respectively behave like “right tensor product with A” and “left ten-
sor product with B”, for any A,B ∈ ObC. In the opinion of [Comeau], this
notion captures the Einstein causality condition in the new setting1.

• The notion of vertical categorification, which serves (in the words of John
Baez) as a tool to “find category-theoretic analogs of set-theoretic concepts
by replacing sets with categories, functions with functors, and equations be-
tween functions by natural isomorphisms between functors, which in turn
should satisfy certain equations of their own, called coherence laws.” We
establish to use the term categorification without providing a formal defi-
nition of it: The interested reader may refer to [Baez]’s review for a huge
amount of evocative examples and unexpected connections between areas
of Mathematics.

1 Monoidal and Premonoidal Categories.

1.1 Tensors, braidings and dualities.
Tensors. Let C be a category. A tensor in C consists of a covariant bifunctor
⊗ : C×C→ C : (V,W) 7→ V ⊗W. Bifunctoriality of −⊗− can be easily translated
into the two equalities

( f ◦ f ′)⊗ (g◦g′) = ( f ⊗g)◦ ( f ′⊗g′) (1)
1V ⊗1W = 1V⊗W (2)

valid for any 4-uple of composable arrows f , f ′,g,g′ and any two objects V,W.
A (strict) monoidal category consists of a category C with a tensor ⊗, in which

we can find a distinguished object I, to be called unit object such that

V ⊗ I = V = I⊗V (∀V ∈ ObC)

and such that for any three U,V,W one has U ⊗ (V ⊗W) = (U ⊗V)⊗W.
1The best way to be more precise is to present the words of the author: “In quantum teleportation,

for example, the two participants must pass a classical message. So when this occurs, they cannot
be spacelike separated. We believe that an appropriate modification of  would allow for such
modelling. More specifically, one should associate some sort of category of local protocols to each
region in spacetime. But what structure should the category have? A reasonable first guess would be
that of a compact closed dagger category. But this leaves open the question of how to express Einstein
Causality. We propose here modifying the usual notion of compact closed dagger category by replacing
the monoidal structure with premonoidal structure, as introduced by Power and Robinson. One of the
fundamental aspects of monoidal structure in a category is the bifunctoriality of the tensor product.”
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Strict monoidal categories are rather rare structures: even the archetypal ex-
ample of the category Mod(R) of modules over a commutative unital ring R is far
from being strict, because the isomorphism U ⊗ (V ⊗W) � (U ⊗V)⊗W, albeit be-
ing canonical, is not the identity map; one gets hence used to manage a slightly
weaker notion, where instead of equalities one has canonical isomorphisms

V ⊗ I � V � I⊗V ∀V ∈ ObC

U ⊗ (V ⊗W) � (U ⊗V)⊗W, ∀U,V,W ∈ ObC

in such a way that the (tri)natural isomorphism α, called associator, satisfies the
following pentagon identity: the diagram

(A⊗B)⊗ (C⊗D)
α

))TTTTTTTTTTTTTTT

((A⊗B)⊗C)⊗D

α⊗1
$$HH

HH
HH

HH
H

α
55jjjjjjjjjjjjjjj

A⊗ (B⊗ (C⊗D))

(A⊗ (B⊗C))⊗D
α

// A⊗ ((B⊗C)⊗D)
1A⊗α

::vvvvvvvvv

(3)

commutes. Considering strict monoidal categories is not a “real” generalization,
as long as you share the categorical viewpoint of identyfing equivalent categories,
in view of Mac Lane coherence Theorem (see [Leinster] for an example on how
not to prove it):

T 1.1 : Any monoidal category is equivalent to a strict one.

Braidings. Tensor product of (bi)modules over a commutative unital ring R is
itself “commutative” up to isomorphism, in the sense that one can find a canonical
involution σVW : V ⊗W →W ⊗V; this is obviously defined extending by linearity
the function v⊗w 7→ w⊗ v defined on the generators of V ⊗W. It is clear that for
any three R-modules U,V,W one has

σU,V⊗W = (1V ⊗σUW )◦ (σUV ⊗1W )
σU⊗V,W = (σUW ⊗1V )◦ (1U ⊗σVW ) (4)

Axiomatizing these properties naturally leads us to the definition of a braiding and
a twist in a monoidal category.

Definition 1.1. A braiding in a monoidal category V consists of a natural isomor-
phism

σ : ⊗ // ⊗◦T (5)

where T : C×C→ C×C is the unique functor such that π1 ◦T = π2, π2 ◦T = π1,
for πi : C×C the canonical projection. For any triple of objects in V hence one has
the identities (4). Any pair (V,σ), where σ is a braiding in a monoidal category
V, is called braided monoidal category ( for short).
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U
θU //

f
��

U

f
��

V
θV

// V

Definition 1.2. A twist operator (simply twist, for short) in a braided monoidal
category consists of a family of isomorphisms

θ = {θV : V → V}, (6)

such that for any two objects V,W one has

θV⊗W = σWV ◦σVW ◦ (θV ⊗ θW ). (7)

Naturality of θ amounts to the equality θV ◦ f = f ◦θU for any f : U→ V , as shown
in the diagram aside.

Notice that θI = 1I, a relation implied by invertibility of θI and by the equality

θI ◦ θI = (θI⊗1I)◦ (1I⊗ θI) = θI⊗ θI = θI. (8)

Dualities. Duality in a monoidal category is a generalization of the same no-
tion in C =Mod(K) (K any field); in such a case the definition is given in terms
of a nondegenerate bilinear pairing between a vector space V and its dual V∗ =
hom(V,K).

Rather than looking for a generalization of this precise idea, one prefers to
axiomatize the presence of a pair of arrows V∗⊗V→ I, I→V⊗V∗, called valuation
and covaluation.

Definition 1.3. Let V be a monoidal category. Suppose that to any object V ∈ V
one can associate another object V∗ in a functorial way, and two arrows

bV : I→ V ⊗V∗ dV : V∗⊗V → I. (9)

The triple (V∗,bV ,dV ) is called a duality in V if the following identities are true:

(1V ⊗dV )◦ (bV ⊗1V ) = 1V

(dV ⊗1V∗ )◦ (1V∗ ⊗bV ) = 1V∗ (10)

(if C is strict, one can identify V ⊗ I and V; otherwise the composition with theI
bV //

bV
��

V ⊗V∗

θV⊗1V∗

��

V ⊗V∗
1V⊗θV∗

// V ⊗V∗

unitor isomorphism is implied). Notice that V 7→ V∗, albeit being functorial, is not
supposed to be an involution; we call a duality (−)∗ compatible with the braiding
σ and the twist θ if and only if for any V ∈ ObV one has

(θV ⊗1V∗ )◦bV = (1V ⊗ θV∗ )◦bV . (11)

R 1 : The valuation and covaluation maps can be obviously regarded as
natural transformations between the constant functor on I and ⊗ ◦ (1V × (−)∗),
⊗ ◦ ((−)∗ × 1V) in such a way that a duality is uniquely determined by the triple
((−)∗, b, d).

Definition 1.4. A ribbon category is a twisted  with a compatible duality
((−)∗, b, d).

R 2 : To any ribbon category one can associate its mirror, defined as the
same category where the braiding and the twist σ,θ are defined by

σVW = σ
−1
VW , θV = θ

−1
V . (12)
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Traces and Dimensions. The definition of ribbon category is given in order to
categorify the two notions of trace of an endomorphism f : V → V and dimension
of an object (defined to be the trace of 1V ).

Let V be a ribbon category, and denote K = End(I) the set of endomorphisms
of the unit object; K is a commutative monoid in an obvious way, with respect
to composition of arrows (commutativity follows from the Eckmann-Hilton argu-
ment:

h◦ k = (h⊗1I)◦ (1I⊗ k) = h⊗ k = (1I⊗ k)◦ (h⊗1I) = k ◦h). (13)

The trace of f : V→ V and the dimension fo V will turn out to be K-valued invari-
ants associated to V .

Definition 1.5 (Trace). Let (V,σ, (−)∗, b, d) be a ribbon category, and f : V→ V an
endomorphism of V ∈ ObV. The trace of f , denoted tr( f ) ∈ K = End(I) is defined
to be

tr( f ) := dV ◦σV,V∗ ◦ ((θV ◦ f )⊗1V∗ )◦bV . (14)

P 1.1 : tr( f ) enjoys the following properties:

• For any pair of morphisms f : V→W,g : W→V , one has tr( f ◦g)= tr(g◦ f ).

• For any pair of endomorphisms f : V → V,g : W → W one has tr( f ⊗ g) =
tr( f )◦ tr(g).

• For any k : I→ I one has tr(k) = k.

Definition 1.6 (Dimension). Let V ∈ObV be an object in a ribbon category. Define
its dimension as dimV = tr(1V ) ∈ K.

Notice that

• Isomorphic objects have the same dimension;

• For any two V,W ∈ ObV one has dim(V ⊗W) = dim(V)◦dim(W);

• dim(I) = 1(= 1I).

2 Premonoidal Categories.
Definition 2.1. A binoidal category consists of a category C endowed with two
families of ObC-indexed endofunctors {RA,LA}A∈ObC , such that RB(A) = LA(B) for
any A,B ∈ ObC.

The object RB(A) = LA(B) is often denoted A⊗B and called the binoidal prod-
uct of A,B; the correspondence ⊗ : C×C→ C is called pretensor. From now on
we also write RB = −⊗ B and LA = A⊗−. The pretensor ⊗ is said to be associa-
tive if there exists an isomorphim (A⊗ B)⊗C→ A⊗ (B⊗C) for any three objects
A,B,C.

For any arrow f : X→ Y in C, we denote LA( f ) = 1A ⊗ f and RB( f ) = f ⊗1B;
the intuition behind the definition of a binoidal category is a monoidal category
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where the pretensor ⊗ is not bifunctorial, albeit being functorial when saturated in
one of its two “arguments”.

In a binoidal category there are in principle two different ways to compose a
pair of arrows, and the tensor product of f : A→C and g : B→ D is ambiguous as
long as it is written “ f ⊗g”.

Definition 2.2 (Right and left product). Suppose (C,⊗) is binoidal, and define for
any f : A→C,g : B→ D the right and left product of f and g, g and f , to be

go f := (g⊗1C)◦ (1B⊗ f ) gn f := (1D⊗ f )◦ (g⊗1A). (15)

Definition 2.3 (Central Morphisms). Suppose (C,⊗) is binoidal, we say that f : A→
C is central if for any g : B→ D one has go f = gn f and f og = f ng.

A natural transformation α : G⇒H between functors G ,H : (B,⊗B)→ (C,⊗C)
is said to be central if every αA is a central map.

One can easily notice that there is a link between centrality and bifunctoriality:
more precisely the bifunctoriality of a pretensor ⊗C can easily be translated into
a diagrammatical form, and bifunctoriality as expressed in equation (1) precisely
happens when any morphism f is central.

Centrality for f : A→C can be easily restated by asking that for any g : B→ D
the two squares

A⊗B
f⊗B

//

A⊗g
��

fng

$$IIIIIIIII

fog
$$IIIIIIIII
C⊗B

C⊗g
��

B⊗A
gn f

$$IIIIIIIII

go f
$$IIIIIIIII

B⊗ f
//

g⊗A
��

C⊗B

g⊗C
��

A⊗D
f⊗D

// C⊗D D⊗A
D⊗ f

// C⊗D

(16)

commute. In case f is central we denote f ⊗g = f ng = f og and g⊗ f = gn f =
go f .

Definition 2.4. A premonoidal category ( for short) consists of a binoidal cat-
egory (C,⊗C), where ⊗ = ⊗C is an associative pretensor, and an object I ∈ ObC
playing the rôle of a unit for the binoidal product, namely such that there are cen-
tral natural equivalences

α : (−⊗−)⊗− =⇒ −⊗ (−⊗−),
λ : −⊗I =⇒ idC,
% : I⊗− =⇒ idC

(17)

satisfying the exact formal analogue of the coherence conditions for a monoidal
category.

A premonoidal category is said to be symmetric if there exists a central natural
equivalence with components τAB : A⊗B→ B⊗A, analogous to the symmetry of
the monoidal case

R 3 : The following remark is taken almost verbatim from [Power].
The aim of this paragraph is to better understand the notion of binoidal cate-

gory, if possible expressing it in terms of more elementary notions.
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First of all recall that the (2-)category Cat is a cosmos in the sense of Bénabou,
i.e. a complete and cocomplete closed symmetric monoidal category, with respect
to the “cartesian product of categories” tensor and where the internal-hom is given
exactly by the category of functors between two fixed categories.

Conversely, it is not so well known that Cat admits exactly one different cos-
mos structure, where the tensor is given by the category C#C having the same
objects as C×C and where the set of morphisms between (C,D) and (C′,D′) is
given by the set of “directed paths” with a suitable composition law2.

Now one can define a binoidal category as an internal magma in Cat# (=the
(2-)category Cat endowed with the #-symmetric monoidal structure), and a (strict)
premonoidal category as a monoid in Cat# (in the same way a monoidal category
was a monoid in Cat = Cat×).

E 2.1 : Any monoidal category is obviously premonoidal, because ⊗ : C×
C→ C is a bifunctor and f ng = g⊗ f = f og for any two arrows f ,g.

E 2.2 : Any monoid (M, ·) can be regarded as a premonoidal category with
a single object ∗ and such that End(∗) = M, i.e. where the tensor product amounts
to multiplication of elements in M. This category is monoidal exactly when the
operation is commutative.

E 2.3 : Suppose C is a category, and denote [C,C] the category of endo-
functors of C, whose arrows F ⇒ G are transformations, that is families of ObC-
indexed arrows in C, {ηC : F(C) → G(C)}C∈C, without any further assumption.
Tensor amounts to composition of functors; define (H ⊗ η)C = (H ∗ η)C = H(ηC),
(η⊗H)C = (η ∗H)C = ηH(C). Then [C,C] is a premonoidal category, monoidal if
we restrict hom[C,C](F,G) to the natural transformations between functors.

We now define the notion of premonoidal functor: the central request that it
preserves centrality of arrows, albeit natural, is not so naïve: see [Power] for more
informations.

Definition 2.5 (Premonoidal Functor). Let (C,⊗C) and (D,⊗D) be two binoidal
categories. A premonoidal functor consists of a triple (F ,F⊗,F1) where

• F : C→ D is a functor which sends central maps in C to central maps in D;

• F⊗ consists of a family of natural arrows F⊗,CDF (C)⊗D F (D)→ F (C⊗C D)

2The definition is of course possible in the case of two different categories C, D; notice that C#D can
be seen as a categorification of the free product of two monoids (=one-object categories). It is still open
to me if C#D can be characterized as F (U(C)×U(D)), where F a U is the adjoint pair “free category
on a graph”a forgetful functor. If the explicit definition makes you feel uneasy, maybe you prefer to see
C#D defined via a universal property, which is exactly the definition we gave for a binoidal category.
C#D is the unique category X equipped with two families of functors {FC : D→ X}C∈ObC , {GD : C→
X}D∈ObD such that FC(D) = GD(C) for any (C,D) ∈ ObC×D.
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such that the following diagram commute:

(F (A)⊗F (B))⊗F (C) //

��

F (A)⊗ (F (B)⊗F (C))

��

F (A⊗B)⊗F (C)

��

F (A)⊗F (B⊗C)

��

F ((A⊗B)⊗C) // F (A⊗ (B⊗C))

(18)

• F1 : J→ F(I) is an arrow such that

F (A)⊗ J

��

// F (A)⊗F (I)

��

J⊗F (A)

��

// F (I)⊗F (A)

��

F (A) oo F (A⊗ I) F (A) oo F (I⊗A)

(19)

commute. A premonoidal functor is said to be strong, resp. strict if F⊗,F1
are isomorphisms, resp. identity maps. The dual notion of an op-premonoidal
functor (F ,⊗F, 1F) is the same, but with ⊗FCD : F (C ⊗C D) → F (C) ⊗D
F (D), 1F : F(I)→ J; op-strictness and op-strength are defined in the same
way.

It is now a matter of analogy to define the notion of premonoidal natural trans-
formation:

Definition 2.6 (Premonoidal natural transformation). A premonoidal natural trans-
formation between two premonoidal functors consists of a central transformation
F → G which is natural as well as compatible with F⊗,G⊗, F1,G1, ⊗F,⊗G, 1F, 1G:
we can compactify the compatibility and op-compatibility condition expressing it
via the commutativity of the following diagram

F (C)⊗F (D)

ηC⊗ηD

��

F⊗,CD
// F (C⊗D)

⊗FCD

oo

ηC⊗D

��

G(C)⊗G(D)
G⊗,CD

// G(C⊗D)
⊗GCD

oo

(20)

and a totally analogous one for the compatibility with F1, 1F. Centrality is required
as long as we want a unique way to get an arrow ηC ⊗ηD : F (C)⊗F (D)→ G(C)⊗
G(D).

Definition 2.7. Let (C,⊗) be a . Its center Z(C) consists of the subcategory
with the same objects, where hom(A,B) is made by all central arrows between A
and B.

Like the notion of monoidal category can be seen to (vertically) categorify
the notion of monoid, the center of a premonoidal category categorifies the center
Z(M) of a monoid M. It’s easy to notice that the center of a premonoidal category
is a monoidal category (almost by definition).
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E 2.4 : Let (C,⊗, I) a strict monoidal category with a simmetry τXY : X ⊗
Y → Y ⊗X, and let S ∈ ObC. Define a category C⊗S with the same objects of C,
and where homC⊗S (X,Y) = homC(X⊗S ,Y ⊗S ). Define Z⊗ f = 1Z ⊗ f and f ⊗Z to
be

X⊗Z⊗S
τXZ⊗1S
−−−−−−→ Z⊗X⊗S

1Z⊗ f
−−−−→ Z⊗Y ⊗S

τZY⊗1S
−−−−−−→ Y ⊗Z⊗S . (21)

With these definitions, C⊗S is a premonoidal category: associativity and unit fol-
low from the structure on C.

We now apply this definition to a particular useful case.

P 2.1 : Every central morphism f ∈ homHilb⊗H (X,Y) comes from f̂ ∈
homHilb(X,Y), via f = f̂ ⊗1H .

Proof. Choose an orthonormal basis BH = {h j | j ∈ J }. If a, b ∈ J define Tab : H⊗C
H→ H⊗CH by

Tab
(
hi⊗h j

)
=
(
δiaδ jb+δibδ ja

)
h j⊗hi (22)

that is Tab : hi⊗h j 7→ hb⊗ha+ha⊗hb is defined to be the projection on the subspace
(H⊗H)ab = 〈hb⊗ha,ha⊗hb〉. Choose other bases

BX = {ei | i ∈ I }
BY = {gk | k ∈ K }

and compute f oTab on the basis ei⊗h j⊗hk:

( f oTab)(ei⊗h j⊗hk) = ( f ⊗1H)(1X ⊗Tab)(ei⊗h j⊗hk)

= ( f ⊗1H)
(
δiaδ jb+δibδ ja

)
(ei⊗h j⊗hk),

if j = k = a and a , b one has ( f oTab)(ei⊗h j⊗hk) = 0.
Now let’s compute f nTab on the basis ei⊗h j⊗hk, knowing that

( f ⊗1H)(ei⊗h j⊗hk) = (τ⊗1H)(h j⊗ f (ei⊗hk))

= (τ⊗1H)
(
h j⊗
∑

r,p crp
ik gr ⊗hp

)
=
∑

r,p crp
ik gr ⊗h j⊗hp

this entails f nTab(ei⊗h j⊗hk) =
∑

r,p crp
ik (δ jaδpb+δpaδ jb)gr ⊗hp⊗h j. If j = k = a,

a , b, then ∑
r,p

crp
ik δpbgr ⊗hp⊗h j =

∑
r

crb
ia gr ⊗hb⊗ha; (23)

now, if we use the fact that f nTab = f oTab we notice that
∑

r crb
ia gr ⊗hb ⊗ha = 0,

and hence that crb
ia = 0 whenever a , b; from this, nad noticed also that

( f oTab)(ei⊗h j⊗hk) =
∑
r∈K

cr j
i j (δ jaδkb+δ jbδka)gr ⊗hk ⊗h j

( f nTab)(ei⊗h j⊗hk) =
∑
r∈K

crk
ik (δ jaδkb+δ jbδka)gr ⊗hk ⊗h j
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we can deduce that cr j
i j (δ jaδkb+δ jbδka) = crk

ik (δ jaδkb+δ jbδka), which for a = j,b = k
entails

cra
ia (1+δab) = crb

ib (1+δab), (24)

whence we deduce that cra
ia = crb

ib for any a,b ∈ J , and we can define dr
i := cra

ia . We
are almost done, because

f (ei⊗ha) =
∑
r∈K

dr
i gr ⊗ha =

(∑
r

dr
i gr
)
⊗ha =: f̂ (ei)⊗ha. (25)

It remains only to notice that f̂ is bounded, because ‖ f ‖ = ‖ f̂ ⊗1H‖ = ‖ f̂ ‖. �

3 Von Neumann Categories.

3.1 Von Neumann Algebras.
This brief introduction to Von Neumann algebras comes almost verbatim from
the first pages of [Halvorson]’s review on s. Recall that if H is a complex
Hilbert space, then the algebra B(H) of continuous linear operators H→ H can be
endowed with different topologies: we consider

• The uniform topology, turning B(H) into a Banach space, induced by the
operator norm

‖T‖u := sup
|v|≤1
|T (v)|. (26)

An element T ∈ B(H) is the limit of a sequence {Ti} ⊂ B(H) if and only if
the sequence {‖T −Ti‖u} ⊂ R converges to zero.

• The weak topology, defined via the family of seminorms {pu,v | u,v ∈ H},
pu,v(T ) := |〈u,Tv〉|; this last topology is in general not first countable, hence
the closure of S ⊆ B(H) can be obtained as the set of all limit points of
S -valued nets. A net {Tλ} converges strongly to T ∈ B(H) if and only if
{pu,v(Tλ)} converges to pu,v(T ) in R, for any u,v ∈ H.

• The strong topology, defined via the family of seminorms {pv | v ∈H}, pv(T ) :=
|Tv|; a net {Tλ} converges strongly to T ∈ B(H) if and only if {pv(Tλ)} con-
verges to pv(T ) in R, for any v ∈ H.

These three topologies are ordered by the chain

weak � strong � uniform. (27)

It’s useful to notice that all three topologies coincide if H is finite dimensional, and
that the closures of any bounded, convex subset S ⊆ B(H) coincide in the weak,
strong and uniform topology.

Definition 3.1 (Commutant). Let A ⊂ B(H) a subalgebra closed under conjuga-
tion; define the commutant of A as{

T ∈ B(H) | T X = XT ∀X ∈A
}

(28)

and denote it as A′.
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E 3.1 : Schur’s lemma stated in the language of commutants says that if
% : G y H is an irreducible unitary representation of a topological group, then
(im%)′ � C.

R 4 : If we consider the set A(H) of all conjugate-closed subalgebras of
B(H) then A 7→A′ defines a correspondenceA(H)→A(H), which composed twice
turns out to act as a closure operator on A(H) if we partial-order it with respect to
inclusion: it means that A⊆A′′ =: cl(A)= cl(cl(A)) and cl(A∩B)= cl(A)∩cl(B).

This is not so surprising, because of the intimate link between double com-
mutants (i.e conugate-closed algebras A ⊆ B(H) such that cl(A) = A) and weakly
closed unital subalgebras of B(H), summarized by the following theorem:

T 3.1 [V N’  ]: Let A ⊆ B(H) a conjugate-
closed unital subalgebra; then it is Von Neumann iff it is weakly closed.

3.2 Premonoidal ∗-structures and Von Neumann categories.
Let’s collect in a single place various definitions about ∗-premonoidal categories:
it shouldn’t be surprising that they are the exact formal analogues of those in the
monoidal case (see [Comeau2], §5.5):

Definition 3.2. A premonoidal category is said to be C-linear if it is enriched over
VectC; a positive ∗-operation on a C-linear premonoidal category C consists of an
antiequivalence (−)∗ : Cop→ C such that

• It is the identity on objects and an antilinear map on the level of morphisms;

• (−)∗∗ = idC and 1X = 1∗X for any X ∈ ObC;

• for any f : X→ Y , the two arrows f ∗ ◦ f : X→ X and f ◦ f ∗ : Y → Y are the
zero map iff f = 0XY .

A premonoidal ∗-category consist of a C-linear premonoidal category endowed
with a positive ∗-operation: . Finally a premonoidal C∗-category (C,⊗, I,‖ − ‖•)
consists of a premonoidal Banach-∗-algebra-enriched C-linear category, such that

‖g◦ f ‖XZ ≤ ‖g‖YZ · ‖ f ‖XY , ‖ f ∗ ◦ f ‖X = ‖ f ◦ f ∗‖Y = ‖ f ‖2XY (29)

for any two morphisms of C f : X→ Y , g : Y → Z.

It is straightforward to notice that the center of a premonoidal C∗-category is a
C∗-category in the sense of [Warner], §15.

The aim of the rest of this subsection is to unravel the following crude defini-
tion:

The notion of commutant A′ with which we defined Von Neumann
algebras can be easily categorified into the notion of commutant in a
Von Neumann category, which is a subcategory of a C∗-category C
such that A′′(X,Y) = A(X,Y).

13



Definition 3.3. Let A ⊆ C be a subcategory of a premonoidal ∗-category C; the
commutant of A, denoted A′, is the subcategory of C with the same class og objects
and having as A′(X,Y) the set of all f : X→ Y such that f ng = f og, gn f = go f
for all g ∈Mor(A).

T 3.2 : The commutant A′ of A ⊆ C is a ∗-premonoidal category provided
A is such a category.

Proof. The most important thing to check is that composition of arrows in A′
remains in A′: suppose f : A→ B, h : B→C commute with every g : X→ Y in A.
Then for such a g one has (denote by mere juxtaposition the composition between
two arrows)

(h f )ng = (1C ⊗g)(h f ⊗1X)
= (1C ⊗g)(h⊗1X)( f ⊗1X)
= (h⊗1Y )(1B⊗g)( f ⊗1X)
= (h f ⊗1Y )(1A⊗g) = (h f )og

Similarly one checks that g n h f = g o h f , hence h ◦ f ∈ A′(A,C). Clearly this
composition law fits all the axioms turning A′ into a category.

The premonoidal structure on A induces by restriction a premonoidal structure,
because given f ∈ A′(X,Y), g ∈ A(A,B), then for any Z ∈ A

(1Z ⊗ f )ng = (1Z ⊗ f )og
gn (1Z ⊗ f ) = go (1Z ⊗ f ) (30)

Let’s show for example that (1A ⊗ f ) n g = (1A ⊗ f ) o g, any other check being
analogous (but pretty boring):

(1Z ⊗ f )ng = (1Z ⊗1Y ⊗g)◦ (1Z ⊗ f ⊗1A)
= 1Z ⊗

[
(1Y ⊗g)◦ ( f ⊗1A)

]
= 1Z ⊗

[
( f ⊗1B)◦ (1X ⊗g)

]
= [(1Z ⊗ f )⊗1B]◦ [1Z⊗X ⊗g] = (1Z ⊗ f )og.

Since every coherence condition (associativity and unit diagrams) involves arrows
living in the center Z(C) ⊆ A′. We conclude noticing that (−)∗ is a tensor functor,
namely it commutes with any functor A⊗−, −⊗B. �

We are now ready to give the very definition of Von Neumann category:

Definition 3.4. Let A ⊆ C be a premonoidal C∗-subcategory of a premonoidal
C∗-category C; then A is called a C-Von Neumann category if A′′(X,Y) = A(X,Y)
for any X,Y ∈ ObA. When the context is clear, or when C = Hilb⊗H , a C-Von
Neumann category is simply said Von Neumann.

As an example of this step-by-step categorification, let the following example
show that the new theory really embodies the old one:

P 3.1 : Suppose A is a Von Neumann category; then A(C,C) is a Von
Neumann algebra in the sense of Definition 3.1.

14



Proof. By definition, A(C,C) =M is a ∗-subalgebra of B(C⊗H) � B(H), hence its
elements are bounded operators on H. So it’s easy to link S ∈M to the classical
commutant of operators: suppose S ∈ A′(C,C) and T ∈M; S nT = S oT means
that the diagram

C⊗C⊗H
1C⊗S

//

τ⊗1H
��

C⊗C⊗H
τ⊗1H // C⊗C⊗H

1C⊗T
��

C⊗C⊗H
1C⊗T

// C⊗C⊗H
τ⊗1H

// C⊗C⊗H
1C⊗S

// C⊗C⊗H

(31)
commutes. Once noticed that τ = τCC = 1C⊗C, this boils down to

(1C⊗T )◦ (1C⊗S ) = (1C⊗S )◦ (1C⊗T ) (32)

hence to T ◦S = S ◦T . �

C 1 : Every one-object Von Neumann category is a Von Neumann alge-
bra.

One of the first properties of the commutant of a ∗-subalgebra A ⊆ B(H) is
that A′′′ = A′, so that the commutant of a ∗-closed subalgebra of B(H) is a Von
Neumann algebra, or in other words that the commutant (resp., double commutant)
acts as a preclosure (resp., closure) operator in the sense of Kuratowski on the
collection of ∗-subalgebras of C.

This very result has a formally identical analogue in the language of Von
Neusmann categories:

P 3.2 : If A is a subcategory of a premonoidal C∗-category such that
the functor (−)∗ restricts to a functor (−)∗ : A×A→ A, then A′ is a premonoidal
C∗-category, and in particulat a C-Von Neumann category.

Proof. We already know that A′ is a premonoidal C∗-category. In fact, we only
have to show that each A′(X,Y) is complete with respect to the norm it inherits
from C(X,Y) (recall that there’s only one admissible norm, once you’re given the
C∗-structure to a Banach algebra).

For any f : A→ B and C,D ∈ ObC the linear map ζ(g, f ) : C(C,D)→ C(A⊗
C,B⊗D), defined by (g, f ) 7→ f ng− f og is (jointly in both arguments) bounded.
Hence given a Cauchy sequence in A′(B,D), say {g j}, by completeness it must
converge to a suitable g ∈ C(B,D); now for any f : A→C in A one has

ζ(g, f ) = ζ( lim
j→∞

g j, f ) = lim
j→∞
ζ(g j, f ) = 0 (33)

and in the same way ζ( f ,g j) = 0, hence g = lim j→∞ g j ∈ A′(B,D).
To see that A′ is a C-Von Neumann category, we observe that A ⊆ A′′, and

taking commutants (which by definitions reverse inclusions) we get A′′′ ⊆ A′ for
free. On the other hand, A′ ⊆ A′′′, and thus we conclude. �
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R 5 : Every premonoidal C∗-category C admits two trivial Von Neumann
subcategories, namely C itself and its center Z(C); this is straightforward once we
noticed that Z(C)′ = C, and then applying Proposition 3.2.

[Comeau] uses the above remark interpreting Hilb⊗H as a multi-object ana-
logue of B(H), and its center Z(Hilb⊗H) = Hilb as a multi-object analogue of
the ground field C: this analogy can be illustrated via a diagram like this (see
[Comeau2], ch. 9.3):

B(H)
categorification

///o/o/o/o/o/o/o/o/o/o/o/o/o/o Hilb⊗H

M
OO

OO

categorification
///o/o/o/o/o/o/o/o/o/o/o/o/o/o M =M′′

OO

OO

Z(M)
OO

OO

categorification
///o/o/o/o/o/o/o/o/o/o/o/o/o/o Z(M)

OO

OO

Z(B(H)) � C
OO

OO

categorification
///o/o/o/o/o/o/o/o/o Hilb � Z(Hilb⊗H)

OO

OO

(34)

where M ⊆ B(H) on the left is a Von Neumann algebra and M on the right is a
Von Neumann subcategory of Hilb⊗H .

E 3.2 : Consider the category [C,C]? of ∗-endofunctors in a C∗-category
C, having as arrows bounded transformations, namely collections of arrows t =
{F (A)→ G(A)}A∈ObC such that ‖t‖ = supA∈ObC

‖tA‖ < ∞. Then t 7→ ‖t‖ defines a
norm on [C,C]?, and with the tensor defined by

F ⊗G := F ◦G
F ⊗ t := F ∗ t t ⊗G = t ∗G

the category [C,C]? becomes a premonoidal one, as described in Example 2.3.
Now, if we consider the subcategory CC ≤ [C,C]? made by endofunctors and

bounded natural transformations, we have Z([C,C]?)≤CC, with proper inclusion.
Indeed, consider a central map t : F → G ; then any f : A→ B can be regarded

as a transformation between constant functors on A and B respectively, let’s denote
it as s : ∆A→ ∆B, where ∆A(X) = A,∆B(Y) = B, sX = f for any X,Y ∈ C; hence by
centrality the diagram

F ⊗∆A(X)
F ( f )

//

tA=(t∗∆A)X
��

F ⊗∆B(X)

tB=(t∗∆B)X
��

G ⊗∆A(X)
G( f )

// G ⊗∆B(X)

(35)

commutes for any f : A→ B, which is exactly the naturality condition for t. The
converse inclusion is in general false: see Example 6.2.4 in [Comeau2].
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4 Algebraic Quantum Field Theory.
The beginning of this section closely follows [Brunetti] and [Comeau2] in or-
der to introduce in a self-contained way the basic definitions regarding Algebraic
Quantum Field Theory; the rest of it is devoted to present one of the most ele-
mentary application of the theory built so far, that is the construction of crossed
products of premonoidal C∗-categories, as presented in [Comeau], and to intro-
duce the (completely new) material about categorification of s presented in
[Comeau2].

Roughly speaking an  consists of a suitably well-behaved functor; more
precisely, one can describe an  as a functor between a suitable “category of
regions” Loc whose objects are suitable subspaces of a given Lorentzian mani-
fold modeling space-time, and whose morphisms are (isometric) embeddings, and
a “category of observables” Obs whose objects are C∗-algebras, modeling alge-
bras of operators/observables on the spacetime, and whose morphisms are (unital)
embeddings.

Algebraic s live in the (2-)category Funct(Loc,Obs).

Definition 4.1 (Category of regions). Let d ≥ 2 be a fixed integer, and consider the
category Loc whose objects are all smooth d-dimensional, globally hyperbolic,
lorentzian, oriented and time-oriented manifolds (M,g) (more often denoted sim-
ply by M); for any two such M,N, the set Loc(M,N) consists of all the isometric
embeddings ι : M→ N subject to the following constraints:

• Defining a causal curve as a curve γ : [0,1]→ N such that g(γ̇(t), γ̇(t)) < 0,
the subspace M � ιM ⊆ N is causally convex, meaning that it contains every
causal curve whose endpoints are in ιM. These are called causally convex
embeddings.

• Any morphism ι : M→ N preserves orientation and time-orientation of the
embedded spacetime (refer to [Penrose] for a definition of time-orientation
on a lorentzian manifold).

The composition of arrows in Loc amounts to composition of embeddings; the
identity map M→ M is the identity in Loc(M,M).

Definition 4.2 (Category of observables). The category Obs of observables is
formed by all unital complex C∗-algebras, and Obs(C,D) are the injective unital
∗-morphisms C→ D; the composition amounts to composition of maps.

Definition 4.3 ((Locally covariant) ). A locally covariant Quantum Field The-
ory is an object of the (2-)category A ∈ Funct(Loc,Obs), often denoted [Loc,Obs]
for short.

A locally covariant  is called causal if whenever ι1(M1) ⊂ N, ι2(M2) ⊂ N are
causally separated, i.e. there exists no causal curve between them, then [A1,A2] =
0 for any A1 ∈ A(M1),A2 ∈ A(M2) and both are considered as subalgebras of A(N).

The generally covariant locality principle amounts to say that to any globally
hyperbolic lorentzian spacetime M can be assigned a C∗-algebra A(M) = C such

17



that the corresponding algebras can be identified when two given spacetimes are
isometrically isomorphic.

Notice that according to Definition 4.3 a locally covariant  is in principle not
a C∗-Alg-valued presheaf on some “total” lorentzian manifold M, unless one can
impose rather strong size conditions on Ob(Loc) (in such a situation one simply
has that for any M

A(M) ⊆ A(
⋃

N∈Ob(Loc) N) � lim
−−→N∈Ob(Loc)

A(N) (36)

because any locally covariant  obviously commutes with colimits –which in a
posetal concrete category can be thought to be joins–). Let’s denote A(M) as A◦

and call it the quasilocal algebra associated to the  A .
In fact we have to remark that the present approach is slightly more general

than the classical one, which prevents us from any size-concernment on the domain
category of A: in that framework we fix once and for all an object M ∈ Loc and
consider the category K(M) of all open, relatively compact and causally convex
subsets of M. This becomes a poset in the obvious way. Furthermore, any U ∈
K(M) can be seen as isometrically embedded in M in the obvious way, hence for
any such U we have an isometric embedding ιU : U ↪→ M: we can hence state the
following

T 4.1 [A-H-K ]: Let A be a locally covariant  and
define a correspondence Ã : K(M)→ Obs sending U 7→ Ã(U) = A(U) ⊆ A(M);
then

• U ⊆ V implies Ã(U) ⊆ Ã(V) for any two U,V ∈K(M);

• [Ã(U), Ã(V)] = 0 for any two causally separated U,V ∈K(M).

Then Ã : K(M)→Obs can be seen to define a copresheaf on K(M).The essential
image of this functor is contained in the posetal category C∗⊆(M) ≤Obs, whose ob-
jects are the C∗-subalgebras of A(M) and whose morphisms are unital embeddings,
so any AHK- can be regarded as a C∗⊆(M)-valued presheaf on K(M).

In a minimalist approach, Araki-Haag-Kastler s can be explicitly defined
only on a basis of M, exploiting the fact that (co,pre)sheaves on a space are
uniquely determined from this assignment: we use [Penrose] and [Comeau2],
§2.3 as references to describe such a basis of open double cones generating the
Alexandrov topology on M.

First of all, recall that given a lorentzian manifold (M,g) a vector v ∈ TpM is
said to be causal if it is null or timelike; the causal cone of a vector is the set of all
causal vectors w such that 〈v,w〉 < 0; this definition is easily extendable to curves.

Now suppose that M is time orientable (this boils down to the existence of a
nonvanishing time-vector field on M), and fix an orientation on any tangent space
TpM; then a vector is said to be future- or past-pointing according to the sign of
v with respect to the chosen orientation. We can define the following relations on
M, which turn it into a partially ordered set:

• p� q if there exists a future-pointing timelike curve connecting p to q.
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• p < q if there exists a future-pointing causal curve connecting p to q.

• p ≤ q explains itself.

The chronological future of a subset A ⊆ M is defined to be

I+(A) = {q ∈ M | a� q for some a ∈ A} (37)

and the causal future of A is

J+(A) = {q ∈ M | a ≤ q for some a ∈ A} (38)

Reversing the inequalities gives the definition of the chronological and causal past
of A ⊆ M.

R 6 : The chronological past and future I±(q) of a point are open in M for
any p ∈ M.

This entails that every set

I(p,q) = I+(p)∩ I−(q) (39)

is open in M; the collection of all I(p,q) with p,q running in M form a basis for a
topology on M, which is called the Alexandrov topology. This topology coincides
with the manifold topology on M precisely if the former is Hausdorff or M is
strongly causal: this amounts to ask that any point admits an open neighbourhood
W which is�-convex, meaning that it cointains an interval [x,y]� = {z ∈ M | x�
z� y} iff it contains the endpoints.

The keypoint now is to notice that the following theorem holds:

T 4.2 : Let X a topological space and F a (pre)sheaf on X; then F is essen-
tially defined by how it acts on a basis B of the topology on X. Essentially means
that there exists a unique ρF extending a (pre)sheaf defined on B.

(see [Moerdijk], Theorem 2.1.3: if B is a basis for the topology on a space
X, then there exists an equivalence of categories Sh(X) � Sh(B), the category of
presheaves on B which satisfy the sheaf axiom on every open set U ∈ B). If we
denote as W(M) the set of double cones on our lorentzian manifold M, then an
AHK- can be defined as a sheaf on W(M), which is equivalent to define it on
the whole category of open sets in the lorentzian manifold M.

4.1 An application: premonoidal crossed products.

Let M be a Von Neumann algebra, seen as a subalgebra of B(H) for some Hilbert
space H; suppose a discrete group G acts on M. The crossed product Von Neu-
mann algebra MgG = M̃G is defined via two embeddings

M
π // MgG G

λoo (40)
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such that the image of G consists of unitaries in M̃G, and the two images are related
by the conjugation-equation

π(g.a) = λ(g)π(a)λ(g)∗ (41)

(this can be easily written in diagrammatical terms).
The construction of MgG is classical: start with the Hilbert space H where M

is represented, and define a new Hilbert space

H̃G :=
{
ζ : G→ H |

∑
g∈G ‖ζ(g)‖ <∞

}
. (42)

Now define embeddings into B(H̃G) by π(a)(ζ) : g 7→ (g−1.a)ζ(g) and λ(g)(ζ) : u 7→
ζ(g−1.u); the crossed product MgG is now defined to be

(
π(M)∪λ(G)

)′′.
This is easily seen to be categorified by replacing any occurrence of B(H) with

its higher-categorical counterpart Hilb⊗H , and any Von Neumann algebra with a
Von Neumann category.

First of all we need to categorify the action of G on M: this can be done
in various ways, but we follow the idea in [Comeau] and consider G (like any
monoid, see Example 2.2) as a one-object premonoidal category. Then a G-action
on M can be easily seen as a functor G→M, regarding also M as a category; hence
we are led to consider the category Funct(G,C) for a Von Neumann category C ≤
Hilb⊗H , made by C-valued functors from G, and to define in the unique possible
way the equations the map G×hom(K,K′) must satisfy for any hom(K,K′).

One can easily notice that for K =K′ = I the action restricts to a lower-categorical
one on hom(I, I), which is in a natural way a Von Neumann algebra (see Proposi-
tion 3.1 and Corollary 1): this makes the categorification even more evident.

Notice that the Hilbert space H̃G defined above is isomorphic to the tensor
product H ⊗ `2(G), where `2(G) is the space of functions f : G → C such that∑

g | f (g)| <∞; then a basis of H̃G is given by B =
{
ei⊗δg

}
i∈I,g∈G, {ei} being a basis

of H and {δg} is the basis of `2(G) made by Kronecker’s deltas.
Viewing again G = G[1] as a one-object category, we can define L : G[1]→

Hilb
⊗H̃G
← C : P , in order to embed both C and G into Hilb

⊗H̃G
. The strong

premonoidal functor L amounts to a map G→ B(H̃G) which can be defined on the
basis B mimicking the classical definition:

L(g) : ei⊗δh 7→ ei⊗δgh. (43)

The premonoidal functor P : C→Hilb
⊗H̃G

acts as the identity on objects and sends

f : X⊗ H̃G → Y ⊗ H̃G in Hilb to

P ( f ) : x⊗ ei⊗δg 7→
(
(g−1. f )(x⊗ ei)

)
⊗δg. (44)

Definition 4.4 (Premonoidal-categorical crossed product). Let C a Von Neumann
category, and G a discrete group regarded as a one-object premonoidal category.
Let A(C,G) be the union of the essential images of the functors P ,L defined above;
then the crossed product of C and G is defined to be CgG := A(C,G)′′.
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4.2 A further application: categorification of .
4.2.1 The category of transportable endomorphisms. . .

Let’s recall the classical framework in which ∗-monoidal categories arise in .
First of all let A a fixed AHK- and π0 : A◦y H0 a fixed representation3 which
we called the vacuum representation.

Now define the complement algebra of a double cone U ∈W(M) to be the
C∗-subalgebra generated by the set

⋃
V⊥U A(V), where V ⊥ U means that V,U are

spacelike-separated. Denote it as A{(U). A ∗-morphism % : A◦→ A◦ is said to be

• localized in U ∈W(M) if it acts as the identity on A{(U).

• localizable if it is localized on some U ∈W(M).

• transportable, if for any U ∈W(M) it is intertwined via a unitary element
u ∈ A◦ to a U-localized ∗-morphism %U :

%(a) = u−1%U (a)u. (45)

Then we can define a category ∆ = ∆A◦ whose objects are transportable ∗-endo-
morphisms of A◦, and whose morphisms %→ σ are intertwiners between the two,
namely r ∈ A◦ such that r%(a) = σ(a)r for any a ∈ A◦; composition of arrows is
given by multiplication in A◦.

The category ∆ is easily seen to inherit a ∗-structure, and if some rather weak
assumptions on the poset W(M) are satisfied it can also be turned into a category
with biproducts. D’altra parte si puo’ provare qualcosa di piu forte:

T 4.3 : The category ∆ is a C∗-category.

Te proof is worked out in full detail in [Comeau2], Theorem 8.2.12 where
the explicit monoidal structure on ∆ is defined and studied: the fundamental as-
sumption to give ∆ a monoidal structure is that the composition of localizable and
transportable ∗-morphisms is again localizable and transportable.

Introduction of the category ∆ can be motivated by the final remark contaned
in Theorem 4.4, which needs a little preparation.

Definition 4.5 (DHR representations). A representation of an  A , η : A →
B(H) is called a -representation if for each double cone U ∈W(M) there exists
a unitary map TU : H → H0 (the base-space of the vacuum representation) such
that

TU ◦π(a) = π0(a)◦TU ∀ a ∈ A(U{) (46)

where π is the (algebraic, not sheaf theoretical) representation of the quasilocal
algebra Ã.

We can form a category DHR-Rep having as objects all  representations of
a given  A where morphisms between two such representations are given by
intertwiners. The main result (Theorem 8.4.3 in [Comeau2]) is

3Throughout this note a representation of an AHK- A consists of a natural transformation
η : A → B(H) (the second is the constant functor U 7→ B(H)(U) = B(H); a slight but straightforward
effort can lead to a more general definition).
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T 4.4 : The assignment ∆(U) 3 ρ 7→ J (ρ) = π0 ◦ ρ extends to a functor on
the whole ∆, taking values in DHR-Rep.

If the vacuum representation π0 s faithful and satisfies Haag duality then the
functor J is an equivalence of categories ∆ � DHR-Rep.

By a simple “structure-transport” argument the category DHR-Rep can hence
be endowed with a symmetric C∗-structure.

4.2.2 . . . and its categorification.

Everything that follows is new material proposed by [Comeau2] to categorify the
definition of a .

Definition 4.6. Let (K,�) be a directed poset; then a local system of premonoidal
C∗-categories consists of a functor A : K → pC∗-Cat from K to the (2-)category
of small premonoidal C∗-categories and premonoidal C∗-functors between them,
such that for any U � V the functor A(U)→ A(V) is faithful.

In view of the last request, it’s easily seen that the correct domain for such a
local system is the posetal 2-category pC∗-Cat⊆ of premonoidal C∗-categories and
premonoidal faithful C∗-functors between them.

We can mimick the construction of the quasi local algebra A◦ defining

A◦ :=
(⊔

U∈K A(U)
)
/∼ (47)

to be the category whose objects are the disjoint union of all A(U) quotiented
out by the relation (U,A ∈ ObA(U)) ∼ (V,B ∈ ObA(V)) if and only if there exists a
W <U,V such that the objects iUW (A) and iVW (B) are equal in A(W). This relation
is clearly an equivalence on the class of objects, and a similar relation defined for
morphisms, where the elements are (U, f ∈ homA(U)(A,A′)) quotiented out by the
relation which identifies (U, f ), (V,g) if they are eventually equal, turns out to be a
congruence on te class of morphisms of A◦.

The basic result which allows the development of such theory is the following:

L 4.1 : If A is a local system of premonoidal C∗-categories, then A◦ has a
premonoidal structure.

Proof. Refer to [Comeau2] for a complete proof: the tensor is defined to be the
correspondence (U,A ∈ A(U)), (V,B ∈ A(V)) 7→ (W, iUW (A)⊗ iVW (B)), where W <
U,V (this is a well-posed definition since K is directed). �

The most natural prosecution of this process should be the presence of an iso-
morphism

A◦ � lim
−−→
U∈K

A(U). (48)

This is not the case, since (see Example 10.1.8 in [Comeau2]) to obtain a C∗-
category one has to undergo a completion process. This point is precisely ex-
plained via an analogy in [Comeau2]:

22



Suppose that A is a local system of C∗-algebras, regarded as one-
object C∗-categories; Then we can costruct the category A◦ which
amounts to taking the union of all subalgebras of the quasilocal al-
gebra. This turns out to be an algebra since K was directed (define
operations ”eventually” in the set-theoretic colimit), but in general it
is not complete, hence it is not a C∗-algebra.

The process of categorification allows to mantain a certain analogy with this coun-
terexample, and suggests that A◦ is not the right colimit due to completion prob-
lems.

However, A◦ doesn’t fall so far from the right colimit: the algebra A◦ can
be faithfully embedded in a premonoidal C∗-category U = U(A) via a surjective
premonoidal C∗-functor, and U turns out to be the object part of the 2-categorical
colimit of the functor A (see [Comeau2], Theorem 10.1.5, Proposition 10.1.7 and
Example 10.1.8).

Te next step is to insert Einstein causality: let (K,≤) be the poset of open double
cones in Minkowski space, ordered by inclusion of subsets.

Definition 4.7 (Premonoidal C∗-). A premonoidal C∗- consists of a local
system of premonoidal C∗-categories A : (K,≤)→ pC∗-Cat subject to the addi-
tional condition of Einstein’s causality:

Whenever U ⊥ V , then A(U) and A(V) commute in U(A), namely
A(U)′ ≥ A(V), A(V)′ ≥ A(U).

The final task is to follow section 4.2.1, which built the categories ∆ and
DHR-Rep and showed the link between the two (i.e. the functor J ), and mim-
ick the same construction for a premonoidal C∗-.

Definition 4.8. Let A be a premonoidal C∗- endowed with a representation
(π0,H0) (i.e. a functor π0 : U(A)→ Hilb⊗H0 ) called vacuum representation. A
premonoidal -representation consists of a representation (H,π) such that for
any U ∈W(M) there exists a family of unitary morphisms β(U)A : π0(A)⊗H0 →

π(A)⊗H, for each A ∈ Ob(U(A)) and such that for any f : X→ Y in A(V), V ⊥ U,
the diagram

π0(X)⊗H0
π0( f )

//

β(U)X

��

π0(Y)⊗H0

β(U)Y

��

π(X)⊗H
π( f )

// π(Y)⊗H

(49)

commutes in the category Hilb.

With a careful definition of “morphism of representation” in this higher-categorical
setting we can arrange premonoidal -representations into a category, called
again DHR-Rep.

The circle will be closed once we have built the higher-categorical counterpart
of the category ∆ of transportable morphisms.
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Definition 4.9 (Localized C∗-functor). A premonoidal C∗-functor F : U(A) →
U(A) is termed localized at an open U ∈ W(M) in case that for each V ⊥ U
and object A in A(V), here is a unitary map vA : F (A) → A such that for any
f ∈ homA(V)(X,Y) the diagram

F (X)
F ( f )

//

vX

��

F (Y)

vY

��

X
f

// Y

(50)

commutes in U(A). A functor F is localizable if it is localized on some U ∈W(M).

Definition 4.10. A functor F : U(A)→ U(A), localized at U ∈W(M) is said to
be transportable if for any V ∈W(M) there exists a premonoidal C∗-functor GV
localized at V and a unitary premonoidal C∗-transformation θ : F ⇒ G .

Let now D(U) the set of premonoidal C∗-endofunctors of U(A) localized at
U ∈W(A). The union

⋃
U∈W(A) D(U) is the object part of a category, whose ob-

jects are transportable premonoidal C∗-endofunctors and whose morphisms are
transformations (no naturality) between such functors.
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